link between moisture dynamics and microbial activity...

50
Role of pore pressure gradients in geophysical flows over permeable substrates Michel Louge, Barbara Turnbull, Cian Carroll, Alexandre Valance, Ahmed Ould elMoctar, Jin Xu Aussois, May 24, 2013 thanks to Patrick Chasle, Smahane Takarrouht, Ryan Musa, Michael Berberich, Amin Younes, Daniel BalenDne, MaEhew Pizzonia, Olivier Roche, Robert Foster hEp://grainflowresearch.mae.cornell.edu Thursday, May 30, 13

Upload: vuongthuy

Post on 15-Sep-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Role  of  pore  pressure  gradients  in  geophysical  flows  over  permeable  substrates

Michel  Louge,  Barbara  Turnbull,  Cian  Carroll,  Alexandre  Valance,  Ahmed  Ould  el-­‐Moctar,  Jin  Xu

Aussois,  May  24,  2013

thanks  to  Patrick  Chasle,  Smahane  Takarrouht,  Ryan  Musa,  Michael  Berberich,Amin  Younes,  Daniel  BalenDne,  MaEhew  Pizzonia,  Olivier  Roche,  Robert  Foster

hEp://grainflowresearch.mae.cornell.edu

Thursday, May 30, 13

Shields  erosionShields,  A.  (1936).  Anwendung  der  

Aehnlichkeitsmechanik  und  der  Turbulenzforschung  auf  die  Geschiebebewegung,  MiEeilungen  der  Preußischen  Versuchsanstalt  für  Wasserbau  26.  Berlin:  Preußische  

Versuchsanstalt  für  Wasserbau.

Thursday, May 30, 13

Shields  erosionShields,  A.  (1936).  Anwendung  der  

Aehnlichkeitsmechanik  und  der  Turbulenzforschung  auf  die  Geschiebebewegung,  MiEeilungen  der  Preußischen  Versuchsanstalt  für  Wasserbau  26.  Berlin:  Preußische  

Versuchsanstalt  für  Wasserbau.

Shao,  Y.,  and  H.  Lu  (2000),  A  simple  expression  for  wind  erosion  threshold  fric[on  velocity,  J.  Geophys.  Res.,  105,  22437-­‐22443.

Thursday, May 30, 13

Flow  over  porous  media

R.  M.  Iverson,  Regula[on  of  landslide  mo[on  by  dilatancy  and  pore  pressure  feedback,  J.  Geophys.  Res.  110,  F02015  (2005).

Roche,  O.,  S.  Montserrat,  Y.  Niño,  and  A.  Tamburrino  (2010),  Pore  fluid  pressure  and  internal  kinema[cs  of  gravita[onal  laboratory  air-­‐par[cle  flows:  Insights  into  the  emplacement  dynamics  of  pyroclas[c  flows,  J.  

Geophys.  Res.,  115,  B09206.

T.  Yamamoto,  H.  L.  Koning,  H.  Sellmeijer,  and  EP  Van  Hijum,  On  the  response  of  a  poro-­‐eleas[c  bed  to  water  waves,  J.  Fluid  Mech.  87,  193-­‐206  (1978).

R.  M.  Iverson,  et  al,  Posi[ve  feedback  and  momentum  growth  during  debris-­‐flow  entrainment  of  wet  bed  sediment,  Nature  Geoscience  4,  116-­‐121  (2010).

Thursday, May 30, 13

Two  examples

hEp://grainflowresearch.mae.cornell.edu

Thursday, May 30, 13

Powder  snow  avalanches

Sovilla,  Burlando  and  Bartelt,  JGR  (2010)

Release

WSL Institute for Snow and Avalanche Research SLF

Thursday, May 30, 13

Growth  rate

ddt

!ρ !H 2W( )g !H"#

$% ~ !ρ u*2 !HW( )u*

rate  of  poten[al  energy working  rate  of  basal  shear  stress

Growth  rate  of  a  cloud  of  height              and  density        

due  to  basal  shearing  at  a  shear  velocity

!H !ρ

u*

d !Hdt

~ u*3

3g !H~

0.05×50( )3

3×9.81×20~ 0.03 m/s

Thursday, May 30, 13

ErupDon  current

rapid  erup[on

Issler  (2002)  Sovilla  et  al  (2006)  

[me  (s)

height  (m

)

Thursday, May 30, 13

ErupDon  current

rapid  erup[on

Issler  (2002)  Sovilla  et  al  (2006)  

[me  (s)

height  (m

)

Erup[on  current  =  a  gravity  current  driven  by  massive  frontal  erup[on

Thursday, May 30, 13

ErupDon  current

rapid  erup[on

Issler  (2002)  Sovilla  et  al  (2006)  

[me  (s)

height  (m

)

[me  (s)

sta[

c  pressure  (P

a)

McElwaine  &  Turnbull  JGR  (2005)

depression

Erup[on  current  =  a  gravity  current  driven  by  massive  frontal  erup[on

Thursday, May 30, 13

Erup[on  current  frontal  region

rapid  erup[on

Issler  (2002)Sovilla  et  al  (2006)  

Thursday, May 30, 13

Erup[on  current  frontal  region

rapid  erup[on

Issler  (2002)Sovilla  et  al  (2006)  

source

avalanche  rest  frame

Thursday, May 30, 13

Erup[on  current  frontal  region

rapid  erup[on

Issler  (2002)Sovilla  et  al  (2006)  

source

avalanche  rest  frame

frontal  region

Thursday, May 30, 13

Principal  assump[ons

source

frontal  region•  Negligible  basal  shear  stress•  Negligible  air  entrainment•  Inviscid•  Uniform  mixture  density

Thursday, May 30, 13

Poten[al  flowRankine,  Proc.  Roy.  Soc.  (1864)

p + ρu 2

2+ ρgz = # p + # ρ

# u 2

2+ # ρ gz

U’

H’

Thursday, May 30, 13

Poten[al  flowRankine,  Proc.  Roy.  Soc.  (1864)

p + ρu 2

2+ ρgz = # p + # ρ

# u 2

2+ # ρ gz

Ri = 2" ρ − ρ( )" ρ

g " H " U 2

ζ ≡1− ρ / & ρ

U’

H’

Thursday, May 30, 13

x / " b €

p − pa

(1/2) # ρ # U 2

Sta[c  pressure  in  the  cloudpredic[on

data:  McElwaine  and  Turnbull

JGR  (2005)

p − pa

(1/2) # ρ # U 2=

2(x / # b ) −1(x / # b )2 + ( # h / # b )2

pressure p, air density ρ, cloud density ρ� !stagnation-source distance b� !

fluidized depth h�"

Thursday, May 30, 13

x / " b €

p − pa

(1/2) # ρ # U 2

Sta[c  pressure  in  the  cloudpredic[on

data:  McElwaine  and  Turnbull

JGR  (2005)

p − pa

(1/2) # ρ # U 2=

2(x / # b ) −1(x / # b )2 + ( # h / # b )2

pressure p, air density ρ, cloud density ρ� !stagnation-source distance b� !

fluidized depth h�"

Thursday, May 30, 13

Porous  snow  pack

rapid  erup[onIssler  (2002)

[me  (s)

height  (m

)

interface!

∇2p = 0

pore pressure p!

" h

" b

Pore pressure gradients "defeat cohesion!

u = −Kµ∇p

∇⋅u = 0

∇2p = 0

Thursday, May 30, 13

Force  balance  in  the  snowpack

∂σ x

∂x+∂τ∂y

= −F ⋅ ˆ x = ˆ x ⋅ ∇p

∂τ∂x

+∂σ y

∂y= −F ⋅ ˆ y − ρcg

= ˆ y ⋅ ∇p − ρcg

shear stress τ, normal stress σ, gravity g, snowpack density ρc!

air-­‐cloud  interface

Thursday, May 30, 13

Snowpack  failure

tanα = µEinternal friction!

α!

ˆ n α!

ρcg

Thursday, May 30, 13

Snowpack  failure

tanα = µEinternal friction!

α!

ˆ n α!

ρcg

tanβ ≡ F ⋅ ˆ y + ρcgF ⋅ ˆ x

α

ˆ n

β!

F ⋅ ˆ x

F ⋅ ˆ y + ρcg

Thursday, May 30, 13

Snowpack  failure

tanα = µEinternal friction!

α!

ˆ n α!

ρcg

tanβ ≡ F ⋅ ˆ y + ρcgF ⋅ ˆ x

α

ˆ n

β!

F ⋅ ˆ x

F ⋅ ˆ y + ρcg

π2−α −β

π − 2α − 2β

Thursday, May 30, 13

Rela[on  amongst  stresses  at  fluidiza[on

σ!

τ!

α!

2α+2β�π!

σy!

σx!τ!

τs < 0!

σ!

τ!

α!

2α�2β+π!

σy!σx!

τ!

τs > 0!

σ1!σ2! σ1!

σ2!

σ x =σ y1− sinα sin 3α 2β( )1+ sinα sin 3α 2β( )

&

' (

)

* +

σ i =σ y1− −1( )i sinα

1+ sinα sin 3α 2β( )

&

' ( (

)

* + +

τ = ±σ ysinα cos 3α 2β( )1+ sinα sin 3α 2β( )

&

' (

)

* +

failure!

failure!

Thursday, May 30, 13

Principal stress variations ⊥ failure surface

∂σ i

∂x= −F ⋅ ˆ x

1− −1( )i sinα1− sin2α

'

( ) )

*

+ , ,

σ!

τ!

α!

2α+2β�π!

σy!

σx!τ!

τs < 0!

σ1!σ2!

failure!

air-­‐cloud  interface

Thursday, May 30, 13

Principal stress variations ⊥ failure surface

∂σ i

∂x= −F ⋅ ˆ x

1− −1( )i sinα1− sin2α

'

( ) )

*

+ , ,

σ!

τ!

α!

2α+2β�π!

σy!

σx!τ!

τs < 0!

σ1!σ2!

failure!

air-­‐cloud  interface

f± ≡cos(α β)cosβ

cosα + 2sinα sin 2 α β( )[ ]{ }

Thursday, May 30, 13

Principal stress variations ⊥ failure surface

∂σ i

∂x= −F ⋅ ˆ x

1− −1( )i sinα1− sin2α

'

( ) )

*

+ , ,

σ!

τ!

α!

2α+2β�π!

σy!

σx!τ!

τs < 0!

σ1!σ2!

failure!

air-­‐cloud  interface

f± ≡cos(α β)cosβ

cosα + 2sinα sin 2 α β( )[ ]{ }

sustainable failure:!

∂σ i

∂x> 0

Thursday, May 30, 13

Principal stress variations ⊥ failure surface

∂σ i

∂x= −F ⋅ ˆ x

1− −1( )i sinα1− sin2α

'

( ) )

*

+ , ,

σ!

τ!

α!

2α+2β�π!

σy!

σx!τ!

τs < 0!

σ1!σ2!

failure!

air-­‐cloud  interface> 0!

> 0! sign of f±?!

f± ≡cos(α β)cosβ

cosα + 2sinα sin 2 α β( )[ ]{ }

sustainable failure:!

∂σ i

∂x> 0

Thursday, May 30, 13

Sign of f± sets avalanche sustainability

tanα = µEinternal friction!

tanβ =F ⋅ ˆ y + ρcg

F ⋅ ˆ x ≥ −

1µe

Condition for sustainable failure,"whence fluidized snow pack does "

not de-fluidize.!

f± > 0

Thursday, May 30, 13

Fluidiza[on interface!

∇2p = 0

pore pressure p!

" h

" b

Pore pressure gradients "defeat cohesion!

σ!

τ!

α!

2α+2β�π!

σy!

σx!τ!

τs < 0!

σ1!σ2!

Mohr-Coulomb failure!

Thursday, May 30, 13

Fluidiza[on interface!

∇2p = 0

pore pressure p!

" h

" b

Pore pressure gradients "defeat cohesion!

σ!

τ!

α!

2α+2β�π!

σy!

σx!τ!

τs < 0!

σ1!σ2!

Mohr-Coulomb failure!

R ≡2ρcg $ b µe

$ ρ $ U 2

snowpack density ρc, friction µe!

Thursday, May 30, 13

Fluidiza[on interface!

∇2p = 0

pore pressure p!

" h

" b

Pore pressure gradients "defeat cohesion!

σ!

τ!

α!

2α+2β�π!

σy!

σx!τ!

τs < 0!

σ1!σ2!

Mohr-Coulomb failure!

R ≡2ρcg $ b µe

$ ρ $ U 2

snowpack density ρc, friction µe!€

" h " b

R€

h'b'≈1Ra1

a1 ≈ 0.42

Thursday, May 30, 13

References

hEp://grainflowresearch.mae.cornell.edu

Carroll,  C.  S.,  M.  Y.  Louge,  and  B.  Turnbull  (2013),  Frontal  dynamics  of  powder  snow  avalanches,  

J.  Geophys.  Res.,  in  press.

Louge,  M.  Y.,  C.  S.  Carroll,  and  B.  Turnbull  (2011),  Role  of  pore  pressure  gradients  in  sustaining  frontal  par[cle  entrainment  in  erup[on  currents:  The  case  of  powder  snow  avalanches,  J.  Geophys.  Res.,  116,  F04030.

C.  S.  Carroll,  B.  Turnbull,  and  M.  Y.  Louge,  Role  of  fluid  density  in  shaping  erup[on  currents  driven  by  frontal  par[cle  blow-­‐out,  Phys.  Fluids  24,  066603  

(2012).

Thursday, May 30, 13

Sand  ripples

wind

crest

trough

Thursday, May 30, 13

Measurements

Thursday, May 30, 13

Surface  density  probe

Thursday, May 30, 13

Ripple  elevaDon  profile

Dah  Ould  AhmedouAhmed  Ould  el-­‐Moctar

Ahmedou  Ould  Mahfoud

Alexandre  Valance

Thursday, May 30, 13

ElevaDon  and  volume  fracDon

h0 / λ ≈ 0.02

h / λ

x / λ

Thursday, May 30, 13

Seepage,  moisture  and  dust

∇p = 0

trough crest trough

low  pfast  uhigh  p

slow  uhigh  pslow  u

Thursday, May 30, 13

Wind  tunnel  experiments

Amin  Younes

Brian  MiEereder

Smahane  Takarrouht

Scanning  valvePressure  gauge

Thursday, May 30, 13

Pressure  field

p = pa + p0 cos 2πxλ+ϕ

!

"#

$

%&

p = pa

Hy

wind

∇2p = 0

Thursday, May 30, 13

Pressure  field

Hy

wind

p = pa + p0 cos 2πxλ+ϕ

!

"#

$

%&exp −2π y / λ( )− exp −4πH / λ( )exp 2π y / λ( )

1− exp −4πH / λ( )

(

)**

+

,--

f(x)% g(y)%

Thursday, May 30, 13

Pressure  field

Thursday, May 30, 13

Pressure  field

h0 / λ = 3%

Thursday, May 30, 13

High  amplitude  to  wavelength  raDo

h0 / λ = 6%! !,!

= !! + !! cos2!"! + !!

exp − !!"! − exp − !!"

! ∗ exp !!"!

1− exp − !!"!

+ !! cos4!"! + !!

exp − !!"! − exp − !!"

! ∗ exp !!"!

1− exp − !!"!

+ !! cos6!"! + !!

exp − !!"! − exp − !"!"

! ∗ exp !!"!

1− exp − !"!"!

!

p = pa

trough crest trough

∇2p = 0Pressure  field

Thursday, May 30, 13

Gong  et  al,  JFM  (1996)

p− pa( )ρu*2

λh 0

"

#$

%

&' x / λ

troughcrest

troughu* = 0.41 m/sh0 / λ ≈ 7.9%

roughsurface

smoothsurface

Thursday, May 30, 13

Flow  regimesKuzan,  J.  D.,  T.  J.  HanraEy,  and  R.  J.  

Adrian,  Turbulent  flows  with  incipient  separa[on  over  solid  waves,  

Experiments  in  Fluids  7,  88-­‐98  (1989).

Instantaneouslyreversed  flows

Sinusoidal  shear  stress,non-­‐separated

Time-­‐averaged  separated  flows

2πµρu*λ

2h0λ

Gong,  et  al,  1996

Non-­‐sinusoidal  shear  stress,non-­‐separated

h0 / λ = 6%h0 / λ = 3%

Thursday, May 30, 13

Toward  fluidizaDon

trough

crest

trough

∂p /∂yρsνg

against  gravityh0 / λ = 6%

u* ≈1 m/sν = 0.67

ρs = 2630 kg/m3

h0 / λ = 3%

fluidized

Thursday, May 30, 13

References

hEp://grainflowresearch.mae.cornell.edu

Louge,  M.  Y.,  A.  Valance,  H.  Mint  Babah,  J.-­‐C.  Moreau-­‐Trouvé,  A.  Ould  el-­‐Moctar,  P.  Dupont,  and  D.  Ould  Ahmedou  (2010),  

Seepage-­‐induced  penetra[on  of  water  vapor  and  dust  beneath  ripples  and  dunes,  J.  Geophys.  Res.,  115,  F02002.

Louge,  M.  Y.,  A.  Valance,  A.  Ould  el-­‐Moctar,  and  P.  Dupont  (2010),  Packing  varia[ons  on  a  ripple  of  nearly  monodisperse  dry  sand,  

J.  Geophys.  Res.,  115,  F02001.

Thursday, May 30, 13

Jin  Xu

hEp://grainflowresearch.mae.cornell.edu/index.html

Thursday, May 30, 13