liquid circulation, bubble size distributions, and solids movement in two- and three-phase bubble...

12
Pergamon Chemical Engineering Science, Vol. 51, No. 10, pp. 1703--1713, 1996 Copyright © 1996 Elsevier Science Ltd Printed in Great Britain. All rights reserved S0009-2509(96)00029-2 0099-2509/96 $15.00 + 0.00 Liquid circulation, bubble size distributions, and solids movement in two- and three-phase bubble columns S. Grevskott B.H. Sann~es M.P. Dudukovid* K.W . Hjarbo t H.F. Svendsen Department of Chemical Engineering, University of Trondheim, N-7034 TRONDHEIM, Norway Abstract - One two-phase bubble column and two three-phase slurry reactors have been experimentally characterised with special emphasis on bubble size distribution, liqmd circulation and solids movement. The measurements in the two phase bubble column were based on a five point conductivity probe method and on a steady state heat tracer technique. For the solids movement, the CARPT technique was used. By numerical simulations using a two fluid model, new models for bubble size distribution and solids presence have been tested. The new bubble size model is found to improve the size distribution predictions compared to prior models, but. is still not satisfactory. Temperature profiles were well predicted by the model. For the solids movement, two circulation cells were found experimentally in the reactors tested. This has also been verified by numerical simulations. The formation of secondary cell structures of magnitude approximately equal to the eohunn diam eter, are indicated by the experimentally determined Reynolds stress patterns'. INTRODUCTION Slurry bubble columns are presently being used for a wide range of catalytic reactions in both the bio- and petrochemical industry. The flow patterns of liquid, gas, and solids in these reactors are very complex, and the basic principles governing tbe flow phenomena are not yet fully understood. Computational fluid dynamics is an important tool in the investigation of multidimensional two-phase flow. Phenom enological models have been widely used to describe such flows, but these models are not well suited for scale-up and design iu general, since they require prior knowledge of the flow structure. By introducing more fundamental models for the internal flow variables, a tool that can be used for a variety of multi-phase systems and conditions may be obtained. Recently, several papers that describe advanced models for two phase flows in reactors have appeared. Among these are Sokolichin and Eigenberger (1994) who use a dynamic Euler-Euler formulation with no consideration of turbulence. Lapin and Liibbert (1994a) use an Euler-Lagrangian approach where they track the motion of individual bubbles or bubble clusters in an Eulerian liquid. Recently, they extended their model to inclnde 3 dimensional effects (Lapin and Liibbert 1994b). Hillmer et.al. (1994) used an Euler-Euler approach to model slurry bubble columns by treating the liquid and solid phases as a pseudo-homogeneous phase w ith axially varying density and viscosity fields based on a sedimentation-dispersion model. A fundamental time averaged model for the prediction of local flow structures in bubble columns has been developed during the last years (Torvik and Svendsen 1990, Svendsen et.al. 1992, Jakobsen et.al. 1993). The model is shown capable of predicting liquid phase velocity profiles and void profiles for limited variations in gas-liquid systems, superficial gas velocity and column diameter. Literature shows that an accurate description of the inter-phase momentum exchange terms is important to the accuracy of the fundamental models. In bubble columns the transversal and drag forces are of particular interest, since they have great influence on the void profiles and the gas holdup. The correct determination of bubble size distributions is important to the modelling of bubble columns as it is an integral part of the parameter complex determining circulation and void fraction profiles. The movement of the individual bubble, in particular laterally, depends on its size and interacts with the turbulent eddy structures of the column through momentum transfer and the bubble breakup and coalescence processes. Previously (Jakobsen et.al. 1993), a simple model where the local bubble size was assumed proportional to the turbulent length scale, was used. This model has been found unsatisfactory, and a new model has been developed depending directly on turbulent kinetic energy. The model has been tested for several gas-liquid systems through bubble-size distributions and void fraction profile measurements performed using a five point conductivity probe method (Buchhotz and Steinemann 1984). The solids concentration profiles in slurry bubble columns have traditionally been simulated using sedi- mentation-dispersion models. These models are limited in their ability to reproduce experimental data (Saxena and Thimmapuram 1992), but are able to provide quantitative information about the axial con- centration profiles of the solids. The rate of reaction taking place on a suspended catalyst will depend on the composition of, and the mass transfer from, the fluid phase in contact with the particle. It is therefore important to be able to predict, not only the solids concentration profiles, but also the movem ent of the solid particles. *Department of Chemical Engineering, Washington University, Saint Louis, Missouri, USA ?SINTEF Division for Applied Chemistry, 7034 TRONDHEIM, Norway 1703

Upload: lim-hyeon-seung

Post on 07-Apr-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Liquid Circulation, Bubble Size Distributions, And Solids Movement in Two- And Three-phase Bubble Columns

8/3/2019 Liquid Circulation, Bubble Size Distributions, And Solids Movement in Two- And Three-phase Bubble Columns

http://slidepdf.com/reader/full/liquid-circulation-bubble-size-distributions-and-solids-movement-in-two- 1/11

Pergamon

Chemical Engineering Science, Vol. 51, No. 10, pp. 1703--1713,1996Copyright © 1996 Elsevier Science Ltd

Printed in Great Britain. All rights reserved

S0009-2509(96)00029-2 0099-2509/96 $15.00 + 0 . 0 0

L i q u i d c i r c u l a t i o n , b u b b l e s i z e d i s t r i b u t i o n s , a n d s o l i d s m o v e m e n t i n

t w o - a n d t h r e e - p h a s e b u b b l e c o l u m n s

S . G r e v s k o t t B . H . S a n n ~e s M . P . D u d u k o v i d * K . W . H j a r b o t H . F . S v e n d s e n

D e p a r t m e n t o f C h e m i c a l E n g in e e ri n g , U n i v e rs i ty o f T r o n d h e i m , N - 7 03 4 T R O N D H E I M , N o r w a y

A b s t r a c t - O n e t w o - p h a s e b u b b le c o l u m n a n d t w o t h r e e -p h a s e s l u rr y r e a c to r s h a v e b ee n e x p e r i m e n t a l lyc h a r a c t e r i s e d wi t h s p e c i a l e m p h a s i s o n b u b b l e s iz e d i s t r i b u t io n , l i q m d c i r c u l a ti o n a n d s o l i d s m o v e m e n t .Th e m e a s u r e m e n t s i n t h e t wo p h a s e b u b b l e c o l u m n we r e b a s e d o n a f i v e p o i n t c o n d u c t i v i t y p r o b e m e t h o da n d o n a s t e a d y s t a t e h e a t t r a c e r t e c h n i q u e . Fo r t h e s o l i d s m o v e m e n t , t h e CARPT t e c h n i q u e wa s u s e d .

By n u m e r i c a l s i m u l a t i o n s u s i n g a t wo fl u id m o d e l , n e w m o d e l s f o r b u b b l e s i ze d i s t r i b u t i o n a n d s o l id sp r e s e n c e h a v e b e e n t e s t e d . Th e n e w b u b b l e s i ze m o d e l is fo u n d t o im p r o v e t h e s i ze d i s t r ib u t i o n p r e d i c t i o n sc o m p a r e d t o p r i o r m o d e l s , b u t . i s s t il l n o t s a t is f a c to r y . Te m p e r a t u r e p r o f il e s we r e we l l p r e d i c t e d b y t h em o d e l . Fo r t h e s o l id s m o v e m e n t , t wo c i r c u l a ti o n c e ll s we re fo u n d e x p e r i m e n t a l l y i n t h e r e a c t o r s t e s t e d .Th i s h a s a ls o b e e n v e r i fi e d b y n u m e r i c a l si m u l a t io n s . Th e f o r m a t i o n o f s e c o n d a r y c e l l s t r u c t u r e s o fm a g n i t u d e a p p r o x i m a t e l y e q u a l to t h e e o h u n n d i a m e t e r , a r e i n d i c a t e d b y t h e e x p e r i m e n t a l l y d e t e r m i n e d

Re y n o l d s s t r e s s p a t t e r n s ' .

I N T R O D U C T I O N

S l u r r y b u b b l e c o l u m n s a r e p r e s e n t l y b e i n g u s e d f o r a w i d e r a n g e o f c a t a l y t i c r e a c t i o n s i n b o t h t h e b i o - a n d

p e t r o c h e m i c a l i n d u s t r y . T h e f lo w p a t t e r n s o f l i q u i d , g a s , a n d s o li d s in t h e se r e a c t o r s a r e v e r y c o m p l e x , a n d

t h e b a s i c p r i n c i p l e s g o v e r n i n g t b e f lo w p h e n o m e n a a r e n o t y e t fu l ly u n d e r s t o o d .

C o m p u t a t i o n a l f lu i d d y n a m i c s is an i m p o r t a n t t o o l in t h e i n v e s ti g a t io n o f m u l t i d i m e n s i o n a l t w o - p h a s e

f lo w . P h e n o m e n o l o g i c a l m o d e l s h a v e b e e n w i d e l y u s e d t o d e s c r i b e su c h fl ow s , b u t t h e s e m o d e l s a r e n o t

w e l l s u i t e d f o r s c a l e -u p a n d d e s ig n i u g e n e r a l, s i n c e th e y r e q u i r e p r i o r k n o w l e d g e o f t h e f l o w s t r u c t u r e . B y

i n t r o d u c i n g m o r e f u n d a m e n t a l m o d e l s f o r t h e i n t e r n a l f lo w v a ri a b l e s , a to o l t h a t c a n b e u s e d f o r a v a r i e t y o f

m u l t i - p h a s e s y s t e m s a n d c o n d i t i o n s m a y b e o b t a in e d .

R e c e n t l y , s e v e r a l p a p e r s t h a t d e s c r i b e a d v a n c e d m o d e l s fo r tw o p h a s e f lo w s i n r e a c t o r s h a v e a p p e a r e d .

A m o n g t h e se a r e S o k o li c h in a n d E i g e n b e r g e r ( 1 9 94 ) w h o u s e a d y n a m i c E u l e r - E u l e r f o r m u l a t i o n w i t h n oc o n s i d e r a t i o n o f t u r b u l e n c e . L a p i n a n d L i i b b e r t ( 1 9 9 4 a) u se a n E u l e r - L a g r a n g i a n a p p r o a c h w h e r e t h e y t r a c k

t h e m o t i o n o f i n d i v i d u a l b u b b l e s o r b u b b l e c l u s te r s i n a n E u l e r i a n l i q u i d . R e c e n t l y , t h e y e x t e n d e d t h e i r

m o d e l t o i n c l n d e 3 d i m e n s i o n a l e f f e ct s (L a p i n a n d L i i b b e r t 1 9 9 4 b) . H i l l m e r e t . a l. ( 1 9 9 4 ) u s e d a n E u l e r - E u l e r

a p p r o a c h t o m o d e l s lu r r y b u b b l e c o l u m n s b y t r e a t i n g t h e l i q u id a n d s o l id p h a s es a s a p s e u d o - h o m o g e n e o u s

p h a s e w i t h a x i a l l y v a r y i n g d e n s i t y a n d v i s c o s i t y f ie l ds b a s e d o n a s e d i m e n t a t i o n - d i s p e r s i o n m o d e l .

A f u n d a m e n t a l t i m e a v e r a g e d m o d e l f o r t h e p r e d i c t i o n o f l o c a l f lo w s t r u c t u r e s i n b u b b l e c o l u m n s h a s b e e n

d e v e l o p e d d u r i n g t h e l a s t y e a r s ( T o r v i k a n d S v e n d s e n 1 9 9 0 , S v e n d s e n e t . a l . 1 9 92 , J a k o b s e n e t . a l. 1 9 9 3) . T h e

m o d e l i s s h o w n c a p a b l e o f p r e d i c t i n g l i q u i d p h a s e v e l o c i t y pr o f il e s an d v o i d p ro f i le s fo r l i m i t e d v a r i a t i o n s i n

g a s - l i q u i d s y s t e m s , s u p e r f i c i a l g a s v e l o c i t y a n d c o l u m n d i a m e t e r .

L i t e r a t u r e s h o w s t h a t a n a c c u r a t e d e s c r ip t i o n o f t h e in t e r -p h a s e m o m e n t u m e x c h a n g e t e r m s i s i m p o r t a n t

t o t h e a c c u r a c y o f t h e f u n d a m e n t a l m o d e l s . I n b u b b l e c o l u m n s t h e t r a n s v e r s a l a n d d r a g f o r c e s a r e o f

p a r t i c u l a r i n t e r e s t, s i n ce t h e y h a v e g r e a t i n f lu e n c e o n t h e v o i d p ro f il e s a n d t h e g a s h o l d u p .

T h e c o r r ec t d e t e r m i n a t i o n o f b u b b l e s iz e d i s t ri b u t io n s is im p o r t a n t t o t h e m o d e l l i n g o f b u b b l e c o l u m n s

a s it i s a n i n t e g r a l p a r t o f t h e p a r a m e t e r c o m p l e x d e t e r m i n i n g c i r c u l a t i o n a n d v o i d f r a c t i o n p r o f il e s . T h e

m o v e m e n t o f t h e i n d i v i d u a l b u b b l e , i n p a r t i c u l a r l a t er a l ly , d e p e n d s o n i t s s iz e a n d i n t e r a c t s w i t h t h e t u r b u l e n t

e d d y s t r u c t u r e s o f t h e c o l u m n t h r o u g h m o m e n t u m t r a n s fe r a n d t h e b u b b l e b r e a k u p a n d c o a l e sc e n c e pr o c es s es .

P r e v i o u s l y ( J a k o b s e n e t . a l . 1 9 9 3) , a s i m p l e m o d e l w h e r e th e l o c a l b u b b l e s i z e w a s a s s u m e d p r o p o r t i o n a l t o

t h e t u r b u l e n t l e n g t h s c a le , w a s u se d . T h i s m o d e l h as b e en f o u n d u n s a t i s f a c t o r y , a n d a n e w m o d e l h a s b e e n

d e v e l o p e d d e p e n d i n g d i r e c t l y on t u r b u l e n t k i n e t i c e n e r g y . T h e m o d e l h a s b e e n te s t e d f o r s e v e r a l g a s - l i q u i d

s y s t e m s t h r o u g h b u b b l e - s i z e d i s t r i b u t i o n s a n d v o i d f r a c t i o n p ro f i le m e a s u r e m e n t s p e r f o r m e d u s i n g a f iv e

p o i n t c o n d u c t i v i t y p r o b e m e t h o d ( B u c h h o tz a n d S t e i n e m a n n 1 9 84 ).

T h e s o l i d s c o n c e n t r a t i o n p r o fi le s i n s l u r r y b u b b l e c o l u m n s h a v e t r a d i t i o n a l l y b e e n s i m u l a t e d u s i n g s ed i -

m e n t a t i o n - d i s p e r s i o n m o d e l s . T h e s e m o d e l s ar e l i m i te d in t he i r a b il i ty to r e p ro d u c e e x p e r i m e n t a l d a t a

( S a x e n a a n d T h i m m a p u r a m 1 9 92 ), b u t a r e a b l e t o p r o v i d e q u a n t i t a t i v e i n f o r m a t i o n a b o u t t h e a x i a l c o n -

c e n t r a t i o n p r o f il e s o f t h e s o l id s . T h e r a t e o f r e a c t i o n t a k i n g p l a c e o n a s u s p e n d e d c a t a l y s t w i l l d e p e n d o nt h e c o m p o s i t i o n o f, a n d t h e m a s s t r a n s f e r f r o m , t h e f l u id p h a s e i n c o n t a c t w i t h t h e p a r t i c l e . I t is t h e r e f o r e

i m p o r t a n t t o b e a b l e t o p r e d i c t , n o t o n l y t h e s o li d s c o n c e n t r a t i o n p r o fi le s , b u t a l so t h e m o v e m e n t o f t h e

s o l i d p a r t i c l e s .

* D e p a r t m e n t o f C h e m i c a l E n g i n e e r i n g , W a s h i n g t o n U n i v er s it y , S a in t L o u i s, M i s s o u ri , U S A

? S I N T E F D i v i si o n f o r A p p l i e d C h e m i s t r y , 70 3 4 T R O N D H E I M , N o r w a y

1703

Page 2: Liquid Circulation, Bubble Size Distributions, And Solids Movement in Two- And Three-phase Bubble Columns

8/3/2019 Liquid Circulation, Bubble Size Distributions, And Solids Movement in Two- And Three-phase Bubble Columns

http://slidepdf.com/reader/full/liquid-circulation-bubble-size-distributions-and-solids-movement-in-two- 2/11

1704 S. GREVSKOTr t al .

The two fluid model is presently being extended to include a suspended solid phase.

For three phase model verification, experimental results from the CARPT (Computer Automated Ra-

dioactive Particle Tracking) facility at Washington University have been used. The CA RP T technique has

previously been used to map liquid movement in bubble columns, using a fully wettable solid radioactive

particle with density close to the liquid density. In the mapping of solids movement a particle closely match-

ing the size, shape, and density of the solids was used. Since the similar ity between the t racer partic le and

the solids used was very good, it is expected that the solids movement is well determined with this technique,and possibly better than for liquid movement.

M O D E L L I N G

The mathematical model used for both the two and three phase systems is a two fluid model, with the two

fluid phases trea ted in an Euler ian frame of reference. Tim e averaged conservation equations in cylindrical

coordinates of pressure, velocities and volume fraction of both phases are solved. In addi tion a k - e model for

turbul ence is used (Launder and Spalding 1974), with source terms of bubbl e generated turbulence (Svendsen

et. al 1992). We assume equal pressure for both fluid phases, no mass exchange between the phases and a

spatial averaging larger tha n the scale of the dispersed phases. The inter-phase moment um exchange terms

modelled between the fluid phases are steady inter -facial drag, added mass force and lift force. The lift force

is only considered in the rad ial direction, since the drag force is domina ting in the axial direction. If the void

fraction is not small compared to the tota l volume considered, the inter-phase momen tum exchange termshave to be mult ipli ed by the liquid fraction (Johansen 1990), and this is used in the model. The drag force

formula tion used is given as• 3 CD

F ~ = " ~ l o ~ g p z - - ~ u l - u g l ( u l , i - u g , i ) (1)

where i can mean bo th the axial and radial direction. For the drag coefficient, a curve has been fitted to

experi mental data for bubble movement in pure water (Gaud in 1957), giving

5.645C D - 1 . 0 ( 2 )

~go + 2.385

where E o is the EStvSs number, dependent on the surface tension. The bubble size will have an important

effect on the drag force through the drag coefficient, and therefore on the circu lation patt ern in general. The

new model still assumes that the bubble size is proportional to the turbulent length scale (Jakebsen 1993),but in addition the Sau ter Mean Diameter coefficient depends on the local turbu lent kinetic energy, giving:

k 3 / 2ds : CS MD , CS MD ----a r k a~ (3)

The coefficients al and a2 are to be considered empirical parameters. The added (virtual) mass force is

expressed by (Auton 198l):- D u L i D u g , i

F ~ = c ~ lc ~ g p zf y( D t D t ) (4)

where the added mass coefficient f v is set to 0.2. The transversal lift force can be expressed to include

non-l inear turbu len t drag effects in the radial direction (Jakobsen 1993), giving

F r ( 4 I ~ I , tC D C r / ~ ,1--~ ~ ( u , , ~ - - u , , z ) ~ - - - ~ ( u z , ~ ) (5)

where C~ is an empi rical coefficient. The f L in equat ion (5) is the conventional lift force coefficient and set

equal to 0.5 (Thomas et.al. 1983).

As a first approach to the three phase model, the two fluid model developed was used to determine the

flow pat terns. The viscosity and density of the liquid phase were modified to account for the presence of

solids. The drag coefficient was modified from equation (2) to include a formula tion for the drag on small

bubbles, giving5.645

1 o 2 , d ~ > 2 . 0 r a mCv = ~ + .385 - (6)

8 25"(1 -c~g) , d~ <2.0r am

It has been assumed tha t the solids are uniformly suspended in the column. Accordingly, the density of

the slurry, flrn, was adjusted to1 cw,~ Cw, l

- - - + ( 7 )

P,~ P~ Pl

Page 3: Liquid Circulation, Bubble Size Distributions, And Solids Movement in Two- And Three-phase Bubble Columns

8/3/2019 Liquid Circulation, Bubble Size Distributions, And Solids Movement in Two- And Three-phase Bubble Columns

http://slidepdf.com/reader/full/liquid-circulation-bubble-size-distributions-and-solids-movement-in-two- 3/11

Two- and three-phase bubble column s 1705

T h e v i s c o s i t y w a s c a l c u l a t e d a c c o r d i n g t o a n e m p i r i c a l c o r r e l a t i o n ( T h o m a s 1 9 65 )

P r e l - - 1 + 2 . 5 a s + 1 0 . 0 5 c ~ + 0 . 0 0 2 7 3 e x p ( 1 6 . 6 c t , ) ( 8 )

w h e r e ct~ i s t h e v o l u m e f ra c t i o n o f s o l id s . T h e b o u n d a r y c o n d i t i o n s f o r v e lo c i t i e s a n d v o i d fr a c t i o n a t t h e

i n l e t a r e s p e c i fi e d in a c c o r d a n c e w i t h t h e e x p e r i m e n t s t h e y a r e t o b e c o m p a r e d w i t h . T h e k i n e t i c t u r b u l e n t

e n e r g y a t t h e i n l e t i s a s s u m e d t o b e g e n e r a t e d m a i n l y b y th e g a s b u b b l e s e n t e r i n g t h e r e a c t o r , a n d t h e k i n e t i ce n e r g y i n t h e g a s i t s e l f , g i v i n g :

1 A ~ K p g , u gk ei,~ = ~ A , A g ( a + ~ ) ~ - [ u g (9 )

w h e r e K a s c a le s t h e k i n e t i c e n e r g y g e n e r a t e d b y t h e b u b b l e s . T h e p r o fi le s ar e a s s u m e d f l a t a t t h e i n l e t, a n d

n o d i f fu s i o n is a l l o w e d a t t h e b o u n d a r y . A t t h e o u t l e t , t h e p r e s s u r e i s s e t e q u a l t o t h e a m b i e n t p r e s s u r e, a n d

t h e o u t l e t m a s s f l o w s b e c o m e a p a r t o f t h e o v e r a l l s o l u t i o n . T h e r a d i a l g r a d i e n t s o f a l l v a r i a b l e s a r e s e t t o

z e r o a t t h e s y m m e t r y a x i s, e x c e p t f o r r a d i a l v e l o c it i e s, w h i c h a r e s e t to z e r o t h e m s e l v e s . T h e s e b o u n d a r y

c o n d i t i o n s e n s u r e z e r o fl u x o v e r th e s y m m e t r y a x is . A t t h e w a l l a s i n g l e - p h a s e l o g a r i t h m i c w a l l f u n c t i o n i s

u s e d .

T h e p a r t i a l d i f f er e n t i a l e q u a t i o n s a r e d i s e r e t iz e d u s i n g a f i n i te v o l u m e t e c h n i q u e w i t h s t a g g e r e d g r i d a n d

u p w i n d d i f f e re n c i n g i n a t w o - d i m e n s i o n a l c y l i n d r i c a l p o l a r m e s h w i t h 1 5 r a d i a l a n d 3 0 a x ia l g r id c e l ls . A

f u r t h e r e x p a n s i o n o f t h e g r i d w a s f o u n d n o t t o c h a n g e t h e r e s u l ts . T h e f i n it e v o l u m e e q u a t i o n s a r e s o l v e di t e r a ti v e l y u si n g t h e S I M P L E S T a n d I P S A a l g o r i t h m s ( S p a l d in g 1 9 77 ) a s i m p l e m e n t e d i n t h e P H O E N I C S

c o d e .

E X P E R I M E N T A L W O R K

T w o p h a s e e x p e r i m e n t s

T h e g a s - l i q u i d e x p e r i m e n t s w e r e p e r f o r m e d i n a c o l u m n w i t h in n e r d i a m e t e r 0 . 2 8 8 m a n d h e i g h t 4 .2 5 m .

T h e s y s t e m u s e d w a s a i r / w a t e r , a n d t h e s u p e r f ic i a l v e l o c i t y w a s v a r i e d in t h e r a n g e 0 . 0 2 - 0 . 18 m / s f o r

g a s , a n d i n t h e r a n g e 0 . 0 0 6 - 0 . 02 m / s f o r l i q u i d . T h e t e m p e r a t u r e v a r i a t i o n r a n g e w a s 1 2 0 C - 7 00 C .

T h e g a s d i s t r i b u t o r w a s a p e r f o r a t e d p l a t e w i t h 25 0 , 1 n a m d i a m e t e r h o l e s. T h e l i q u i d e n t e r e d t h r o u g h 1 9

h o l e s o f d i a m e t e r 2 8 r n m . B u b b l e s iz e d i s tr i b u t i o n s w e r e m e a s u r e d a t p o s i t io n s 0 . 3 m a n d 2 . 0 m a b o v e t h e

g a s in l e t. S t e a d y s t a t e h e a t t r a c e r e x p e r i m e n t s w e r e p e r f o r m e d b y a d d i n g s t e a m t h r o u g h a s y s te m o f t h r e e

c o n c e n t r i c r i n g s. T h i s p r o v i d e d a r a d i a l l y e v e n l y d i s t r i b u t e d i n f lu x o f e n e r g y a t a w e l l d e f i n e d a x i a l p o s i t io n .A p o s i t i o n 2 m a b o v e t h e g a s i n l e t w a s u se d i n t h e e x p e r i m e n t s . T e m p e r a t u r e s w e r e m e a s u r e d a t f iv e t o s ix

a x i a l p o s i t i o n s a n d f iv e r a d i a l p o s i t i o n s .

T h r e e p h a s e e x p e r i m e n t s

T h e m o v e m e n t o f 1 1 0 -1 8 0 # m g l a ss b e a d s ( d e n s i t y 2 9 5 0 k g / m 3 ) i n a n a i r - w a t e r s y s t e m w a s s t u d i e d i n 0 . 1 4

m a n d 0 . 2 6 m i n n e r d i a m e t e r c o l u m n s . T h e s t a t i c h e i g h t s o f t h e s u s p e n s i o n s w e r e 0 . 99 m a n d 1 .3 4 m i n th e

t w o c o l u m n s , r e s p e c t i v e l y . W a t e r a n d g l a s s b e a d s w e r e b a t c h f e d , a n d t h e s u p e r f i c ia l g a s v e l o c i t y w a s v a r i e d

f r o m 0 . 0 5 m / s t o 0 .1 4 m / s . T h e g a s d i s t r i b u t o r w a s a p e r f o r a t e d p l a t e w i t h a p o r o s i t y o f 0 . 05 % . S o l i d s

l o a d i n g w a s v a r i e d f ro m 7 w t - % t o 2 0 w t - % . A r a d i o a c t i v e 1 5 0 # m S c a n d i u m p a r t i c l e ( d e n s i ty 2 8 9 0 k g / m 3

w a s u s e d a s t r a c e r . I t s a c t i v i t y w a s a p p r o x i m a t e l y 6 0 0 # C u .

C o l u m nd i a m e t e rS t a t i che i gh tSol idsl oad i ng

7 %

14

20 %

0.26m 0.14m

1.33m 0.97mSuperf ic ia l

gas veloci ty0 .05 m / s 0 .02 m / s0 .08 m / s 0 .08 m / s0 .11 m/ s0 .14 m / s 0 .14 m / s0 .05 m / s 0 .05 m / s0 .08 m / s 0 .08 m / s0 .11 m/ s0 .14 m / s 0 .14 m / s0 .05 m / s 0 .05 m / s0 .08 m / s 0 .08 m / s0 .11 m/ s

0 .14 m / s 0 .14 m / s

T ab l e 1 : L i s t o f a l l r uns pe r f o r med f o r t he s l u r r y sys t em

Page 4: Liquid Circulation, Bubble Size Distributions, And Solids Movement in Two- And Three-phase Bubble Columns

8/3/2019 Liquid Circulation, Bubble Size Distributions, And Solids Movement in Two- And Three-phase Bubble Columns

http://slidepdf.com/reader/full/liquid-circulation-bubble-size-distributions-and-solids-movement-in-two- 4/11

1706 S. GREVSKOTr t a l .

The C A R P T f a c i l i t y

Up to 32 scintill ation detectors con taini ng NaI crystals were placed around the column. During each sampling

interval the number of hits for each detector was registered and transferred to a computer.

Intensity vs. distance data were established for each detector by in-situ calibrations performed ahead of

the experiment. When one r un of 5-7 hours was finished, the instantaneous positions were calculated from

the pre-established intensity vs. distance curves and the intensity data for each detector through a linear

regression scheme (Devanathan 1990).The column was divided into calculation cells for treat ment of the data. The i nstantaneous velocities

were calculated from the inst antaneous positions as

U ( i m , J m , ]era) = r( n + 1) -- r( n) (10)At

and assigned to the calculation cell ( i r a , j r a , k i n ) contain ing the mid poin t of the two positions. Tim e (ensem-

ble) averaged velocities were calculated by su mmi ng up all velocities assigned to a certa in cell and div iding

by the number of velocities in that cell.

The number of registrations in each cell divided by the cell volume gave the occurrence density of the

particle in the cell.

Stagnant regions of the column can be found by examining the in stant aneous velocities of the particle. If

the instantaneous velocity was small in one cell compared to other cells, this cell was considered stagnant for

the current registration. Tim e (ensemble) averaging gives the percentage of stagnant registrations in each

cell. For the 0.26 m diamete r column the trans ition velocity from stagnan t to active status of a registration

was set to 1 m/s . The transitio n velocity was chosen so as to give approxi mately the same numb er of

stagna nt and active registrations.

The fluct uating velocities were calculated as

Ufluct(i, j, k) = Uinst (i, j , k) - uav( i, j, k) (11)

and the Reynolds stresses (both shear and normal) were calculated as

NVEL

u ~ u t ( i , j , k ) = m=l NVEL(i, j , k ) s , t = r , O , z ( 1 2 )

The turbulent kinetic energy was calculated as

1 (u-7-U-7(i, , k) + ~ ( i , j, k) + u-7~(i , j, k)) (13)kturb (i, j , k) =

R E S U L T S A N D D I S C U S S I O N

T w o p h a s e c o n d i t i o n s

The new bubble size distri but )n model was tested by comparing with experimental data. An example is

given in Figure 1 at inle t gas and liquid superficial velocities of 11.0 cm/s and 1.0 cm/s respectively. The

simulated results show how changes in the two parameters al and a2 affect the size distribution, and we

concentrat e on the value of these since the turb ulen t intensity levels have previously been found to be in good

agreement with experiment al (Svendsen et. al. 1992). It is found that a 1 jus t acts as a scaling parameter.This is not an obvious dependency, since the interactions between bubble size and level of turbulent energy

are complex. It is seen that a increase in the exponent a2 gives an decrease in bubble size. This was expected

since the t urb ulent kinetic energy is usually < 1 m2/s 2.

The choice of parameter values also affects the change in radial bubble size profile with superficial gas

velocity. An increase in the exponential parameter a~ increases the shift in predicted bubble diameter with

superficial gas velocity. In Figure 2 is shown the predicted and experimental radial bubble size profiles as

function of gas superficial velocity. For all velocities the magni tudes of the predictions are qui te good. The

predic tions also show the correct increase in bubble size with increasing superficial velocity. However, the

experimental profiles are flatter than the predicted ones. It would be possible also to make the predicted

profiles flatt er by adj ust ing the parameters al and a~. However, the shift in bubble size with superficial gas

velocities would then become to small. Thi s indicates that the present modification of the bubb le size modelstill is too simple, and t hat it may be difficult to account for the changes in bubb le size with superficial gas

velocity with a model based on ly on the local flow properties and that coalescence/breakup based po pulat ion

balance models are needed.

For the heat tracer experiments the inlet values for gas- and liquid superficial velocity were 10.0 cm/s

and 1.2 cm/s respectively. In Figure 3 are shown experimental and predicted t emper atur e profiles at dif-

Page 5: Liquid Circulation, Bubble Size Distributions, And Solids Movement in Two- And Three-phase Bubble Columns

8/3/2019 Liquid Circulation, Bubble Size Distributions, And Solids Movement in Two- And Three-phase Bubble Columns

http://slidepdf.com/reader/full/liquid-circulation-bubble-size-distributions-and-solids-movement-in-two- 5/11

Tw o- and thr e e -phase bubble c o lumns

S A U T E R M E A N D I A M E T E R I m]

T

1707

. . .. . 2 i i i . . . . . .

0.C06 , . . .%

0 . 006 " - . . ~ o . ,

0 .004 !S o l i d l i n e : a ! = 0 0 6 , a 2 = 0 . 2 5

a l = 0 . 0 6 , ~ 2 = 0 . 2 0

/:-:/:ill::: :i=o.os, a 2=o ~o

o . 0 0 2 c i r c l e s : E x p e r i m e n t a l d a t a

\o . o 0 0 i I

o.oo o.05 o. lo 0 . 1 5

F i g u r e 1 : T h e S a u t e r M e a n D i a m e t e r , a s f u n c t i o n o f r a d i a l p o s i t i o n , s y s t e m a i r / w a t e r , U g , s u p er fi ci a I = 1 1 . 0 c m / s ,

'U l ,supe r fic ia I = 1 . 0 , ax ia l po s i t ion 2 . 0 m abov e in le t

S A U T E R M E A N D I A M E T E R ( ml

o . o 1 2 ] I I

I

I

O . O L O ~ -

) ~30 " - ' . *q . - o0 .0 06 ~ ~

0 . 0 0 4 [ ~

H o l i d l i n e : s u p e r f i c i a l g a s v e l o c i t y = 0 , 0 8m/ s

. . . . . . . . . . : ~ u p e r f i c i a l g a s v e l o c i t y = 0 . 1 1 m/ s. . . : s u p e r f i c i a l g a s v e l o c i t y = 0 . 1 6 m/ s

0.802 ~ Squares: Experimenta l data 0.08 m/sc i r c l e s : E x p e r i m e n t a l d a t a O . l l m / s

i D i ~ o n d s : E x p e r i m e n t a l d a t a 0 1 6 /

o . o 0 o [o . ~ o o c 5 o . I o

F i g u r e 2 : T h e S a u t e r M e a n D i a m e t e r a s f u n c t i o n o f r a d i a l p o s i t i o n f o r t h r e e s u p e r f i ci a l g a s v e l o c i t ie s a t 2 . 0 i n a b o v ei n l e t . S y s t e m a i r / w a t e r , a l = 0 . 0 6 a n d a s = 0 . 2 5

f e re n t v a l u e s o f t h e b u b b l e s iz e m o d e l p a r a m e t e r s a l a n d a 2 . G e n e r a l l y t h e p r e d i c ti o n s a g r ee w e l l w i t h t h e

e x p e r i m e n t a l d a t a , a l t h o u g h t h e t e m p e r a t u r e d e c re a s e b e l o w t h e s t e a m f e e d p o i n t i s p r e d i c te d s t e e p e r t h a n

e x p e r i m e n t a l l y f o u n d . T h i s i n d i c a t e s t h a t t h e r e ci r c u la t i o n o f l i q u i d i n t h e b u b b l e c o l u m n i s w e l l m o d e l l e d , a

f a c t t h a t i s s u p p o r t e d b y e a r li e r s i m u l a t i o n s o f l i q u i d v e l o c i t y p r o f il e s ( J a k o b s e n e t . a l 1 9 9 3 ) . I t i s n o t e w o r t h yt h a t t h e r e l a t iv e l y l a r g e s h if t in p r e d i ct e d b u b b l e s iz e , ca u s e d b y c h a n g i n g t h e p a r a m e t e r s i n t h e m o d e l , d o e s

n o t i n f l u e n c e t h e c i r c u l a t i o n p r o f i le s to a l a r g e e x t e n t . T h i s i s s o m e w h a t s u r p r i s i n g , a s a s h i f t t o w a r d s l a r g e r

b u b b l e s i n t h e c e n tr e o f t h e c o l u m n w o u l d b e e x p e c t e d t o g iv e h i g h e r c ir c u l a t io n r a te s . T h e e x p l a n a t i o n

i s t h a t t h e v o i d f r a c t i o n p r o f i l e s b e c o m e f la t t e r ( n o t s h o w n ) , s u c h t h a t t h e v o l u m e t r i c g a s v e l o c i t i e s i n t h e

c e n tr e s e c ti o n r e m a i n a l m o s t u n c h a n g e d .

I n F i g u r e 4 t h e e x p e r i m e n t a l a n d p r e d i c t ed r a d i a l t e m p e r a t u r e p r o fi le s a t a p o s i t i o n 0 . 3 m a b o v e t h e g a s

d i s t r i b u t o r a r e s h o w n . T h e r e s u lt s a r e c h a r a c t e r i s ti c a l s o f o r t h e p o s i t i o n s f u r t h e r u p . T h e g e n e r a l t r e n d

i s t h a t t h e p r e d i c t i o n s s e e m t o o v e r e s t im a t e t h e r a d i a l t e m p e r a t u r e v a r i a t io n s a n d t h i s i n d i c a t e s t h a t t h e

r a d i a l m i x i n g i s s o m e w h a t u n d e r e s t i m a t e d . H o w e v e r , is s h o u l d b e n o te d t h a t t h e v a r ia t i o n s in te m p e r a t u r e

o b s e r v e d e x p e r i m e n t a l l y a r e s m a l l , a n d t h a t t h e e x p e r i m e n t a l a c c u r a c y i s i n t h e r a n g e o f +O. I ° C. C h a n g i n g

t h e b u b b l e s i z e d i s t r i b u t i o n h a s n e g l i g i b l e e f fe c t o n t h e t r e n d i n t h e r a d i a l t e m p e r a t u r e p r o f i l e s g i v e n a b o v e .

T h r e e phase experiments

S o l i d s m o v e m e n t :

T w o c i r c u l a t io n c e ll s w er e fo u n d f o r a l l e x p e r i m e n t s , o n e l o w e r ce ll t h a t w a s a p p r o x i m a t e l y o n e d i a m e t e r

h i g h , a n d o n e u p p e r c e ll e x t e n d i n g t o t h e t o p o f t h e c o l u m n . I n t h e l o w e r c e ll th e s o l i d s w e r e a s c e n d i n g a t t h e

w a l l a n d d e s c e n d i n g i n t h e c e n tr e . T h e u p p e r c e ll s h o w e d t h e o p p o s i t e c i r c u l a ti o n p a t t e r n . F i g u r e 6 s h o w s

Page 6: Liquid Circulation, Bubble Size Distributions, And Solids Movement in Two- And Three-phase Bubble Columns

8/3/2019 Liquid Circulation, Bubble Size Distributions, And Solids Movement in Two- And Three-phase Bubble Columns

http://slidepdf.com/reader/full/liquid-circulation-bubble-size-distributions-and-solids-movement-in-two- 6/11

1708

L I Q U I D T E M P E R A T U R E ( C)

12 I

S . GREVS KOTT et a l .

I I r

J

1

s o l i d l i n e : a l = 0 . 0 6 , a 2 = 0 . 2 5

. . . . . . . . . . : a l = 0 . 0 6 , a 2 = 0 . 2 0

. . . _ . _ . : a l = 0 , 0 5 , a 2 = 0 . 2 0

c i r c l e s : E X p e r i m e n t a l d a t a

I I i2 ~ 4

Ax ~ P o s iTio t~ l

F i g u r e 3 : A x i a l t e m p e r a t u r e 2 .8 c m f r o m c e n t r e o f c o l u m n

L I Q U I D T ~ p E ~ R E ( C)

9 . 6

9. 4

9. 2

9 . 0

a. S

S 6

8. 4

g . 2

o.oo

I I

/ / ~ ~ . . S ol i d l i ne : a 1= 0 , 06, a 2 =0 . 25. * " . . . . . . . . . . : a l=0, 06, a2=0,2 0

- _ . . . . . . . : a l = O . 0 5 , a 2 = 0 . 2 0

i . C i r c l e s : E x p e r i m e n t a l d a t a

i

0 ,0 5 0 .1 0

~I~ POSlTIOS {m~

0 , 1 5

F i g u r e 4 : R a d i a l t e m p e r a t u r e a t 0 . 3 m a b o v e i n l e t ( b )

t h e m e a s u r e d f l o w fi e ld s f or t w o d i ff e re n t e x p e r i m e n t s . T h e l e ft p l o t i s f o r t h e 0 . 1 4 m d i a m e t e r c o l u m n , a n d

t h e m i d d l e p l o t i s f or th e 0 . 2 6 m d i a m e t e r c o l u m n . I n b o t h e x p e r i m e n t s t h e s o l i d s l o a d i n g w a s 7 % - w t a n d

t h e g a s s u p e r f i c i a l v e l o c i t y w a s 0 . 0 8 m / s . T h i s f lo w p a t t e r n i s o b s e r v e d f o r l o w g a s s u p e r f i c i a l v e l o c i t i e s a l s o

i n t w o p h a s e b u b b l e c o l u m n s , w h e r e a s f o r h i g h g a s su p e r f ic i a l v e l o c it i e s t h e s m a l l e r c e ll at t h e b o t t o m o f

t h e c o l u m n d i s a p p e a r s , l e a v i n g o n l y o n e c e ll e x t e n d i n g t o t h e to p ( D e v a n a t h a n e t .a l . 1 9 9 0 , D u d u k o v i ~ e t. a l .

1 9 9 1 ) . F o r t h e t h r e e p h a s e s y s t e m t h e i n t e r fa c e o f t h e t w o c i r c u l a t i o n c e l l s w a s a t a n a n g l e , a s o p p o s e d t o

t h e i n t e r fa c e o f li q u i d c i rc u l a t io n c e ll s in b u b b l e c o l u m n s , w h e r e t h e i n t e rf a c e i s a p p r o x i m a t e l y h o r i z o n t a l .

T h e m a x i m u m a x i a l s o l i d s v e l o c i t y w a s f o u n d t o in c r ea s e w i t h c o l u m n d i a m e t e r a n d w i t h g a s su p e r f ic i a l

v e l o c it y , a n d t o d e c re a s e w i t h s o l i d s lo a d i n g . T h i s d e c r e a se w a s m o s t p r o n o u n c e d a t t h e lo w e r g a s su p e r f ic i a l

v e l o c i t i e s .

T h e o c c u r r e n c e d e n s i t y w a s f o u n d t o d e c r e a se w i t h h e i g h t a b o v e t h e d i s t r i b u t o r a s c a n b e s e e n i n F i g u r e 5 .

A s f a r a s t h e o c c u r r e n c e d e n s i t y c a n b e u s e d a s a r e l a t i v e m e a s u r e f o r s o l i d s c o n c e n t r a t i o n , t h i s i n d i c a t e s a

d e c r ea s e i n s o l i d s c o n c e n t r a t i o n q u a l i t a t i v e l y in a c c o r d a n c e w i t h t h e s e d i m e n t a t i o n - d i s p e r s i o n m o d e l s . F o r

h i g h s o l id s l o a d i n g , a p e a k in th e o c c u r re n c e d e n s i t y a t th e t o p w a s s ee n . T h i s p e a k w a s m o s t n o t i c e a b l e

a t h i g h g a s s u p e r f ic i a l v e l o c i t ie s a n d m a y b e c a u s e d b y t h e h i g h g a s f r a c t io n s a n d l o w s o l i d s r e t e n ti o n s i n

t h e d i s e n g a g e m e n t z o n e , t h u s c h a n n e l l i n g th e so l i d s d i r e c tl y b e l o w t h i s z o n e . T h e o c c u r re n c e d e n s i t y w a s

h i g h e r a r o u n d p o s i t i o n r/R = 0 . 7 t h a n a t t h e c e n t re o r a l o n g t h e w a l l s . T h i s c o i n c i d e s w i t h t h e p o s i t i o n o f

f l o w r ev e r s a l i n s l u r r y r e a ct o r s. F o r 1 4 % a n d 2 0 % s o l i d s l o a d i n g , a r e g i o n w i t h o u t o c c u r r e n c e s w a s f o u n d a tt h e g a s d i s t r i b u t o r . T h e s i z e o f t h i s r e g io n i n c r e a s e d w i t h s o li d s l o a d i n g a n d w i t h g a s s u p e r f i c ia l v e l o c i t y .

a u s t a b o v e t h i s r e g io n a p e a k i n o c c u rr e n ce d e n s i t y w a s f o u n d , b u t n o st a g n a n t z o n e a t t h i s p o i n t c o u l d b e

v i s u a l l y o b s e r v ed . A n e x p l a n a t i o n f o r t h i s o b s e r v a t i o n h a s n o t y e t b e e n fo u n d . T h e o c c u r r e n c e d e n s i t y w a s

m o r e u n i f o r m t h r o u g h o u t t h e c o l u m n fo r h i g h e r s o l id s l o a d i n g s e x c ep t f o r t h e p e a k n e a r t h e b o t t o m .

Page 7: Liquid Circulation, Bubble Size Distributions, And Solids Movement in Two- And Three-phase Bubble Columns

8/3/2019 Liquid Circulation, Bubble Size Distributions, And Solids Movement in Two- And Three-phase Bubble Columns

http://slidepdf.com/reader/full/liquid-circulation-bubble-size-distributions-and-solids-movement-in-two- 7/11

=o100

8

Two- and three-phase bubble columns 1709

r = 0 3 5 c m

. . . . r = 2 4 c m

- - - r = 4 5 c m

r - 6 . 6 c m

~,-~

t 5 O / r = 0 . 6 5 c=m

. . . . r = 4 . 5 5 c m

- - - r = 8 4 5 cr n

~70o

1r=72.35 can

=

0 2 0 4 0 6 0 8 0 1 0 0 2 0 4 0 6 0 8 0 1 0 0 ? 2 0 1 4 0 1 6 0

axi a l p o si t i o n [cm] axi a l p o si t i c~ [ c m ]

Figure 5: Axial occurrence density profiles for the 0.14 m (left) and 0.26 m diameter columns with 7 %-wt solids and0.08 m/s gas superficial velocity.

There were no regions that were considered stagnant. A comparison of the ins tant aneous velocities

in the two col umns showed larger velocities in the large column when solids loading and gas superficialvelocities were equal. When the t ransit ion velocity for the larger column was used for the sma ller one, most

registrations were considered stagnant.

The Reynolds stresses varied both axially and radially in a way that suggests the existence of secondary

circulat ion cells in the column. These cells were each approximately one diameter high as can be seen in

Figure 8, and evenly distrib uted along the vertical direction. These "cells" may be caused by recurring

transient cells in these specific positions. This conclusion is still subject to further experimental studies of

long duration to provide better statistics.

W avele t t~l tering

The gam ma radiat ion from the tracer particle fluctuates randomly. This causes the particle to be detected up

to 5-10 mm away from the true position. This, in turn , causes the inst antaneous velocities to be calculated

as larger than they really are. Through the averaging procedure this evens out for parameters calculatedfrom time averaging of one fluctuating or instan taneous velocity, and thus does not affect the results. For

correlations of two or more fluc tuat ing velocities the "spurious" effects, however, do not average out. For

the s tagnancy, which is determined from the size of the instantaneous velocity, these "spurious" effects are

also not averaged out.

A mathematical filter based on wavelets has recently been developed at Washington University (De-

galeesan 1995). By this technique the inst antane ous positions of the tracer particle is adjusted based on

knowledge of the noise characteristics in the signal due to the fluctuations of the radioactivity. The "spuri-

ous" effects have been shown to almost completely disappear after the filtering procedure, and the f luct uati ng

velocities are reduced. The filter uses routines from the WavBox 4@ software (Taswell 1995).

Figu re 7 shows that the me an velocities are not significantly changed by the filtering, as expected. The

turbulent kineti c energy level is seen to be significantly reduced, but the profiles are retained . Simil ar results

are obt ained for all Reynolds stresses, and for the stagnancy as welt.

Numer ica l s imula t ions for three phases

Figure 6 shows measured and simulated flow fields for the 0.26m diameter column with 7%-wt solids and

0.08m/s superficial gas velocity. The middle plot in the figure clearly shows the two measured circulation

cells as menti oned earlier. The right plot in the figure shows tha t the model predicts the two circulati on

cells observed experimenta lly, and also positions the cells in good agreement with the measured da ta.

Note that the measured flow field is for the solids, while the simulated flow field is for the slurry and does

not allow for relative velocity between the solids and the liquid. The measured velocities vary more with

axial position than the simulated velocities, but they show the same trend. The predicted slurry velocities

are higher than the meas ured solids velocities in the up-flow region. This is reasonable considering the

difference in densi ties and relative velocities between solid and liquid. Similarly, in the down-flow region

near the bottom the solids velocities are larger than the slurry velocities. The shift in angle of the interface

between the two circulation cells observed in experiments when going from two phase to three phase flow,can also be seen in Figure 6.

The changes in the flow due to changes in viscosity as described in equa tion 8 are negligible for small

solids loadings (e.g. 7%-wt). The viscosity changes due to higher solids loadings (e.g. 20%-wt.) clearly affect

the flow in the column.

Page 8: Liquid Circulation, Bubble Size Distributions, And Solids Movement in Two- And Three-phase Bubble Columns

8/3/2019 Liquid Circulation, Bubble Size Distributions, And Solids Movement in Two- And Three-phase Bubble Columns

http://slidepdf.com/reader/full/liquid-circulation-bubble-size-distributions-and-solids-movement-in-two- 8/11

1 7 l O S . G R E V S K O I T e t a l .

1 0 0

6 0

l f t t , , - , H ,

t t t t , , . ' ~ 1

~ t t , . . . U j

t t t h . , * ~ 1

I ~ l m , , 11

f l ~ l l , . . , i I

l l t ~ I , , . i ; I

f l t l ~ , . , l i j

8 0 b t r ' " ' r ~

, ~ t f t . ' i l l

t t f h , ' ~ l l

I t t h . . . . l j

l t t , , , . , d

t t h , . ' , l l

~ 4 1 , , . . . , ~

l f l t l , ' , ~ 1 1

~ l t f t , ' , l J

t t t t l , ' ~ z l

I t t h . . , ~ Z I

4 0 ~ll~,.,~

~ t f f h , ' I l l

t t t h . , ~ d

l t l ~ , , . , , i I

I t t h ' " I l l

2 0 L ' " " , ,~

0 " ~ - ~

0 5

r a d i u s [ c rn ]

' t t t f , I

t t t , . . . . . . t

t m , , i : ! 1

I lh '

t t t t " ~ 1~ o t t t t , , ' . ' . ' . ~

t T t t t , , ; ' 1t t t , , , , i t lt t t , , . i ' . ' . It t t , , . . ; t l

~ ° ° t t t t t , . . ' . ~ 1t t t t , , , i , It f t t t , , " 1t t t h , , . . i l

8 ° r t t h . . . .

t t m , , , I

t f t t t , , . i i

t r Y S t , , I

6 0 r t ' t t t t , I

t t ~ t t l , I

t t ~ l t , . I

4 0 ? , , ~ 1 ~ I , . I

2 0 T ~ ' , . , , , , - ~

o l Or a d i u s [ c r n ]

1 6 0

1 4 0

1 2 0

i 0 0

80

60

4 0

20

% , . ' %

, , , , , ,

, , , , , ,

% * . " ' ~ 4

i f J , i ,

% * . " 4

m , r ,

~ . ' * 4

H l ~ r ,

~ . " 4

% ~ . * ' 4

H , , / ,

H l l , ,

~ +. "V

[ 7 7 t ~ .

l l J H ' " . . . .

, \ \ \ \ . . ~ r .

o l o

F i g u r e 6 : M e a s u r e d a v e r a g e f l o w f i e l d s i n 0 . 1 4 m ( l e f t ) a n d 0 . 2 6 m ( m i d d l e ) d i a m e t e r c o l u m n s w i t h 7 % - w t s o l i d s a n d0 . 08 m /s g as supe r f i c i a l ve loc i ty . S im u la t ed ( r i g h t ) ave rage fl ow fi eld fo r t he 0 . 26m d iam ete r co lum n w i th 7 % -w t

so l ids and 0 . 08m /s gas supe r f i c i a l ve loc i ty . T he sca l e o f t he ve loc i ty vec to r s i s t he sam e in a l l t h r ee f i gu res .

e o.1

~0 . 2 5

~ 0 . 2

u

~ 0 . 1 5

:2 o.1

. . . . . U n f l ll e re d d a ta

- - R l te md d a ta

-0.1 -0 .05 0 0 .05 0 .1 -0 .1 ~) .05 O 0,05 0 ,1R a d i a l p o s i t i o n {m] Radia l posiUon mJ

F i g u r e 7 : F i l t e r e d a n d u n f i l t e r e d r e s u l t s f o r a x i a l m e a n v e l o c i t y a n d t u r b u l e n t k i n e t i c e n e r g y

T a k i n g i n t o a c c o u n t t h e s i m p l i f i c a ti o n s m a d e i n t h e m o d e l l i n g of t h e s l u r r y m o v e m e n t , t h e a g r e e m e n tb e t w e e n p r e d i c t e d a n d m e a s u r e d v e l o c i t ie s i s c o n s i d e r e d s a t i s f a c to r y .

Page 9: Liquid Circulation, Bubble Size Distributions, And Solids Movement in Two- And Three-phase Bubble Columns

8/3/2019 Liquid Circulation, Bubble Size Distributions, And Solids Movement in Two- And Three-phase Bubble Columns

http://slidepdf.com/reader/full/liquid-circulation-bubble-size-distributions-and-solids-movement-in-two- 9/11

Tw o- and three-phase bubble colum ns 1711

80

~go 6O

4O

2 0

1 5 0

1 O 0

&=o

5 0

0 0- 5 0 5 - 1 0 0 1 0

r a d i u s [ c m ] r a d i u s [ c m ]

3 o o

i

20

1 O 0

- 1 0

-2 G

- 3 0

Fi g u r e 8 : Re y n o l d s s t r e s s e s f o r t h e 0 . 1 4 m ( l e ft ) a n d t h e 0 .2 6 m d i a m e t e r c o l u m n w i t h 7 % - wt s ol id s l o a d i n g a n d 0 .0 8m / s g a s s u p e r f i c i a l v e l o c i t y .

Further modelling

A f u l l t h r e e p h a s e m o d e l i s b e i n g d e v e l o p e d b a s e d o n t h e t w o f l u id m o d e l . T h e s o l i d s w i l l b e i n c l u d e d a s

a s u b - p h a s e o f t h e l i q u i d p h a s e . T h e r e w i l l b e n o d i r e c t i n t e r a c t i o n s b e t w e e n s o l i d s a n d g a s . T h e s o l i d s

w i l l i n t e r a c t w i t h t h e l i q u i d a n d t h r o u g h t h i s b e a f f ec t e d b y t h e p re s e n c e o f t h e b u b b l i n g g a s . T h i s w i l l b e

a c c o m p l i s h e d b y u s i n g a n a l g e b r a i c s l ip m o d e l f o r t h e i n t e r a c t i o n b e t w e e n s o l id s a n d l i q u i d , i n s t e a d o f a f u l l

i n t e r - p h a s e s l ip a l g o r i t h m ( I P S A ) . T h e g a s w i ll i n t e r a c t w i t h a s l u r r y p h a s e t h a t i s d e n s e r a n d m o r e v i s c o u s

t h a n t h e p u r e l i q u i d p h a s e, a n d r e l a t i o n s s i m i l a r t o e q u a t i o n s 7 a n d 8 w i l l b e u s e d l o c a l l y t o d e t e r m i n e t h e

d e n s i t y a n d v i s c o s i t y o f t h e s l u r r y i n t e r a c t i n g w i t h t h e g a s.

C O N C L U S I O N S

O n e t w o - p h a s e b u b b l e c o l u m n a n d t w o t h r e e -p h a s e s l u rr y r e a c t o rs h a v e b e e n e x p e r i m e n t a l l y c h a r a c t e r is e d

w i t h s p e c i a l e m p h a s i s o n b u b b l e s i z e d i s t r i b u t i o n , l i q u i d c i r c u l a t i o n a n d s o l i d s m o v e m e n t .

T h e d a t a h a v e b e e n c o m p a r e d w i t h s i m u l a t i o n s b as e d o n a tw o fl u id m o d e l u si n g a n e w s u b - m o d e l f o r

b u b b l e s i ze , a n d a l s o t a k i n g i n t o a c c o u n t t h e p r e s e n c e o f s o l id s .

T h e n e w b u b b l e s i z e m o d e l , b a s e d o n t h e b u b b l e i n d u c e d t u r b u l e n t l e n g t h s c a le a n d t h e l o c a l t u r b u l e n t

k i n e t i c e n e r g y l e v e l, i s f o u n d t o g i v e i m p r o v e d p r e d i c t i o n s c o m p a r e d t o t h e m o d e l b a s e d o n l e n g t h s c a l e a l o n e .

B u b b l e s i z e s i n t h e s a m e r a n g e a s t h e e x p e r i m e n t a l o n e s a r e o b t a i n e d i n t h e h e t e r o g e n e o u s f lo w re g i o n , a n d

a c o r r e c t s h i f t i n b u b b l e s iz e w i t h s u p e r f i c ia l g a s v e l o c i t y is fo u n d . T h e r a d i a l s i ze p r o f il e s a re , h o w e v e r , t o o

s t e e p . I t is c o n c l u d e d t h a t i n o r d e r t o o b t a i n a s a t i s f a c t o r y d e s c r i p t i o n o f b u b b l e s i ze d i s t r i b u t i o n s i n b u b b l e

c o l u m n s , a m o d e l b as e d o n l o c a l c o n d i t io n s a l o n e i s i n a d e q u a t e . T h u s , a p o p u l a t i o n b a l a n c e b a s e d m o d e l

t a k i n g i n to a c c o u n t c o a le s c e n ce a n d b r e a k u p m e c h a n i s m s m u s t b e i m p l e m e n t e d .

I n t h e h e t e r o g e n e o u s f l o w r e g i o n , c b a n g e s in b u b b l e s iz e d i s t r i b u t i o n s a r e f o u n d t o h a v e o n l y m o d e r a t e

e f fe c t o n l iq u i d c i r c u l a t i o n r a te s . T h e s e a r e t h e r e f o r e w e l l p r e d i c t e d w i t h o u t a n a c c u r a t e d e t e r m i n a t i o n o f

Page 10: Liquid Circulation, Bubble Size Distributions, And Solids Movement in Two- And Three-phase Bubble Columns

8/3/2019 Liquid Circulation, Bubble Size Distributions, And Solids Movement in Two- And Three-phase Bubble Columns

http://slidepdf.com/reader/full/liquid-circulation-bubble-size-distributions-and-solids-movement-in-two- 10/11

171 2 S. GREVSKOq'r t a l .

t h e b u b b l e s i z e d i s t r i b u t i o n .

I n t h e t h r e e p h a s e f l o w e x p e r i m e n t s , t h e e x i s t en c e o f tw o p r i m a r y s o l i d s c i rc u l a t i o n c e l ls h a s b e e n e s -

t a b l i s h e d f o r t h e c o l u m n s i z e s us e d . A n a l y s i s o f th e R e y n o l d s st r e ss p a t t e r n s i n d i c a t e s t h e e x i s t e n c e o f a

s e c o n d a r y c e l l s t r u c t u r e e x t e n d i n g f r o m t h e b o t t o m o f t h e u p p e r p r i m a r y c i r c u l a t i o n c e ll a n d a l m o s t t o t h e

t o p o f t h e d i s p e r s i o n l a y e r . T h e c e l l s i z e i n t h i s r e g i o n i s i n t h e o r d e r o f t h e c o l u m n d i a m e t e r a n d a t a n a n g l e

w i t h t h e h o r i z o n t a l .

N u m e r i c a l s i m u l a t i o n s g i v e f lo w s t r u c t u r e s v e r y s im i l a r t o t h e o n e s o b s e r v e d e x p e r i m e n t a l l y a n d t h e t w op r i m a r y c i r c u l a t i o n c e l ls a r e p r e d i c t e d i n c o r r ec t p o s i t i o n s , in d i c a t i n g t h a t t h e s i m p l i f i e d a p p r o a c h u s e d , m a y

b e v i a b l e .

N O M E N C L A T U R E

L a t i n l e t t e r s

Cod ,

fvILU

U

cTt p

R e p

ew

i , j , k

n

A t

N V E L

r

E o

K a

a l ~ a 2

] ¢ e i n

s u b - a n d s u p e r s c r i p t s

d r a g c o e f f ic i e n t r r a d i a l

S a u t e r M e a n D i a m e t e r o f b u b b l e z a x i a l

a d d e d m a s s c o e ff ic i e nt t t u r b u l e n t

l i f t f o r c e c o e f f ic i e n t T t r a n s v e r s a l

v e l o c i t y c o m p o n e n t D d r a g

v e l o c i t y v e c t o r m m i d p o i n t o r m i x t u r e ( i . e , s l u r r y )

t r a n s v e r s a l d r a g c o e f fi c i e n t l l i q u i dp a r t i c l e r e l a x a t i o n t i m e s s o l i d s

p a r t i c l e R e y n o l d s n u m b e r g g a s

w e i g h t f r a c t i o n r e l r e l a t i v e

i n d i c e s f o r c a l c u l a t i o n c e l l s f l u c t f l u c t u a t i n g

t i m e i n d ic e ; 1 s t t o l a s t r e g i s t r a t i o n i n s t i n s t a n t a n e o u s

t i m e b e t w e e n r e g i s t r a t i o n s a v a v e r a g e

# v e l o c i t i e s i n a c a l c u l a t i o n c e l l t u r b t u r b u l e n t

p o s i t i o n v e c t o r

E S t v 6 s n u m b e r

s c a l i n g fa c t o r f o r b u b b l e g e n e r a t e d k i n e t i c e n e rg y

e m p i r i c a l c o e f fi c ie n t s o f t h e b u b b l e s iz e m o d e l

i n l e t t u r b u l e n t k i n e t i c e n e r g y

G r e e k l e t t e r s

a v o l u m e f r a c t i o n p l a m i n a r v i s c o s it y

p d e n s i t y rL L a g r a n g i a n t i m e s c a l e

A C K N O W L E D G E M E N T S

O n e o f t h e a u t h o r s ( M . P . D u d u k o v i ~ ) i s g r a t e f u l f o r t h e D e p a r t m e n t o f E n e r g y c o n t r a c t s a n d g r a n t s ( D O E -

F C 2 2 - 95 P C 9 5 0 5 1 a n d D E - P S 2 2 - 9 5 P C 9 5 2 0 0 ) a n d t o t h e i n d u s t r i a l s u p p o r t e r s o f t h e C h e m i c a l R e a c t i o n

E n g i n e e r i n g L a b o r a t o r y ( C R E L ) t h a t m a d e h i s c o n t r i b u t i o n p o s si b l e . T w o o f t h e a u t h o r s ( B . H . S a n n m s a n d

S . G r e v s k o t t ) a r e g r a t e f u l fo r t h e f i n a n c ia l s u p p o r t o f S T A T O I L .

R E F E R E N C E S

A u t o n , T . R . , 1 98 1, T h e d y n a m i c s o f b u b b l e s , d r o p s a n d p a r t i c l e s in m o t i o n i n l i q u id s , P h . D . T h e s i s , U n i -

v e r s i t y o f C a m b r i d g e , C a m b r i d g e , U K .

B u c h h o l z , J . , a n d S t e i n e m a n n , R . , 1 98 4, A p p l i c a t i o n o f a n e l e c t r i c a l c o n d u c t i v i t y m i c r o - p r o b e f o r t h e c h a r -

a c t e r i s a t i o n o f b u b b l e b e h a v i o u r i n g a s - l i q u i d b u b b l e f l ow . Par t . Charac t . , 1 .

D e g a l e e s a n , S . a n d D u d u k o v i d , M . P ., 1 9 95 , A p p l i c a t i o n o f W a v e l e t s f o r f i lt e r i ng C A R P T D a t a f o r B u b b l e

C o l u m n s , S u b m i t t e d t o Exp . i n F l u i d s .

D e v a n a t h a n , N . , 19 90 , I n v e s t i g a t i o n o f L i q u i d H y d r o d y n a m i c s i n B u b b l e C o l u m n s v i a a C o m p u t e r A u t o -

m a t e d R a d i o a c t i v e P a r ti c l e T ra c k i n g ( C A R P T ) F a c il i ty , D . S c . T h e s i s , W a s h i n g t o n U n i v e r s i t y , S a i n t L o u i s ,

M i s s o u r i , U S A .

D e v a n a t h a n , N . , M o s l e m i a n , D . a n d D u d u k o v i d , M . P . , 19 90 , F l o w m a p p i n g i n b u b b l e c o l u m n s u s i n g C A R P T ,

Chem. Eng . Sc i . , 4 5 , 2285-2291 .

D u d u k o v i ~ , M . P ., D e v a n a t h a n , N . a n d H o l u b , R ., 1 99 1, M u l t i p h a s e r e a c t o rs : M o d e l s a n d e x p e r i m e n t a l v e r -

i f i c a t i o n , Revue de l ' I n s t i t u t e Fran~a i s du Pg t ro l e , 4 6 , 4 3 9 -4 6 5 .

Page 11: Liquid Circulation, Bubble Size Distributions, And Solids Movement in Two- And Three-phase Bubble Columns

8/3/2019 Liquid Circulation, Bubble Size Distributions, And Solids Movement in Two- And Three-phase Bubble Columns

http://slidepdf.com/reader/full/liquid-circulation-bubble-size-distributions-and-solids-movement-in-two- 11/11

Two- and three-phase bubble columns 1713

Gaudin, A.M., 1957, Flo ta t ion , 2nd ed., McGraw-Hill, New York.

Hillmer, G., Weismantel, L. and Hofman, H., 1994, Investigations and modelling of slurry bubble columns,

Chem . En 9 . Sc i . , 49,837-843.

Jakobsen, H.A., 1993, On the modelling and simulation of bubble column reactors using a two-fluid model,Dr. lng . Thes i s , The Norwegian Inst itute of Technology, Trondheim, Norway.

Jakobsen, H.A., Svendsen, H.F. and Hjarbo, K.W., 1993, On the prediction of local flow structures in inter-nal loop and bubble column reactors using a two fluid model, Comp. gJ Chem . Eng . , 17S, $531-$536.

Johansen, S.T., 1990, On the modelling of disperse two-phase flows, Dr. Techn. Thesis , The Norwegian In-stitute of Technology, Trondheim, Norway.

Lapin, A. and Lfibbert, A., 1994a, Numerical simulation of the dynamics of two-phase gas-liquid flows in

bubble columns, Chem. Eng . Sc i . , 49, 3661-3674.

Lapin, A. and Liibbert, A., 1994b, Dynamic simulation of the two-phase flow mixing in bubble columns,

I C h e m E S y m p . S e r ., 136,365-373.

Launder, B.E. and Spalding, D.H., 1974, The numerical computation of turbulent flows, C o m p u t e r m e t h o ds

in app l ied Mechan ics and Eng ineer ing , 3,269-289.

Saxena, S.C. and Thimmapuram, P.R., 1992, Axial solids concentration distribution in slurry bubble columns,Re v i e w s i n C h e m . En g . , 8,259-310.

Sokolichin, A. and Eigenberger, G., 1994, Gas-liquid flow in bubble columns and loop reactors: Part I.Detailed modelling and numerical simulation, Chem. Eng. Set . , 49, 5735-5746.

Spalding, D.B., 1977, The calculation of Free-Convection Phenomena in Gas-Liquid Mixtures, ICHMT Sem-

inar 1976, Published in Turbu len t Buoy an t C onvec t ion , Hemisphere, Washington, 569-586.

Svendsen, H.F., Jakobsen, H.A. and Torvik, R., 1992, Local flow structures in internal loop and bubblecolumn reactors, Chem. Eng . Sc i . , 47, 3297-3304.

Taswell, C., 1995, WavBox 4C): A Software Toolbox for Wavelet Transforms and Adaptive Wavelet PacketDecompositions, in Wavele t s and S ta t i s t i cs , eds . Antoniadis, A. and Oppenheim, G., Proceedings of the

Villard de Lans Conference (November 1994), Springer Verlag.Thomas, D.G., 1965, Transport characteristics of suspensions VII. A note on the viscosity of Newtoniansuspensions of uniform spherical particles, J. Colloid Sci . , 20,267-277.

Thomas, N.H., Auton, T.R., Sene, K., Hunt, J.C.R., 1983, Entrapment and transpor t of bubbles by transient

large eddies in multiphase turbulent shear f lows , In t . Con f. on the Phys . Model ing o f Mul t i Phase Flows ,

Coventry, UK, pp 169-184.

Torvik, R. and Svendsen, H.F, 1990, Modeling of slurry reactors, A fundamental approach, C h e m . En g .

Sci . , 45, 2325-2332.