lithium di usion pathways in ramsdellite like li ti o...[molife]”) is gratefully acknowledged. we...

1
Making the Most of NeutronDiracƟon Data Lithium Diusion Pathways in RamsdelliteLike Li 2 Ti 3 O 7 D. Wiedemann,* a A. Franz b a InsƟ tut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany. b Abteilung Struktur und Dynamik von Energie materialien, Helmholtz Zentrum Berlin für Materialien und Energie, Hahn Meitner Platz 1, 14109 Berlin, Germany. Conclusion When dealing with neutron diffraction, ion diffusion pathways in solids can be explored, e.g., via analyses of the PDF and OPP, of MEM‐reconstructed SLD maps, or of the frame‐ work topology. Different requirements for data and model quality reϐlect the amount of extractable information, be it (semi‐)quantitative or qualitative. Lower‐demand approach‐ es may be used as heuristic, supporting, or even standalone methods—if data quality prohibits more sophisticated evaluation. In our experience, measured data sometimes fail to reach the expected quality, but hardly ever have to be completely discarded. However, it is imperative not to overstrain them or to treat them sloppily and to resist bold claims to maintain scientiϐic standards. Aims and Scope Although experimental scientists strive for the best possible data, they must often deal with mistakes, systematic errors, unforeseen behavior, and model limitations. Hav‐ ing several methods for evaluation [1] at hand helps to avoid unsound interpretation and frustration when quality expectations are not met. Herein, we give an example of this by presenting our multimethod study of lithium diffu- sion in ramsdellite-like Li 2 Ti 3 O 7 , a fast and strongly anisotropic conductor with a range of proposed applications from energy storage to lithium processing. [2] References and Acknowledgements [1] D. Wiedemann, M. M. Islam, T. Bredow, M. Lerch, Z. Phys. Chem. 2017, in preparation. [2] D. Wiedemann, S. Nakhal, A. Franz, M. Lerch, Solid State Ionics 2016, 293, 37–43. Financial support from DFG (FOR 1277: “Mobility of Lithium Ions in Solids [molife]”) is gratefully acknowledged. We thank HZB for the allocation of neutron radiation beamtime. Maps of ScaƩeringLength Density (SLD) The SLD is the neutron analogue of the electron density probed in X‐ray diffractometry. However, classical “Fourier maps” (acquired from observed intensities and modelled phas‐ es) are prone to artifacts and structured noise. The reconstruction of SLD using maxi- mum-entropy methods (MEM) over‐ comes this by yielding densities with the least additional information (i.e., the highest entropy) in the range of measurement error. For Li 2 Ti 3 O 7 , the MEM reconstruction shows a smearing of negative SLD in the channels along b, caused by disor‐ der/migration of lithium‐7. This hints at many energetically similar ion posi‐ tions and the structure being a meta- stable “snapshot” of the highly dynam‐ ic situation during synthesis at more than 950 °C. Figure 2. Crystalstructure detail of Li 2 Ti 3 O 7 at 422 °C with SLD isosurface for ρ b = –0.08 fm Å –3 . View approximately along [3 1̅ 0̅ 0], ions with arbitrary radii. Probability DensiƟes and MigraƟon Barriers Derivation of the probability-density function (PDF) and the one-particle potential (OPP) are the top tier of probing ion diffusion via neutron diffraction. The former models the probability of ϐinding an ion at a speciϐic position (i.e., the diffusion pathway), the lat‐ ter gives the associated effective potential energy (i.e., the activation barrier for migra‐ tion). Unfortunately, their de‐ termination requires unam‐ biguous high‐quality data, which is often hard to obtain. In ramsdellite‐like Li 2 Ti 3 O 7 , we found a case of severe lithium disorder that we were unable to treat with the discrete models needed for PDF/OPP analysis. Only one position could be resolved ac‐ cordingly, hinting at diffusion in spacious channels along b. Figure 1. Crystalstructure detail of Li 2 Ti 3 O 7 at 24 °C. View approximately along b, Li2 as PDF isosurface of 0.1 Å –3 , other ions as spheres and ellipsoids of 50% probability, unit cell in black. Voronoi–Dirichlet ParƟƟoning (VDP) The VDP is a kind of topological analysis that requires a division of the crystal into static (framework) and mobile (interstitial) species. The method assigns each point in space to the nearest atomic center; only the crystal structure of the framework is needed. Infer‐ ence of prior knowledge about the mobile species’ steric and electrostatic requirements yields more and less preferred diffusion paths. For Li 2 Ti 3 O 7 , this method was especially appealing, as it does not rely on the position of the lithium ions. Two possible pathways were revealed: a preferred one through the channels along b and a less preferred one through framework cation vacancies. Figure 3. Void structure of the Ti 3 O 7 2– framework at 422 °C as found by VDP. Intact channels on the leŌ, framework vacancy on the right; ions, void centers, and channels with arbitrary radii. ProcrystalVoid Analysis (PVA) Another topological method, the PVA, relies on the same information as the VDP, but uses different prior knowledge. It approximates all framework atoms as spheres of diffuse electron density, constructing the so‐called “procrystal”. Its voids (deϐined by an upper density limit ρ pro ) are the places to preferably host and conduct mobile species. This method appeals because of its ease of use and availability, even if empirical data for ste‐ ric and electrostatic demands are inaccessible. It is, however, more prone to misinterpre- tation and does not rationalize preference for one pathway over another. For ramsdellite‐like Li 2 Ti 3 O 7 , PVA has corroborated the abovementioned pathways and their relative likeliness. Figure 4. Procrystalvoid surface of the Ti 3 O 7 2– framework at 422 °C for ρ pro = 0.006 a.u. Intact channels on the leŌ, framework vacancy on the right; ions with arbitrary radii.

Upload: others

Post on 09-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lithium Di usion Pathways in Ramsdellite Like Li Ti O...[molife]”) is gratefully acknowledged. We thank HZB for the allocation of neutron radiation beamtime. Maps of Sca ©ering‐Length

Making the Most of Neutron‐Diffrac on Data Lithium Diffusion Pathways in Ramsdellite‐Like Li2Ti3O7 

D. Wiedemann,*a A. Franzb a Ins tut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.   b Abteilung Struktur und Dynamik von Energie‐materialien, Helmholtz‐Zentrum Berlin für Materialien und Energie, Hahn‐Meitner‐Platz 1, 14109 Berlin, Germany. 

Conclusion 

Whendealingwithneutrondiffraction,iondiffusionpathwaysinsolidscanbeexplored,e.g.,via analysesof thePDFandOPP,ofMEM‐reconstructedSLDmaps,orof the frame‐worktopology.Differentrequirementsfordataandmodelqualityre lecttheamountofextractableinformation,beit(semi‐)quantitativeorqualitative.Lower‐demandapproach‐esmaybeusedasheuristic,supporting,orevenstandalonemethods—ifdataqualityprohibitsmoresophisticatedevaluation.

In our experience, measured data sometimes fail to reach the expectedquality, buthardlyeverhavetobecompletelydiscarded.However,itisimperativenottooverstrainthemortotreatthemsloppilyandtoresistboldclaimstomaintainscienti icstandards.

Aims and Scope 

Although experimental scientists strive for the best possible data, theymust often dealwithmistakes,systematicerrors,unforeseenbehavior,andmodel limitations. Hav‐ingseveralmethods forevaluation[1] athandhelps toavoidunsound interpretationandfrustrationwhenqualityexpectationsarenotmet.

Herein,wegiveanexampleofthisbypresentingourmultimethodstudyoflithiumdiffu-sioninramsdellite-likeLi2Ti3O7,afastandstronglyanisotropicconductorwitharangeofproposedapplicationsfromenergystoragetolithiumprocessing.[2]

References and Acknowledgements 

[1] D. Wiedemann, M. M. Islam, T. Bredow, M. Lerch, Z.Phys.Chem.2017,inpreparation.

[2] D. Wiedemann, S. Nakhal, A. Franz, M. Lerch, SolidStateIonics2016,293,37–43.

Financial support from DFG(FOR 1277: “MobilityofLithiumIonsinSolids[molife]”) is gratefully acknowledged.We thank HZB for the allocation ofneutronradiationbeamtime.

Maps of Sca ering‐Length Density (SLD) 

TheSLD is theneutronanalogueof theelectrondensityprobed inX‐raydiffractometry.However,classical“Fouriermaps”(acquiredfromobservedintensitiesandmodelledphas‐es)arepronetoartifactsandstructurednoise.ThereconstructionofSLDusingmaxi-mum-entropymethods (MEM) over‐comes this by yielding densities withthe least additional information (i.e.,the highest entropy) in the range ofmeasurementerror.

For Li2Ti3O7, the MEM reconstructionshows a smearingofnegativeSLDinthechannelsalongb, causedbydisor‐der/migration of lithium‐7. This hintsatmany energetically similar ion posi‐tions and the structure being ameta-stable“snapshot”ofthehighlydynam‐ic situation during synthesis at morethan950°C.

Figure  2.  Crystal‐structure  detail  of  Li2Ti3O7  at 422 °C with SLD isosurface for ρb = –0.08 fm Å–3. View approximately along [3 1̅0̅ 0], ions with ar‐bitrary radii.

Probability Densi es and Migra on Barriers 

Derivation of the probability-density function (PDF)and the one-particlepotential(OPP)arethetoptierofprobingiondiffusionvianeutrondiffraction.Theformermodelstheprobabilityof indinganionataspeci icposition(i.e.,thediffusionpathway),thelat‐tergivestheassociatedeffectivepotentialenergy(i.e., theactivationbarrierformigra‐tion).Unfortunately,theirde‐termination requires unam‐biguous high‐quality data,whichisoftenhardtoobtain.

In ramsdellite‐like Li2Ti3O7,we found a case of severelithium disorder that wewereunabletotreatwiththediscretemodels needed forPDF/OPP analysis. Only onepositioncouldberesolvedac‐cordingly,hintingatdiffusioninspaciouschannelsalongb.

Figure  1. Crystal‐structure detail of  Li2Ti3O7 at 24  °C. View approximately along b, Li2 as PDF isosurface of 0.1 Å–3, oth‐er ions as spheres and ellipsoids of 50% probability, unit cell in black.

Voronoi–Dirichlet Par oning (VDP) 

TheVDPisakindoftopologicalanalysisthatrequiresadivisionofthecrystalintostatic(framework)andmobile(interstitial)species.Themethodassignseachpointinspacetothenearestatomiccenter;onlythecrystalstructureoftheframeworkisneeded.Infer‐enceofpriorknowledgeaboutthemobilespecies’stericandelectrostaticrequirementsyieldsmoreandlesspreferreddiffusionpaths.

ForLi2Ti3O7, thismethodwasespeciallyappealing,as itdoesnotrelyon thepositionofthe lithium ions. Twopossiblepathwayswere revealed: a preferred one through thechannelsalongbandalesspreferredonethroughframeworkcationvacancies.

Figure 3. Void structure of the Ti3O72– framework at 422 °C as found by VDP. Intact channels on 

the le , framework vacancy on the right; ions, void centers, and channels with arbitrary radii. 

Procrystal‐Void Analysis (PVA)

Anothertopologicalmethod,thePVA,reliesonthesameinformationastheVDP,butusesdifferent prior knowledge. It approximates all framework atoms as spheresofdiffuseelectrondensity, constructing theso‐called“procrystal”. Itsvoids (de inedbyanupperdensity limitρpro) are theplacestopreferablyhostandconductmobile species. Thismethodappealsbecauseofitseaseofuseandavailability,evenifempiricaldataforste‐ricandelectrostaticdemandsareinaccessible.Itis,however,morepronetomisinterpre-tationanddoesnotrationalizepreferenceforonepathwayoveranother.

Forramsdellite‐likeLi2Ti3O7,PVAhascorroboratedtheabovementionedpathwaysandtheirrelativelikeliness.

Figure 4. Procrystal‐void surface of the Ti3O72– framework at 422 °C for ρpro = 0.006 a.u. Intact 

channels on the le , framework vacancy on the right; ions with arbitrary radii.