lme49720 デュアル高性能、hi-fiオーディオ・オペア...

46
- + LME49720 - + - + LME49720 - + + + INPUT OUTPUT Note: 1% metal film resistors, 5% polypropylene capacitors 47 k: 3320: 150 : 909: 26.1 k : 3.83 k : 100 : 150: 22 n F//4.7 nF//500 pF 3320: 47 nF//33 nF 10 pF Copyright © 2016, Texas Instruments Incorporated Product Folder Sample & Buy Technical Documents Tools & Software Support & Community 英語版のTI製品についての情報を翻訳したこの資料は、製品の概要を確認する目的で便宜的に提供しているものです。該当する正式な英語版の最新情報は、www.ti.comで閲覧でき、その内 容が常に優先されます。TIでは翻訳の正確性および妥当性につきましては一切保証いたしません。実際の設計などの前には、必ず最新版の英語版をご参照くださいますようお願いいたします。 English Data Sheet: SNAS393 LME49720 JAJSBH0D – MARCH 2007 – REVISED NOVEMBER 2016 参考資料 LME49720 デュアル高性能、Hi-Fiオーディオ・オペアンプ 1 1 特長 1600の負荷を容易に駆動 オーディオ信号の優れた忠実性のため最適化 出力短絡保護 120dB (標準値)を超えるPSRRおよびCMRR SOICPDIPTO-99 Metal Canパッケージ 主な仕様 電源電圧範囲: ±2.5±17V THD+N (A V =1V OUT = 3V RMS f IN = 1kHz): R L = 2k: 0.00003% (標準値) R L = 600: 0.00003% (標準値) 入力ノイズ密度: 2.7nV/Hz (標準値) スルー・レート: ±20V/μs(標準値) ゲイン帯域幅積: 55MHz (標準値) 開ループ・ゲイン(R L = 600): 140dB (標準値) 入力バイアス電流: 10nA (標準値) 入力オフセット電圧: 0.1mV (標準値) DCゲイン直線性誤差: 0.000009% 2 アプリケーション 超高品質のオーディオ・アンプ Hi-Fiプリアンプ Hi-Fiマルチメディア 最先端のフォノ・プリアンプ プロフェッショナル用高性能オーディオ Hi-Fiイコライゼーションおよびクロスオーバー・ ネットワーク 高性能ライン・ドライバ 高性能ライン・レシーバ Hi-Fiアクティブ・フィルタ 3 概要 LME49720デバイスは超低歪み、低ノイズ、高スルー・ レートのオペアンプ・シリーズの製品であり、高性能のHi- Fiアプリケーション用に最適化され、完全に規定されてい ます。高度な最新のプロセス・テクノロジと、最先端の回路 設計との組み合わせにより、LME49720オーディオ・オペ アンプ・ドライバは優れたオーディオ信号アンプとして、比 類のないオーディオ性能を実現します。LME49720は、非 常に低い電圧ノイズ密度(2.7nV/Hz)と、ほぼ無視できる THD+N (0.00003%)との両立により、最も厳しいオーディ オ・アプリケーションの要求も容易に満たすことができま す。 製品情報 (1) 型番 パッケージ 本体サイズ(公称) LME49720 TO-99 (8) 9.08mm×9.08mm SOIC (8) 4.90mm×3.91mm PDIP (8) 9.81mm×6.35mm (1) 提供されているすべてのパッケージについては、データシートの末 尾にある注文情報を参照してください。 パッシブ・イコライゼーションのRIAAフォノ・プリアンプ

Upload: lythuy

Post on 06-Feb-2018

219 views

Category:

Documents


1 download

TRANSCRIPT

-

+

LME49720

-

+

-

+

LME49720

-

+

+

+INPUT

OUTPUT

Note: 1% metal film resistors, 5% polypropylene capacitors

47 k:

3320:150:

909:

26.1 k:

3.83 k:

100:

150:

22 nF//4.7 nF//500 pF

3320:

47 nF//33 nF

10 pF

Copyright © 2016, Texas Instruments Incorporated

Product

Folder

Sample &Buy

Technical

Documents

Tools &

Software

Support &Community

英語版のTI製品についての情報を翻訳したこの資料は、製品の概要を確認する目的で便宜的に提供しているものです。該当する正式な英語版の最新情報は、www.ti.comで閲覧でき、その内容が常に優先されます。TIでは翻訳の正確性および妥当性につきましては一切保証いたしません。実際の設計などの前には、必ず最新版の英語版をご参照くださいますようお願いいたします。

English Data Sheet: SNAS393

LME49720JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016

参参考考資資料料

LME49720 デデュュアアルル高高性性能能、、Hi-Fiオオーーデディィオオ・・オオペペアアンンププ

1

1 特特長長1• 600Ωの負荷を容易に駆動• オーディオ信号の優れた忠実性のため最適化• 出力短絡保護• 120dB (標準値)を超えるPSRRおよびCMRR• SOIC、PDIP、TO-99 Metal Canパッケージ• 主な仕様

– 電源電圧範囲: ±2.5~±17V– THD+N (AV = 1、VOUT = 3VRMS、fIN = 1kHz):

– RL = 2kΩ: 0.00003% (標準値)– RL = 600Ω: 0.00003% (標準値)

– 入力ノイズ密度: 2.7nV/√Hz (標準値)– スルー・レート: ±20V/μs (標準値)– ゲイン帯域幅積: 55MHz (標準値)– 開ループ・ゲイン(RL = 600Ω): 140dB (標準値)– 入力バイアス電流: 10nA (標準値)– 入力オフセット電圧: 0.1mV (標準値)– DCゲイン直線性誤差: 0.000009%

2 アアププリリケケーーシショョンン• 超高品質のオーディオ・アンプ• Hi-Fiプリアンプ• Hi-Fiマルチメディア• 最先端のフォノ・プリアンプ• プロフェッショナル用高性能オーディオ• Hi-Fiイコライゼーションおよびクロスオーバー・

ネットワーク• 高性能ライン・ドライバ• 高性能ライン・レシーバ• Hi-Fiアクティブ・フィルタ

3 概概要要LME49720デバイスは超低歪み、低ノイズ、高スルー・

レートのオペアンプ・シリーズの製品であり、高性能のHi-Fiアプリケーション用に最適化され、完全に規定されてい

ます。高度な最新のプロセス・テクノロジと、最先端の回路

設計との組み合わせにより、LME49720オーディオ・オペ

アンプ・ドライバは優れたオーディオ信号アンプとして、比

類のないオーディオ性能を実現します。LME49720は、非

常に低い電圧ノイズ密度(2.7nV/√Hz)と、ほぼ無視できる

THD+N (0.00003%)との両立により、最も厳しいオーディ

オ・アプリケーションの要求も容易に満たすことができま

す。

製製品品情情報報(1)

型型番番 パパッッケケーージジ 本本体体ササイイズズ((公公称称))

LME49720TO-99 (8) 9.08mm×9.08mmSOIC (8) 4.90mm×3.91mmPDIP (8) 9.81mm×6.35mm

(1) 提供されているすべてのパッケージについては、データシートの末尾にある注文情報を参照してください。

パパッッシシブブ・・イイココラライイゼゼーーシショョンンののRIAAフフォォノノ・・ププリリアアンンププ

2

LME49720JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016 www.tij.co.jp

Copyright © 2007–2016, Texas Instruments Incorporated

目目次次1 特特長長.......................................................................... 12 アアププリリケケーーシショョンン ......................................................... 13 概概要要.......................................................................... 14 改改訂訂履履歴歴................................................................... 25 デデババイイスス比比較較表表 ......................................................... 36 Pin Configuration and Functions ......................... 37 Specifications......................................................... 4

7.1 Absolute Maximum Ratings ...................................... 47.2 ESD Ratings.............................................................. 47.3 Recommended Operating Conditions....................... 47.4 Thermal Information .................................................. 47.5 Electrical Characteristics .......................................... 57.6 Typical Characteristics .............................................. 6

8 Parameter Measurement Information ................ 248.1 Distortion Measurements ........................................ 24

9 Detailed Description ............................................ 269.1 Overview ................................................................. 26

9.2 Functional Block Diagram ....................................... 269.3 Feature Description................................................. 269.4 Device Functional Modes........................................ 27

10 Application and Implementation........................ 2710.1 Application Information.......................................... 2710.2 Typical Applications .............................................. 27

11 Power Supply Recommendations ..................... 3511.1 Power Supply Decoupling Capacitors .................. 35

12 Layout................................................................... 3612.1 Layout Guidelines ................................................. 3612.2 Layout Example .................................................... 36

13 デデババイイススおおよよびびドドキキュュメメンントトののササポポーートト ....................... 3913.1 ドキュメントの更新通知を受け取る方法..................... 3913.2 コミュニティ・リソース ................................................ 3913.3 商標 ....................................................................... 3913.4 静電気放電に関する注意事項 ................................ 3913.5 Glossary ................................................................ 39

14 メメカカニニカカルル、、パパッッケケーージジ、、おおよよびび注注文文情情報報 ................. 39

4 改改訂訂履履歴歴資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

Revision C (April 2013) かからら Revision D にに変変更更 Page

• 「製品情報」表、「ESD定格」表、「機能説明」セクション、「デバイスの機能モード」セクション、「電源に関する推奨事項」セクション、「レイアウト」セクション、「デバイスおよびドキュメントのサポート」セクション、「メカニカル、パッケージ、および注文情報」セクションを追加 ....................................................................................................................................................................... 1

• Changed RθJA values for D and P packages from 145 °C/W to 107.9 °C/W (D) and from 102 °C/W to 72.9 °C/W (P)in the Thermal Information table............................................................................................................................................. 4

8

4

62

5

7

3

1

V+

OUTPUT BOUTPUT A

INVERTING

INPUT A

V-

INVERTING

INPUT B

NON-INVERTING

INPUT A

NON-INVERTING

INPUT B

1

2

3

4

8

7

6

5

Output A

InputA -

InputA +

V-

V+

Output B

Input B-

Input B+

1

2

3

4

8

7

6

5

Output A

InputA -

InputA +

V-

V+

Output B

InputB -

InputB +

3

LME49720www.ti.com JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016

Copyright © 2007–2016, Texas Instruments Incorporated

5 デデババイイスス比比較較表表

デデババイイススのの製製品品番番号号 アアンンププののタタイイププ チチャャネネルル数数 出出力力電電流流(mA) 入入力力ノノイイズズ密密度度(nV/rtHz)

THD+N (%)

LME49710 オーディオ・オペアンプ 1 37 2.5 0.00003LME49720 オーディオ・オペアンプ 2 26 2.7 0.00003LME49721 オーディオ・オペアンプ 2 100 4 0.0002LME49723 オーディオ・オペアンプ 2 25 3.2 0.0002

6 Pin Configuration and Functions

D Package8 Pin SOICTop View

P Packages8 Pin PDIPTop View

LMC Package8 Lead TO-99

Pin FunctionsPIN I/O DESCRIPTION

NAME SOIC PDIP TO-99V+ 8 8 8 - Positive supply voltageV- 4 4 4 - Negative supply voltageInputA- 2 2 2 I Negative audio inputInputA+ 3 3 3 I Positive audio inputOutput A 1 1 1 O Audio output AInputB– 6 6 6 I Negative audio inputInputB+ 5 5 5 I Positive audio inputOutput B 7 7 7 O Audio output B

4

LME49720JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016 www.ti.com

Copyright © 2007–2016, Texas Instruments Incorporated

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.(2) Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For enusred

specifications and test conditions, see Electrical Characteristics. The ensured specifications apply only for the test conditions listed.Some performance characteristics may degrade when the device is not operated under the listed test conditions.

(3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability andspecifications.

(4) Amplifier output connected to GND, any number of amplifiers within a package.

7 Specifications

7.1 Absolute Maximum Ratingssee (1) (2) (3)

MIN MAX UNITPower Supply Voltage (VS = V+ – V–) 36 VInput Voltage (V–) – 0.7V (V+) + 0.7 VOutput Short Circuit (4) ContinuousPower Dissipation Internally LimitedJunction Temperature 150 °CTemperature Range TMIN ≤ TA ≤ TMAX –40 85 °CSupply Voltage Range ±2.5V ≤ VS ≤

± 17V V

Storage Temperature −65 150 °C

(1) Human body model, 100pF discharged through a 1.5kΩ resistor.

7.2 ESD RatingsVALUE UNIT

V(ESD) Electrostatic dischargeHuman-body model (HBM) (1) All pins 2000

VMachine Model (MM), per EIAJ IC-121-1981Application and Implementation

Pins 1, 4, 7 and 8 200Pins 2, 3, 5 and 6 100

7.3 Recommended Operating Conditionsover operating free-air temperature range (unless otherwise noted)

MIN NOM MAX UNITV+,V– Supply voltage ±2.5 ±17 VTA Operating free-air temperature –40 85 °CTJ Operating junction temperature –40 150 °C

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics applicationreport.

(2) Thermal performance of a TO-99 package will depend strongly on mounting condition and there is no standard mounting configurationon a JEDEC PCB for that package type.

7.4 Thermal Information

THERMAL METRIC (1)

LME49720

UNITD(SOIC)

P(PDIP)

LMC(TO-99) (2)

8 PINS 8 PINS 8 PINSRθJA Junction-to-ambient thermal resistance 107.9 72.9 150 °C/WRθJC(top) Junction-to-case (top) thermal resistance 52 77.2 35 °C/WRθJB Junction-to-board thermal resistance 48.3 44.9 – °C/WψJT Junction-to-top characterization parameter 8.2 35.7 – °C/WψJB Junction-to-board characterization parameter 47.8 49.9 – °C/WRθJC(bot) Junction-to-case (bottom) thermal resistance N/A N/A – °C/W

5

LME49720www.ti.com JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016

Copyright © 2007–2016, Texas Instruments Incorporated

(1) Tested limits are ensured to AOQL (Average Outgoing Quality Level).(2) Typical specifications are specified at +25ºC and represent the most likely parametric norm.(3) PSRR is measured as follows: VOS is measured at two supply voltages, ±5V and ±15V. PSRR = | 20log(ΔVOS/ΔVS) |.

7.5 Electrical CharacteristicsThe following specifications apply for VS = ±15V, RL = 2kΩ, fIN = 1kHz, and TA = 25°C, unless otherwise specified.

PARAMETER TEST CONDITIONS MIN (1) TYP (2) MAX (1) UNIT

THD+N Total harmonic distortion +noise

AV = 1, VOUT = 3VrmsRL = 2kΩRL = 600Ω

0.000030.00003 0.00009 %

IMD Intermodulation distortion AV = 1, VOUT = 3VRMSTwo-tone, 60Hz & 7kHz 4:1 0.00005 %

GBWP Gain bandwidth product 45 55 MHzSR Slew rate ±15 ±20 V/μs

FPBW Full power bandwidthVOUT = 1VP-P, –3dBreferenced to output magnitudeat f = 1kHz

10MHz

ts Settling time AV = –1, 10V step, CL = 100pF0.1% error range

1.2 μs

en

Equivalent input noise voltage fBW = 20Hz to 20kHz 0.34 0.65 μVRMS

Equivalent input noise density f = 1kHzf = 10Hz

2.76.4

4.7 nV/√Hz

in Current noise density f = 1kHzf = 10Hz

1.63.1 pA/√Hz

VOS Offset voltage ±0.1 ±0.7 mVΔVOS/ΔTemp

Average input offset voltagedrift vs temperature –40°C ≤ TA ≤ 85°C 0.2 μV/°C

PSRR Average input offset voltageshift vs power supply voltage ΔVS = 20V (3) 110 120 dB

ISOCH-CH Channel-to-Channel isolation fIN = 1kHzfIN = 20kHz

118112 dB

IB Input bias current VCM = 0V 10 72 nAΔIOS/ΔTemp

Input bias current drift vstemperature –40°C ≤ TA ≤ 85°C 0.1 nA/°C

IOS Input offset current VCM = 0V 11 65 nA

VIN-CMCommon-Mode input voltagerange

(V+) – 2.0(V-) + 2.0

+14.1–13.9 V

CMRR Common-Mode rejection –10V<Vcm<10V 110 120 dB

ZIN

Differential input impedance 30 kΩCommon mode inputimpedance –10V<Vcm<10V 1000 MΩ

AVOL Open loop voltage gain–10V<Vout<10V, RL = 600Ω 125 140

dB–10V<Vout<10V, RL = 2kΩ 140–10V<Vout<10V, RL = 10kΩ 140

VOUTMAX Maximum output voltage swingRL = 600Ω ±12.5 ±13.6

VRL = 2kΩ ±14.0RL = 10kΩ ±14.1

IOUT Output current RL = 600Ω, VS = ±17V ±23 ±26 mA

IOUT-CCInstantaneous short circuitcurrent

+53–42 mA

ROUT Output impedancefIN = 10kHzClosed-LoopOpen-Loop

0.0113 Ω

CLOAD Capacitive load drive overshoot 100pF 16 %IS Total quiescent current IOUT = 0mA 10 12 mA

0.00001

0.0001

0.001

0.01

0.00002

0.0002

0.002

0.00005

0.0005

0.005

100m

10m

1 20 10

TH

D+

N (

%)

OUTPUT VOLTAGE (V)

0.00001

0.0001

0.001

0.01

0.00002

0.0002

0.002

0.00005

0.0005

0.005

100m10m 1 2010

TH

D+

N (

%)

OUTPUT VOLTAGE (V)

100m 2500m 10.00001

0.01

0.00002

0.00005

0.0001

0.0002

0.0005

0.001

0.002

0.005

105200m

OUTPUT VOLTAGE (V)

TH

D +

N (

%)

0.00001

0.0001

0.001

0.01

0.00002

0.0002

0.002

0.00005

0.0005

0.005

100m10m 1 2010

OUTPUT VOLTAGE (V)

TH

D+

N (

%)

0.00001

0.0001

0.001

0.01

0.00002

0.0002

0.002

0.00005

0.0005

0.005

100m10m 1 2010

OUTPUT VOLTAGE (V)

TH

D+

N (

%)

0.00001

0.0001

0.001

0.01

0.00002

0.0002

0.002

0.00005

0.0005

0.005

100m

OUTPUT VOLTAGE (V)

10m 1 2010

TH

D+

N (

%)

6

LME49720JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016 www.ti.com

Copyright © 2007–2016, Texas Instruments Incorporated

7.6 Typical Characteristics

Figure 1. Thd+N vs Output Voltage VCC = 15V, VEE = –15V RL= 2kΩ

Figure 2. Thd+N vs Output Voltage VCC = 12V, VEE = –12v RL= 2kΩ

Figure 3. Thd+N vs Output Voltage VCC = 17V, VEE = –17v RL= 2kΩ Figure 4. Thd+N vs Output Voltage VCC = 2.5V, VEE = –2.5V

RL = 2kΩ

Figure 5. Thd+N vs Output Voltage VCC = 15V, VEE = –15V RL= 600Ω

Figure 6. Thd+N vs Output Voltage VCC = 12V, VEE = –12V RL= 600Ω

100m 2500m 10.00001

0.01

0.00002

0.00005

0.0001

0.0002

0.0005

0.001

0.002

0.005

105200m

OUTPUT VOLTAGE (V)

TH

D +

N (

%)

0.00001

0.0001

0.001

0.01

0.00002

0.0002

0.002

0.00005

0.0005

0.005

100m10m 1 2010

TH

D+

N (

%)

OUTPUT VOLTAGE (V)

0.00001

0.0001

0.001

0.01

0.00002

0.0002

0.002

0.00005

0.0005

0.005

10m 1 20100m 10

OUTPUT VOLTAGE (V)

TH

D+

N (

%)

0.00001

0.0001

0.001

0.01

0.00002

0.0002

0.002

0.00005

0.0005

0.005

100m10m 1 2010

TH

D+

N (

%)

OUTPUT VOLTAGE (V)

100m 2500m 10.00001

0.01

0.00002

0.00005

0.0001

0.0002

0.0005

0.001

0.002

0.005

105200m

OUTPUT VOLTAGE (V)

TH

D +

N (

%)

0.00001

0.0001

0.001

0.01

0.00002

0.0002

0.002

0.00005

0.0005

0.005

100m10m 1 2010

TH

D+

N (

%)

OUTPUT VOLTAGE (V)

7

LME49720www.ti.com JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016

Copyright © 2007–2016, Texas Instruments Incorporated

Typical Characteristics (continued)

Figure 7. Thd+N vs Output Voltage VCC = 17V, VEE = –17V RL= 600Ω Figure 8. Thd+N vs Output Voltage VCC = 2.5V, VEE = –2.5V

RL = 600Ω

Figure 9. Thd+N vs Output Voltage VCC = 15V, VEE = –15V RL= 10kΩ

Figure 10. Thd+N vs Output Voltage VCC = 12V, VEE = –12VRL = 10kΩ

Figure 11. Thd+N vs Output Voltage VCC = 17V, VEE = –17VRL = 10kΩ Figure 12. Thd+N vs Output Voltage VCC = 2.5V, VEE = –2.5V

RL = 10kΩ

20 100 1k 10k 20k0.00001

0.0001

0.001

0.01

0.00002

0.0002

0.002

0.00005

0.0005

0.005

50 200 2k500 5k

TH

D+

N (

%)

FREQUENCY (Hz)

20 100 1k 10k 20k0.00001

0.0001

0.001

0.01

0.00002

0.0002

0.002

0.00005

0.0005

0.005

50 200 2k500 5k

TH

D+

N (

%)

FREQUENCY (Hz)

20 100 1k 10k 20k0.00001

0.0001

0.001

0.01

0.00002

0.0002

0.002

0.00005

0.0005

0.005

50 200 2k500 5k

TH

D+

N (

%)

FREQUENCY (Hz)

20 100 1k 10k 20k0.00001

0.0001

0.001

0.01

0.00002

0.0002

0.002

0.00005

0.0005

0.005

50 200 2k500 5k

FREQUENCY (Hz)

TH

D+

N (

%)

20 100 1k 10k 20k0.00001

0.0001

0.001

0.01

0.00002

0.0002

0.002

0.00005

0.0005

0.005

50 200 2k500 5k

TH

D+

N (

%)

FREQUENCY (Hz)

20 100 1k 10k 20k0.00001

0.0001

0.001

0.01

0.00002

0.0002

0.002

0.00005

0.0005

0.005

50 200 2k500 5k

FREQUENCY (Hz)

TH

D+

N (

%)

8

LME49720JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016 www.ti.com

Copyright © 2007–2016, Texas Instruments Incorporated

Typical Characteristics (continued)

Figure 13. Thd+N vs Frequency VCC = 15V, VEE = –15V, VOUT= 3VRMS RL = 2kΩ

Figure 14. Thd+N vs Frequency VCC = 12V, VEE = –12V, VOUT= 3VRMS RL = 2kΩ

Figure 15. Thd+N vs Frequency VCC = 17V, VEE = –17V, VOUT= 3VRMS RL = 2kΩ

Figure 16. Thd+N vs Frequency VCC = 15V, VEE = –15V, VOUT= 3VRMS RL = 600Ω

Figure 17. Thd+N vs Frequency VCC = 12V, VEE = –12V, VOUT= 3VRMS RL = 600Ω

Figure 18. Thd+N vs Frequency VCC = 17V, VEE = –17V, VOUT= 3VRMS RL = 600Ω

1

OUTPUT VOLTAGE (V)

102 50.00001

0.00002

0.00005

0.0001

0.0002

0.0005

0.001

0.002

0.005

0.01

IMD

(%

)

100m 200m 500m

0.00001

0.0001

0.001

0.01

IMD

(%

)

0.00002

0.0002

0.002

0.000007

0.00005

0.0005

0.005

OUTPUT VOLTAGE (V)

5100m 200m 500m 1 2 10

20 100 1k 10k 20k0.00001

0.0001

0.001

0.01

0.00002

0.0002

0.002

0.00005

0.0005

0.005

50 200 2k500 5k

TH

D+

N (

%)

FREQUENCY (Hz)

0.00001

0.0001

0.001

0.01

IMD

(%

)

0.00002

0.0002

0.002

0.000007

0.00005

0.0005

0.005

OUTPUT VOLTAGE (V)

5100m 200m 500m 1 2 10

20 100 1k 10k 20k0.00001

0.0001

0.001

0.01

0.00002

0.0002

0.002

0.00005

0.0005

0.005

50 200 2k500 5k

TH

D+

N (

%)

FREQUENCY (Hz)

20 100 1k 10k 20k0.00001

0.0001

0.001

0.01

0.00002

0.0002

0.002

0.00005

0.0005

0.005

50 200 2k500 5k

FREQUENCY (Hz)

TH

D+

N (

%)

9

LME49720www.ti.com JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016

Copyright © 2007–2016, Texas Instruments Incorporated

Typical Characteristics (continued)

Figure 19. Thd+N vs Frequency VCC = 15V, VEE = –15V, VOUT= 3VRMS RL = 10kΩ

Figure 20. Thd+N vs Frequency VCC = 12V, VEE = –12V, VOUT= 3VRMS RL = 10kΩ

Figure 21. Thd+N vs Frequency VCC = 17V, VEE = –17V, VOUT= 3VRMS RL = 10kΩ

Figure 22. IMD vs Output Voltage VCC = 15V, VEE = –15V RL= 2kΩ

Figure 23. IMD vs Output Voltage VCC = 12V, VEE = –12V RL= 2kΩ

Figure 24. IMD vs Output Voltage VCC = 2.5V, VEE = –2.5V RL= 2kΩ

OUTPUT VOLTAGE (V)

100m

0.00001

0.00002

0.00005

0.0001

0.0002

0.0005

0.001

0.002

0.005

0.01

IMD

(%

)

300m 500m 700m 1

0.00001

0.0001

0.001

0.01

IMD

(%

)

0.00002

0.0002

0.002

0.000006

0.00005

0.0005

0.005

OUTPUT VOLTAGE (V)

5100m 200m 500m 1 2 10

0.00001

0.0001

0.001

0.01

IMD

(%

)

0.00002

0.0002

0.002

0.000006

0.00005

0.0005

0.005

OUTPUT VOLTAGE (V)

5100m 200m 500m 1 2 10

0.00001

0.0001

0.001

0.01

IMD

(%

)

0.00002

0.0002

0.002

0.000007

0.00005

0.0005

0.005

OUTPUT VOLTAGE (V)

5100m 200m 500m 1 2 10

0.00001

0.0001

0.001

0.01

IMD

(%

)

0.00002

0.0002

0.002

0.000007

0.00005

0.0005

0.005

OUTPUT VOLTAGE (V)

5100m 200m 500m 1 2 10

0.00001

0.0001

0.001

0.01

IMD

(%

)

0.00002

0.0002

0.002

0.000006

0.00005

0.0005

0.005

OUTPUT VOLTAGE (V)

5100m 200m 500m 1 2 10

10

LME49720JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016 www.ti.com

Copyright © 2007–2016, Texas Instruments Incorporated

Typical Characteristics (continued)

Figure 25. IMD vs Output Voltage VCC = 17V, VEE = –17V RL= 2kΩ

Figure 26. IMD vs Output Voltage VCC = 15V, VEE = –15V RL= 600Ω

Figure 27. IMD vs Output Voltage VCC = 12V, VEE = –12V RL= 600Ω

Figure 28. IMD vs Output Voltage VCC = 17V, VEE = –17V RL= 600Ω

Figure 29. IMD vs Output Voltage VCC = 2.5V, VEE = –2.5V RL= 600Ω

Figure 30. IMD vs Output Voltage VCC = 15V, VEE = –15V RL= 10kΩ

20 20k

FREQUENCY (Hz)

+0

CR

OS

ST

ALK

(dB

)

10k1k 2k 5k50 100 200 500-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

1 100

FREQUENCY (Hz)

1

10

100

CU

RR

EN

T N

OIS

E (

pA/

Hz)

10 1000 10000 1000001

10

100VS = 30V

VCM = 15V

1.6 pA/ Hz

0.00001

0.01

0.00002

0.00005

0.0001

0.0002

0.0005

0.001

0.002

0.005

100m 1300m 500m 700m

OUTPUT VOLTAGE (V)

IMD

(%

)

1 100

FREQUENCY (Hz)

1

10

100

VO

LTA

GE

NO

ISE

(nV

/ H

z)

10 1000 10000 1000001

10

100VS = 30V

VCM = 15V

2.7 nV/ Hz

0.00001

0.0001

0.001

0.01

IMD

(%

)

0.00002

0.0002

0.002

0.000006

0.00005

0.0005

0.005

OUTPUT VOLTAGE (V)

5100m 200m 500m 1 2 10

0.00001

0.0001

0.001

0.01

IMD

(%

)

0.00002

0.0002

0.002

0.000006

0.00005

0.0005

0.005

OUTPUT VOLTAGE (V)

5100m 200m 500m 1 2 10

11

LME49720www.ti.com JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016

Copyright © 2007–2016, Texas Instruments Incorporated

Typical Characteristics (continued)

Figure 31. IMD vs Output Voltage VCC = 12V, VEE = –12V RL= 10kΩ

Figure 32. IMD vs Output Voltage VCC = 17V, VEE = –17V RL= 10kΩ

Figure 33. IMD vs Output Voltage VCC = 2.5V, VEE = –2.5V RL= 10kΩ

Figure 34. Voltage Noise Density vs Frequency

Figure 35. Current Noise Density vs Frequency Figure 36. Crosstalk vs Frequency VCC = 15V, VEE = –15V,VOUT = 3VRMS AV = 0dB, RL = 2kΩ

-130

+0

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

20 20k10k5k2k1k50020010050

FREQUENCY (Hz)

CR

OS

ST

ALK

(dB

)

20 20k

FREQUENCY (Hz)

+0

CR

OS

ST

ALK

(dB

)

10k1k 2k 5k50 100 200 500-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

20 20k

FREQUENCY (Hz)

+0

CR

OS

ST

ALK

(dB

)

10k1k 2k 5k50 100 200 500-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

20 20k

FREQUENCY (Hz)

+0

CR

OS

ST

ALK

(dB

)

10k1k 2k 5k50 100 200 500-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

20 20k

FREQUENCY (Hz)

+0C

RO

SS

TA

LK (

dB)

10k1k 2k 5k50 100 200 500-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

20 20k

FREQUENCY (Hz)

+0

CR

OS

ST

ALK

(dB

)

10k1k 2k 5k50 100 200 500-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

12

LME49720JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016 www.ti.com

Copyright © 2007–2016, Texas Instruments Incorporated

Typical Characteristics (continued)

Figure 37. Crosstalk vs Frequency VCC = 15V, VEE = –15V,VOUT = 10VRMS AV = 0dB, RL = 2kΩ

Figure 38. Crosstalk vs Frequency VCC = 12V, VEE = –12V,VOUT = 3VRMS AV = 0dB, RL = 2kΩ

Figure 39. Crosstalk vs Frequency VCC = 12V, VEE = –12V,VOUT = 10VRMS AV = 0dB, RL = 2kΩ

Figure 40. Crosstalk vs Frequency VCC = 17V, VEE = –17V,VOUT = 3VRMS AV = 0dB, RL = 2kΩ

Figure 41. Crosstalk vs Frequency VCC = 17V, VEE = –17V,VOUT = 10VRMS AV = 0dB, RL = 2kΩ

Figure 42. Crosstalk vs Frequency VCC = 2.5V, VEE = –2.5V,VOUT = 1VRMS AV = 0dB, RL = 2kΩ

20 20k

FREQUENCY (Hz)

+0

CR

OS

ST

ALK

(dB

)

10k1k 2k 5k50 100 200 500-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

20 20k

FREQUENCY (Hz)

+0

CR

OS

ST

ALK

(dB

)

10k1k 2k 5k50 100 200 500-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

20 20k

FREQUENCY (Hz)

+0

CR

OS

ST

ALK

(dB

)

10k1k 2k 5k50 100 200 500-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

20 20k

FREQUENCY (Hz)

+0

CR

OS

ST

ALK

(dB

)

10k1k 2k 5k50 100 200 500-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

20 20k

FREQUENCY (Hz)

+0C

RO

SS

TA

LK (

dB)

10k1k 2k 5k50 100 200 500-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

20 20k

FREQUENCY (Hz)

+0

CR

OS

ST

ALK

(dB

)

10k1k 2k 5k50 100 200 500-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

13

LME49720www.ti.com JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016

Copyright © 2007–2016, Texas Instruments Incorporated

Typical Characteristics (continued)

Figure 43. Crosstalk vs Frequency VCC = 15V, VEE = –15V,VOUT = 3VRMS AV = 0dB, RL = 600Ω

Figure 44. Crosstalk vs Frequency VCC = 15V, VEE = –15V,VOUT = 10VRMS AV = 0dB, RL = 600Ω

Figure 45. Crosstalk vs Frequency VCC = 12V, VEE = –12V,VOUT = 3VRMS AV = 0dB, RL = 600Ω

Figure 46. Crosstalk vs Frequency VCC = 12V, VEE = –12V,VOUT = 10VRMS AV = 0dB, RL = 600Ω

Figure 47. Crosstalk vs Frequency VCC = 17V, VEE = –17V,VOUT = 3VRMS AV = 0dB, RL = 600Ω

Figure 48. Crosstalk vs Frequency VCC = 17V, VEE = –17V,VOUT = 10VRMS AV = 0dB, RL = 600Ω

-140

+0

-130-120-110-100

-90-80-70-60-50-40-30-20-10

20 20k50 100 200 500 1k 2k 5k 10k

FREQUENCY (Hz)

CR

OS

ST

ALK

(dB

)

-140

+0

-130-120-110-100

-90-80-70-60-50-40-30-20-10

20 20k50 100 200 500 1k 2k 5k 10k

FREQUENCY (Hz)

CR

OS

ST

ALK

(dB

)

-140

+0

-130-120-110-100

-90-80-70-60-50-40-30-20-10

20 20k50 100 200 500 1k 2k 5k 10k

FREQUENCY (Hz)

CR

OS

ST

ALK

(dB

)

-140

+0

-130-120-110-100

-90-80-70-60-50-40-30-20-10

20 20k50 100 200 500 1k 2k 5k 10k

FREQUENCY (Hz)

CR

OS

ST

ALK

(dB

)

-140

+0

-130-120-110-100-90-80-70-60-50-40-30-20-10

20 20k50 100 200 500 1k 2k 5k 10k

FREQUENCY (Hz)

CR

OS

ST

ALK

(dB

)

20 20k

FREQUENCY (Hz)

+0C

RO

SS

TA

LK (

dB)

10k1k 2k 5k50 100 200 500-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

14

LME49720JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016 www.ti.com

Copyright © 2007–2016, Texas Instruments Incorporated

Typical Characteristics (continued)

Figure 49. Crosstalk vs Frequency VCC = 2.5V, VEE = –2.5V,VOUT = 1VRMS AV = 0dB, RL = 600Ω Figure 50. Crosstalk vs Frequency VCC = 15V, VEE = –15V,

VOUT = 3VRMS AV = 0dB, RL = 10kΩ

Figure 51. Crosstalk vs Frequency VCC = 15V, VEE = –15V,VOUT = 10VRMS AV = 0dB, RL = 10kΩ

Figure 52. Crosstalk vs Frequency VCC = 12V, VEE = –12V,VOUT = 3VRMS AV = 0dB, RL = 10kΩ

Figure 53. Crosstalk vs Frequency VCC = 12V, VEE = –12V,VOUT = 10VRMS AV = 0dB, RL = 10kΩ

Figure 54. Crosstalk vs Frequency VCC = 17V, VEE = –17V,VOUT = 3VRMS AV = 0dB, RL = 10kΩ

FREQUENCY (Hz)

-140-130-120-110

-100-90-80-70

-60-50

-40-30-20-10

0

20 100 1k 10k 100k

PS

RR

(dB

)

200k

FREQUENCY (Hz)

-140-130-120-110

-100-90-80-70

-60-50

-40-30-20-10

0

20 100 1k 10k 100k

PS

RR

(dB

)

200k

FREQUENCY (Hz)

-140-130-120-110

-100-90-80-70

-60-50

-40-30-20-10

0

20 100 1k 10k 100k

PS

RR

(dB

)

200k

FREQUENCY (Hz)

-140-130-120-110

-100-90-80-70

-60-50

-40-30-20-10

0

20 100 1k 10k 100k

PS

RR

(dB

)

200k

-140

+0

-130-120-110-100-90-80-70-60-50-40-30-20-10

20 20k50 100 200 500 1k 2k 5k 10k

FREQUENCY (Hz)

CR

OS

ST

ALK

(dB

)

-140

+0

-130-120-110-100

-90-80-70-60-50-40-30-20-10

20 20k50 100 200 500 1k 2k 5k 10k

FREQUENCY (Hz)

CR

OS

ST

ALK

(dB

)

15

LME49720www.ti.com JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016

Copyright © 2007–2016, Texas Instruments Incorporated

Typical Characteristics (continued)

Figure 55. Crosstalk vs Frequency VCC = 17V, VEE = –17V,VOUT = 10VRMS AV = 0dB, RL = 10kΩ

Figure 56. Crosstalk vs Frequency VCC = 2.5V, VEE = –2.5V,VOUT = 1VRMS AV = 0dB, RL = 10kΩ

Figure 57. PSRR+ vs Frequency VCC = 15V, VEE = –15V RL =10kΩ, F = 200kHz, VRIPPLE = 200mvpp

Figure 58. PSRR- vs Frequency VCC = 15V, VEE = –15V RL =10kΩ, F = 200kHz, VRIPPLE = 200mvpp

Figure 59. PSRR+ vs Frequency VCC = 15V, VEE = –15V RL =2kΩ, F = 200kHz, VRIPPLE = 200mvpp

Figure 60. PSRR- vs Frequency VCC = 15V, VEE = –15V RL =2kΩ, F = 200kHz, VRIPPLE = 200mvpp

FREQUENCY (Hz)

-140-130-120-110

-100-90-80-70

-60-50

-40-30-20-10

0

20 100 1k 10k 100k

PS

RR

(dB

)

200k

FREQUENCY (Hz)

-140-130-120-110

-100-90-80-70

-60-50

-40-30-20-10

0

20 100 1k 10k 100k

PS

RR

(dB

)

200k

FREQUENCY (Hz)

-140-130-120-110

-100-90-80-70

-60-50

-40-30-20-10

0

20 100 1k 10k 100k

PS

RR

(dB

)

200kFREQUENCY (Hz)

-140-130-120-110

-100-90-80-70

-60-50

-40-30-20-10

0

20 100 1k 10k 100k

PS

RR

(dB

)

200k

FREQUENCY (Hz)

-140-130-120-110

-100-90-80-70

-60-50

-40-30-20-10

0

20 100 1k 10k 100k

PS

RR

(dB

)

200k

FREQUENCY (Hz)

-140-130-120-110

-100-90-80-70

-60-50

-40-30-20-10

0

20 100 1k 10k 100k

PS

RR

(dB

)

200k

16

LME49720JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016 www.ti.com

Copyright © 2007–2016, Texas Instruments Incorporated

Typical Characteristics (continued)

Figure 61. PSRR+ vs Frequency VCC = 15V, VEE = –15V RL =600Ω, F = 200kHz, VRIPPLE = 200mvpp

Figure 62. PSRR- vs Frequency VCC = 15V, VEE = –15V RL =600Ω, F = 200kHz, VRIPPLE = 200mvpp

Figure 63. PSRR+ vs Frequency VCC = 12V, VEE = –12V RL =10kΩ, F = 200kHz, VRIPPLE = 200mvpp

Figure 64. PSRR– vs Frequency VCC = 12V, VEE = –12V RL =10kΩ, F = 200kHz, VRIPPLE = 200mvpp

Figure 65. PSRR+ vs Frequency VCC = 12V, VEE = –12V RL =2kΩ, F = 200kHz, VRIPPLE = 200mvpp

Figure 66. PSRR– vs Frequency VCC = 12V, VEE = –12V RL =2kΩ, F = 200kHz, VRIPPLE = 200mvpp

FREQUENCY (Hz)

-140-130-120-110

-100-90-80-70

-60-50

-40-30-20-10

0

20 100 1k 10k 100k

PS

RR

(dB

)

200k

FREQUENCY (Hz)

-140-130-120-110

-100-90-80-70

-60-50

-40-30-20-10

0

20 100 1k 10k 100k

PS

RR

(dB

)

200k

FREQUENCY (Hz)

-140-130-120-110

-100-90-80-70

-60-50

-40-30-20-10

0

20 100 1k 10k 100k

PS

RR

(dB

)

200kFREQUENCY (Hz)

-140-130-120-110

-100-90-80-70

-60-50

-40-30-20-10

0

20 100 1k 10k 100k

PS

RR

(dB

)

200k

FREQUENCY (Hz)

-140

-130-120-110

-100-90-80-70

-60-50

-40-30-20-10

0

20 100 1k 10k 100k

PS

RR

(dB

)

200k

FREQUENCY (Hz)

-140

-130-120-110

-100-90-80-70

-60-50

-40-30-20-10

0

20 100 1k 10k 100k

PS

RR

(dB

)

200k

17

LME49720www.ti.com JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016

Copyright © 2007–2016, Texas Instruments Incorporated

Typical Characteristics (continued)

Figure 67. PSRR+ vs Frequency VCC = 12V, VEE = –12V RL =600Ω, F = 200kHz, VRIPPLE = 200mvpp

Figure 68. PSRR– vs Frequency VCC = 12V, VEE = –12V RL =600Ω, F = 200kHz, VRIPPLE = 200mvpp

Figure 69. PSRR+ vs Frequency VCC = 17V, VEE = –17V RL =10kΩ, F = 200kHz, VRIPPLE = 200mvpp

Figure 70. PSRR– vs Frequency VCC = 17V, VEE = –17V RL =10kΩ, F = 200kHz, VRIPPLE = 200mvpp

Figure 71. PSRR+ vs Frequency VCC = 17V, VEE = –17V RL =2kΩ, F = 200kHz, VRIPPLE = 200mvpp

Figure 72. PSRR– vs Frequency VCC = 17V, VEE = –17V RL =2kΩ, F = 200kHz, VRIPPLE = 200mvpp

FREQUENCY (Hz)

-140

-130-120-110

-100-90-80-70

-60-50

-40-30-20-10

0

20 100 1k 10k 100k

PS

RR

(dB

)

200kFREQUENCY (Hz)

-140-130-120-110

-100-90-80-70

-60-50

-40-30-20-10

0

20 100 1k 10k 100k

PS

RR

(dB

)

200k

FREQUENCY (Hz)

-140-130-120-110-100-90

-80-70

-60-50

-40-30-20-10

0

20 100 1k 10k 100k

PS

RR

(dB

)

200kFREQUENCY (Hz)

-140

-130-120-110

-100-90-80-70

-60-50-40-30-20-10

0

20 100 1k 10k 100k

PS

RR

(dB

)

200k

FREQUENCY (Hz)

-140-130-120-110

-100-90-80-70

-60-50

-40-30-20-10

0

20 100 1k 10k 100k

PS

RR

(dB

)

200k

FREQUENCY (Hz)

-140

-130-120-110

-100-90-80-70

-60-50

-40-30-20-10

0

20 100 1k 10k 100k

PS

RR

(dB

)

200k

18

LME49720JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016 www.ti.com

Copyright © 2007–2016, Texas Instruments Incorporated

Typical Characteristics (continued)

Figure 73. PSRR+ vs Frequency VCC = 17V, VEE = –17V RL =600Ω, F = 200kHz, VRIPPLE = 200mvpp

Figure 74. PSRR– vs Frequency VCC = 17V, VEE = –17V RL =600Ω, F = 200kHz, VRIPPLE = 200mvpp

Figure 75. PSRR+ vs Frequency VCC = 2.5V, VEE = –2.5V RL =10kΩ, F = 200kHz, VRIPPLE = 200mvpp

Figure 76. PSRR– vs Frequency VCC = 2.5V, VEE = –2.5V RL =10kΩ, F = 200kHz, VRIPPLE = 200mvpp

Figure 77. PSRR+ vs Frequency VCC = 2.5V, VEE = –2.5V RL =2kΩ, F = 200kHz, VRIPPLE = 200mvpp

Figure 78. PSRR– vs Frequency VCC = 2.5V, VEE = –2.5V RL =2kΩ, F = 200kHz, VRIPPLE = 200mvpp

-120

-60

-40

-20

0

-100

-80

10 200k100 1k 10k 100k

FREQUENCY (Hz)

CM

RR

(d

B)

-120

-60

-40

-20

0

-100

-80

10 200k100 1k 10k 100k

FREQUENCY (Hz)

CM

RR

(d

B)

-120

-60

-40

-20

0

-100

-80

10 200k100 1k 10k 100k

FREQUENCY (Hz)

CM

RR

(d

B)

-120

-60

-40

-20

0

-100

-80

10 200k100 1k 10k 100k

FREQUENCY (Hz)

CM

RR

(d

B)

FREQUENCY (Hz)

-140

-130-120-110

-100-90-80-70

-60-50

-40-30-20-10

0

20 100 1k 10k 100k

PS

RR

(dB

)

200k

FREQUENCY (Hz)

-140-130-120-110

-100-90-80-70

-60-50

-40-30-20-10

0

20 100 1k 10k 100k

PS

RR

(dB

)

200k

19

LME49720www.ti.com JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016

Copyright © 2007–2016, Texas Instruments Incorporated

Typical Characteristics (continued)

Figure 79. PSRR+ vs Frequency VCC = 2.5V, VEE = –2.5V RL =600Ω, F = 200kHz, VRIPPLE = 200mvpp

Figure 80. PSRR– vs Frequency VCC = 2.5V, VEE = –2.5V RL =600Ω, F = 200kHz, VRIPPLE = 200mvpp

Figure 81. Cmrr vs Frequency VCC = 15V, VEE = –15V RL =2kΩ

Figure 82. Cmrr vs Frequency VCC = 12V, VEE = –12V RL =2kΩ

Figure 83. Cmrr vs Frequency VCC = 17V, VEE = –17V RL =2kΩ

Figure 84. Cmrr vs Frequency VCC = 2.5V, VEE = –2.5V RL =2kΩ

-120

-60

-40

-20

0

-100

-80

10 200k100 1k 10k 100k

FREQUENCY (Hz)

CM

RR

(d

B)

FREQUENCY (Hz)

CM

RR

(d

B)

-120

0

-20

-40

-60

-80

-100

10 100 1k 10k 100k 200k

-120

-60

-40

-20

0

-100

-80

10 200k100 1k 10k 100k

FREQUENCY (Hz)

CM

RR

(d

B)

-120

-60

-40

-20

0

-100

-80

10 200k100 1k 10k 100k

FREQUENCY (Hz)

CM

RR

(d

B)

-120

-60

-40

-20

0

-100

-80

10 200k100 1k 10k 100k

FREQUENCY (Hz)

CM

RR

(d

B)

FREQUENCY (Hz)

CM

RR

(d

B)

-120

0

-20

-40

-60

-80

-100

10 100 1k 10k 100k 200k

20

LME49720JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016 www.ti.com

Copyright © 2007–2016, Texas Instruments Incorporated

Typical Characteristics (continued)

Figure 85. Cmrr vs Frequency VCC = 15V, VEE = –15V RL =600Ω

Figure 86. Cmrr vs Frequency VCC = 12V, VEE = –12V RL =600Ω

Figure 87. Cmrr vs Frequency VCC = 17V, VEE = –17V RL =600Ω

Figure 88. Cmrr vs Frequency VCC = 2.5V, VEE = –2.5V RL =600Ω

Figure 89. Cmrr vs Frequency VCC = 15V, VEE = –15V RL =10kΩ

Figure 90. Cmrr vs Frequency VCC = 12V, VEE = –12V RL =10kΩ

500 10k600 800 2k 5k

LOAD RESISTANCE (:)

OU

TP

UT

(V

rms)

11.0

12.0

11.5

12.5

13.0

13.5

10.0

10.5

500 10k600 800 2k 5k

LOAD RESISTANCE (:)

OU

TP

UT

(V

rms)

0.00

0.25

0.50

0.75

1.00

1.25

500 10k600 800 2k 5k

LOAD RESISTANCE (:)

OU

TP

UT

(V

rms)

9.0

10.0

9.5

10.5

11.0

11.5

500 10k600 800 2k 5k

LOAD RESISTANCE (:)

OU

TP

UT

(V

rms)

7.0

8.0

7.5

8.5

9.0

9.5

-120

-60

-40

-20

0

-100

-80

10 200k100 1k 10k 100k

FREQUENCY (Hz)

CM

RR

(d

B)

-120

-60

-40

-20

0

-100

-80

10 200k100 1k 10k 100k

FREQUENCY (Hz)

CM

RR

(d

B)

21

LME49720www.ti.com JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016

Copyright © 2007–2016, Texas Instruments Incorporated

Typical Characteristics (continued)

Figure 91. Cmrr vs Frequency VCC = 17V, VEE = –17V RL =10kΩ

Figure 92. Cmrr vs Frequency VCC = 2.5V, VEE = –2.5V RL =10kΩ

Figure 93. Output Voltage vs Load Resistance VDD = 15V,VEE = –15v Thd+N = 1%

Figure 94. Output Voltage vs Load Resistance VDD = 12V,VEE = –12v Thd+N = 1%

Figure 95. Output Voltage vs Load Resistance VDD = 17V,VEE = –17v Thd+N = 1%

Figure 96. Output Voltage vs Load Resistance VDD = 2.5V,VEE = –2.5v Thd+N = 1%

8.0

8.5

9.0

9.5

10.0

10.5

2.5 4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5

SUPPLY VOLTAGE (V)

SU

PP

LY C

UR

RE

NT

(m

A)

8.0

8.5

9.0

9.5

10.0

10.5

2.5 4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5

SUPPLY VOLTAGE (V)

SU

PP

LY C

UR

RE

NT

(m

A)

4

6

8

10

12

14

2.5 4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5

SUPPLY VOLTAGE (V)

OU

TP

UT

VO

LTA

GE

(V

)

2

0 8.0

8.5

9.0

9.5

10.0

10.5

2.5 4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5

SUPPLY VOLTAGE (V)

SU

PP

LY C

UR

RE

NT

(m

A)

4

6

8

10

12

14

2.5 4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5

SUPPLY VOLTAGE (V)

OU

TP

UT

VO

LTA

GE

(V

)

2

0

2

4

6

8

10

12

2.5 4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5

SUPPLY VOLTAGE (V)

OU

TP

UT

VO

LTA

GE

(V

)

0

22

LME49720JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016 www.ti.com

Copyright © 2007–2016, Texas Instruments Incorporated

Typical Characteristics (continued)

Figure 97. Output Voltage vs Supply Voltage RL = 2kΩ,Thd+N = 1%

Figure 98. Output Voltage vs Supply Voltage RL = 600Ω,Thd+N = 1%

Figure 99. Output Voltage vs Supply Voltage RL = 10kΩ,Thd+N = 1%

Figure 100. Supply Current vs Supply Voltage RL = 2kΩ

Figure 101. Supply Current vs Supply Voltage RL = 600Ω Figure 102. Supply Current vs Supply Voltage RL = 10kΩ

1

': 0.00s@: -1.01 Ps

': 0.00V@: -80.0 mV

M 200 ns A Ch1 2.00 mV

50.40%

Ch1 50.0 mV

1

': 0.00s@: -1.01 Ps

': 0.00V@: -80.0 mV

M 200 ns A Ch1 2.00 mV

50.40%

Ch1 50.0 mV

100 1000010000000

100000000100000100010

FREQUENCY (Hz)1000000

180

-20

20

80

GA

IN (

dB),

PH

AS

E L

AG

(o ) 140

120

60

40

0

100

160

100 10k 10M 100M100k1k10

FREQUENCY (Hz)

1M

2

-18

-14

-8

MA

GN

ITU

DE

(dB

)

-2

-4

-10

-12

-16

-6

0

1

0 dB = 1 VP-P

23

LME49720www.ti.com JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016

Copyright © 2007–2016, Texas Instruments Incorporated

Typical Characteristics (continued)

Figure 103. Full Power Bandwidth vs Frequency Figure 104. Gain Phase vs Frequency

Figure 105. Small-Signal Transient Response AV = 1, CL =10pf

Figure 106. Small-Signal Transient Response AV = 1, CL =100pf

Figure 107. RIAA Preamp Voltage Gain,RIAA Deviation vs Frequency

Figure 108. Flat Amp Voltage Gain vs Frequency

Distortion Signal Gain = 1+(R2/R1)

+

-

LME49720

1000:

R110:

R2

Analyzer Input

Audio Precision System Two

Cascade

Generator Output

Actual Distortion = AP Value/100

24

LME49720JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016 www.ti.com

Copyright © 2007–2016, Texas Instruments Incorporated

8 Parameter Measurement Information

All parameters are measured according to the conditions described in the Specifications section.

8.1 Distortion MeasurementsThe vanishingly low residual distortion produced by LME49720 is below the capabilities of all commerciallyavailable equipment. This makes distortion measurements just slightly more difficult than simply connecting adistortion meter to the amplifier’s inputs and outputs. The solution, however, is quite simple: an additionalresistor. Adding this resistor extends the resolution of the distortion measurement equipment.

The LME49720’s low residual distortion is an input referred internal error. As shown in Figure 109, adding the10Ω resistor connected between the amplifier’s inverting and non-inverting inputs changes the amplifier’s noisegain. The result is that the error signal (distortion) is amplified by a factor of 101. Although the amplifier’s closed-loop gain is unaltered, the feedback available to correct distortion errors is reduced by 101, which means thatmeasurement resolution increases by 101. To ensure minimum effects on distortion measurements, keep thevalue of R1 low as shown in Figure 109.

This technique is verified by duplicating the measurements with high closed loop gain and/or making themeasurements at high frequencies. Doing so produces distortion components that are within the measurementequipment’s capabilities. This datasheet’s THD+N and IMD values were generated using the above describedcircuit connected to an Audio Precision System Two Cascade.

Figure 109. THD+N and IMD Distortion Test Circuit

25

LME49720www.ti.com JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016

Copyright © 2007–2016, Texas Instruments Incorporated

Distortion Measurements (continued)

Complete shielding is required to prevent induced pick up from external sources. Always check with oscilloscope forpower line noise.Total Gain: 115 dB @F = 1 kHzInput Referred Noise Voltage: En = V0/560,000 (V)

Figure 110. Noise Measurement Circuit

B

-+

A

- +

7 OUTPUT B

8 V+

6 INVERTING INPUT B

5 NON-INVERTINGINPUT B

NON-INVERTINGINPUT A

3

V- 4

INVERTING INPUT A 2

OUTPUT A1

26

LME49720JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016 www.ti.com

Copyright © 2007–2016, Texas Instruments Incorporated

9 Detailed Description

9.1 OverviewThe LME49720 audio operational amplifier delivers superior audio signal amplification for outstanding audioperformance.

To ensure that the most challenging loads are driven without compromise, the LME49720 has a high slew rate of±20V/μs and an output current capability of ±26mA. Further, dynamic range is maximized by an output stage thatdrives 2kΩ loads to within 1V of either power supply voltage and to within 1.4V when driving 600Ω loads.

The LME49720's outstanding CMRR (120dB), PSRR (120dB), and VOS (0.1mV) give the amplifier excellentoperational amplifier DC performance.

The LME49720 has a wide supply range of ±2.5V to ±17V. Over this supply range the LME49720’s input circuitrymaintains excellent common-mode and power supply rejection, as well as maintaining its low input bias current.The LME49720 is unity gain stable. This Audio Operational Amplifier achieves outstanding AC performance whiledriving complex loads with values as high as 100pF.

The LME49720 is available in 8–lead narrow body SOIC, 8–lead PDIP, and 8–lead TO-99. Demonstrationboards are available for each package.

9.2 Functional Block Diagram

9.3 Feature Description

9.3.1 Capacitive LoadThe LME49720 is a high speed op amp with excellent phase margin and stability. Capacitive loads up to 100pFwill cause little change in the phase characteristics of the amplifiers and are therefore allowable.

Capacitive loads greater than 100pF must be isolated from the output. The most straightforward way to do this isto put a resistor in series with the output. This resistor will also prevent excess power dissipation if the output isaccidentally shorted.

9.3.2 Balance Cable DriverWith high peak-to-peak differential output voltage and plenty of low distortion drive current, the LME49720 makesan excellent balanced cable driver. Combining the single-to-differential configuration with a balanced cable driverresults in a high performance single-ended input to balanced line driver solution.

Although the LME49720 can drive capacitive loads up to 100pF, cable loads exceeding 100pF can causeinstability. For such applications, series resistors are needed on the outputs before the capacitive load.

27

LME49720www.ti.com JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016

Copyright © 2007–2016, Texas Instruments Incorporated

9.4 Device Functional ModesThis device does not have operation mode.

10 Application and Implementation

NOTEInformation in the following applications sections is not part of the TI componentspecification, and TI does not warrant its accuracy or completeness. TI’s customers areresponsible for determining suitability of components for their purposes. Customers shouldvalidate and test their design implementation to confirm system functionality.

10.1 Application InformationThese typical connection diagrams highlight the required external components and system level connections forproper operation of the device. Any design variation can be supported by TI through schematic and layoutreviews. Visit e2e.ti.com for design assistance and join the audio amplifier discussion forum for additionalinformation

10.2 Typical Applications

10.2.1 Single Ended Converter

VO = V1–V2

Figure 111. Balanced To Single Ended Converter

10.2.1.1 Design RequirementsFor this design example, use the parameters listed in Table 1.

Table 1. Design ParametersDESIGN PARAMETER EXAMPLE VALUEPower Supply ±15Speaker 2 KΩ

28

LME49720JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016 www.ti.com

Copyright © 2007–2016, Texas Instruments Incorporated

10.2.1.2 Detailed Design Procedure

10.2.1.2.1 Surface Mount Capacitors

Temperature and applied DC voltage influence the actual capacitance of high-K materials. Table 2 shows therelationship between the different types of high-K materials and their associated tolerances, temperaturecoefficients, and temperature ranges. Notice that a capacitor made with X5R material can lose up to 15% of itscapacitance within its working temperature range.

Select high-K ceramic capacitors according to the following rules:1. Use capacitors made of materials with temperature coefficients of X5R, X7R, or better.2. Use capacitors with DC voltage ratings of at least twice the application voltage.3. Choose a capacitance value at least twice the nominal value calculated for the application.

Multiply the nominal value by a factor of 2 for safety. If a 10-µF capacitor is required, use 20µF.

The preceding rules and recommendations apply to capacitors used in connection with this device. TheLME49720 cannot meet its performance specifications if the rules and recommendations are not followed.

Table 2. Typical Tolerance and Temperature Coefficient of Capacitance by MaterialMaterial COG/NPO X7R X5R

Typical Tolerance ±5% ±10% 80/–20%Temperature ±30ppm ±15% 22/–82%

Temperature Range, ºC –55/125ºC –55/125ºC –30/85 ºC

10.2.1.3 Application CurvesFor application curves, see the figures listed in Table 3.

Table 3. Table of GraphsDESCRIPTION FIGURE NUMBERTHD+N vs Output Power See Figure 1THD+N vs Frequency See Figure 13Crosstalk vs Frequency See Figure 36PSRR vs Frequency See Figure 58

=

po

1f

2 RC

29

LME49720www.ti.com JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016

Copyright © 2007–2016, Texas Instruments Incorporated

10.2.2 Other Applications

AV = 34.5F = 1 kHzEn = 0.38 μVA Weighted

Figure 112. Nab Preamp

Figure 113. Nab Preamp Voltage Gain vsFrequency

VO = V1 + V2 − V3 − V4

Figure 114. Adder/Subtracter

Figure 115. Sine Wave Oscillator

0 BP LP LH

1 1 R2 R2 R2f ,Q 1 , A QA QA

2 C1R1 2 R0 RG RG

æ ö= = + + = = =ç ÷p è ø

o

if C1 C2 C

2R1

2 C

R2 2 R1

= =

=

w

= ´

o

if R1 R2 R

2C1

R

C1C2

2

= =

=

w

=

30

LME49720JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016 www.ti.com

Copyright © 2007–2016, Texas Instruments Incorporated

Illustration is f0 = 1 kHz

Figure 116. Second Order High Pass Filter(Butterworth)

Illustration is f0 = 1 kHz

Figure 117. Second Order Low Pass Filter(Butterworth)

Illustration is f0 = 1 kHz, Q = 10, ABP = 1

Figure 118. State Variable Filter

31

LME49720www.ti.com JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016

Copyright © 2007–2016, Texas Instruments Incorporated

Figure 119. AC/DC Converter

Figure 120. 2 Channel Panning Circuit (Pan Pot)

32

LME49720JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016 www.ti.com

Copyright © 2007–2016, Texas Instruments Incorporated

Figure 121. Line Driver

Illustration is:fL = 32 Hz, fLB = 320 HzfH =11 kHz, fHB = 1.1 kHz

Figure 122. Tone Control

33

LME49720www.ti.com JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016

Copyright © 2007–2016, Texas Instruments Incorporated

Figure 123. RIAA Preamp Behavior

Av = 35 dBEn = 0.33 μVS/N = 90 dBf = 1 kHzA WeightedA Weighted, VIN = 10 mV@f = 1 kHz

Figure 124. RIAA Preamp

Illustration is:V0 = 101(V2 − V1)

Figure 125. Balanced Input Mic Amp

34

LME49720JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016 www.ti.com

Copyright © 2007–2016, Texas Instruments Incorporated

Figure 126. 10 Band Graphic Equalizer

Table 4. Typical Values for Band Graphic Equalizerfo (Hz) C1 C2 R1 R2

32 0.12μF 4.7μF 75kΩ 500Ω64 0.056μF 3.3μF 68kΩ 510Ω125 0.033μF 1.5μF 62kΩ 510Ω250 0.015μF 0.82μF 68kΩ 470Ω500 8200pF 0.39μF 62kΩ 470Ω1k 3900pF 0.22μF 68kΩ 470Ω2k 2000pF 0.1μF 68kΩ 470Ω4k 1100pF 0.056μF 62kΩ 470Ω8k 510pF 0.022μF 68kΩ 510Ω16k 330pF 0.012μF 51kΩ 510Ω

35

LME49720www.ti.com JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016

Copyright © 2007–2016, Texas Instruments Incorporated

11 Power Supply RecommendationsThe LME49720 is designed to operate a power supply from ±2.5V to ±17V. Therefore, the output voltage rangeof the power supply must be within this range. The current capability of upper power must not exceed themaximum current limit of the power switch.

11.1 Power Supply Decoupling CapacitorsThe LME49720 requires adequate power supply decoupling to ensure a low total harmonic distortion (THD).Place a low equivalent-series-resistance (ESR) ceramic capacitor, typically 0.1 µF, within 2 mm of the V+ and V-pins. This choice of capacitor and placement helps with higher frequency transients, spikes, or digital hash on theline. In addition to the 0.1 µF ceramic capacitor, it is recommended to place a 2.2 µF to 10 µF capacitor on theV+ and V- pins. This larger capacitor acts as a charge reservoir, providing energy faster than the board supply,thus helping to prevent any droop in the supply voltage.

Output A

Via to Bottom Ground Plane

Top Layer Ground Plane Top Layer Traces

Pad to Top Layer Ground Plane

Decoupling capacitors

placed as close as

possible to the device

Input Resistors

placed as close as

possible to the device

LME49720

1

2

3

4

8

7

6

5

Via to Power Supply

0.1µF

InputA-

RR

R

InputA+

R

Output B

InputB-

RR

10µF

InputB+R

R

Input Resistors

placed as close as

possible to the device

Copyright © 2016, Texas Instruments Incorporated

36

LME49720JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016 www.ti.com

Copyright © 2007–2016, Texas Instruments Incorporated

12 Layout

12.1 Layout Guidelines

12.1.1 Component PlacementPlace all the external components close to the device. Placing the decoupling capacitors as close as possible tothe device is important for low total harmonic distortion (THD). Any resistance or inductance in the trace betweenthe device and the capacitor can cause a loss in efficiency.

12.2 Layout Example

Figure 127. LME49720SOIC Layout Example

Output A

Via to Bottom Ground Plane

Top Layer Ground Plane Top Layer Traces

Pad to Top Layer Ground Plane

Decoupling capacitors

placed as close as

possible to the device

Input Resistors

placed as close as

possible to the device

LME49720

1

2

3

4

8

7

6

5

Via to Power Supply

0.1µF

InputA-

RR

R

InputA+

R

Output B

InputB-

RR

10µF

InputB+R

R

Input Resistors

placed as close as

possible to the device

Copyright © 2016, Texas Instruments Incorporated

37

LME49720www.ti.com JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016

Copyright © 2007–2016, Texas Instruments Incorporated

Layout Example (continued)

Figure 128. LME49720PDIP Layout Example

Output A

Via to Bottom Ground Plane

Top Layer Ground Plane Top Layer Traces

Pad to Top Layer Ground Plane

Decoupling capacitors

placed as close as

possible to the device

Input Resistors

placed as close as

possible to the device

Via to Power Supply

0.1µF

InputA-

InputA+

Output B

InputB-

10µF

InputB+

R

R

Input Resistors

placed as close as

possible to the device

LME497202

1

3

R

R 4

6

7

8

5

RR

R

R

Copyright © 2016, Texas Instruments Incorporated

38

LME49720JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016 www.tij.co.jp

Copyright © 2007–2016, Texas Instruments Incorporated

Layout Example (continued)

Figure 129. LME49720TO-99 Layout Example

39

LME49720www.tij.co.jp JAJSBH0D –MARCH 2007–REVISED NOVEMBER 2016

Copyright © 2007–2016, Texas Instruments Incorporated

13 デデババイイススおおよよびびドドキキュュメメンントトののササポポーートト

13.1 ドドキキュュメメンントトのの更更新新通通知知をを受受けけ取取るる方方法法ドキュメントの更新についての通知を受け取るには、ti.comのデバイス製品フォルダを開いてください。右上の隅にある「通知を受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。

13.2 ココミミュュニニテティィ・・リリソソーーススThe following links connect to TI community resources. Linked contents are provided "AS IS" by the respectivecontributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms ofUse.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaborationamong engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and helpsolve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools andcontact information for technical support.

13.3 商商標標E2E is a trademark of Texas Instruments.All other trademarks are the property of their respective owners.

13.4 静静電電気気放放電電にに関関すするる注注意意事事項項すべての集積回路は、適切なESD保護方法を用いて、取扱いと保存を行うようにして下さい。

静電気放電はわずかな性能の低下から完全なデバイスの故障に至るまで、様々な損傷を与えます。高精度の集積回路は、損傷に対して敏感であり、極めてわずかなパラメータの変化により、デバイスに規定された仕様に適合しなくなる場合があります。

13.5 GlossarySLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 メメカカニニカカルル、、パパッッケケーージジ、、おおよよびび注注文文情情報報以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、そのデバイスについて利用可能な最新のデータです。このデータは予告なく変更されることがあり、ドキュメントが改訂される場合もあります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

PACKAGE OPTION ADDENDUM

www.ti.com 7-Nov-2017

Addendum-Page 1

PACKAGING INFORMATION

Orderable Device Status(1)

Package Type PackageDrawing

Pins PackageQty

Eco Plan(2)

Lead/Ball Finish(6)

MSL Peak Temp(3)

Op Temp (°C) Device Marking(4/5)

Samples

LME49720MAX/NOPB ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU SN Level-1-260C-UNLIM -40 to 85 L49720MA

LME49720NA/NOPB ACTIVE PDIP P 8 40 Green (RoHS& no Sb/Br)

CU SN Level-1-NA-UNLIM -40 to 85 LME49720NA

(1) The marketing status values are defined as follows:ACTIVE: Product device recommended for new designs.LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.PREVIEW: Device has been announced but is not in production. Samples may or may not be available.OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substancedo not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI mayreference these types of products as "Pb-Free".RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide basedflame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuationof the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finishvalue exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on informationprovided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken andcontinues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

www.ti.com 7-Nov-2017

Addendum-Page 2

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device PackageType

PackageDrawing

Pins SPQ ReelDiameter

(mm)

ReelWidth

W1 (mm)

A0(mm)

B0(mm)

K0(mm)

P1(mm)

W(mm)

Pin1Quadrant

LME49720MAX/NOPB SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 4-May-2017

Pack Materials-Page 1

*All dimensions are nominal

Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)

LME49720MAX/NOPB SOIC D 8 2500 367.0 367.0 35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 4-May-2017

Pack Materials-Page 2

IMPORTANT NOTICE重重要要ななおお知知ららせせ

Texas Instruments Incorporated (TI)は、JESD46の最新版に従って自社の半導体製品およびサービスに訂正、拡張、改良、および、その他の変更を加える権利と、JESD48の最新版に従って任意の製品またはサービスを打ち切る権利を留保します。購入者は発注を行う前に、最新の関連情報を取得し、それらの情報が最新かつ完全なものであることを確認する義務があります。

TIの半導体製品に関する公開済みの販売条項(http://www.tij.co.jp/general/jp/docs/gencontent.tsp?contentId=27309)は、TIが認定し、市場へリリースしたパッケージ集積回路製品の販売に適用されます。他の種類のTI製品およびサービスの使用または販売については、追加条項が適用される場合があります。

TIデータシートに記載されているTI情報の重要な部分の複製は、その情報に一切の変更を加えることなく、かつ、その情報に関連するすべての保証、条件、制限、通知が付属する場合のみ許可されます。このような複製文書について、TIは一切の責任または義務を負いません。第三者の情報については、さらに別の制限が課される可能性があります。TI製品またはサービスの再販において、その製品またはサービスについてTIが規定したパラメータと異なるか、それを超える記述を付すことは不公正かつ欺瞞的な商慣習であり、そのような場合、関連するTI製品またはサービスに関する明示的および黙示的な保証のすべてが無効となります。このような記述について、TIは一切責任または義務を負いません。

購入者、およびTI製品を組み込んだシステムを開発する他者(以下、「設計者」と総称します)は、自らのアプリケーションの設計において、独自の分析、評価、判断を行う責任は設計者自身にあること、および、設計者のアプリケーション(および、設計者のアプリケーションに使用されるすべてのTI製品)の安全性、および該当するすべての規制、法、その他適用される要件の遵守を保証するすべての責任は設計者のみが負うことを理解し、同意するものとします。設計者は、自身のアプリケーションに関して、(1) 危険な不具合から生じる結果を予期し、(2) 不具合およびその結果を監視し、また、(3) 害を及ぼす不具合の可能性を低減するため、保全策を策定および実施し、かつ、適切な是正措置を講じるうえで必要な専門的知識を持つことを表明するものとします。設計者は、TI製品を含むいずれかのアプリケーションを使用または配布する前に、そのアプリケーション、および、アプリケーションで使用されるTI製品の機能を完全にテストすることに同意するものとします。

TIの技術、アプリケーションまたはその他の設計に関する助言、品質特性、信頼性のデータ、もしくは、他のサービスまたは情報は、TI製品を組み込んだアプリケーションを開発する設計者に役立つことを目的として提供するものです。これにはリファレンス設計や、評価モジュールに関係する資料が含まれますが、これらに限られません(以下、これらを総称して「TIリソース」とします)。いかなる方法であっても、TIリソースのいずれかをダウンロード、アクセス、または使用した場合、設計者(個人、または会社を代表している場合には設計者の会社)は、TIリソースをここに記載された目的にのみ使用し、この注意事項の条項に従うことに同意したものとします。

TIによるTIリソースの提供は、TI製品に対する該当の発行済み保証事項または免責事項を、拡張、またはどのような形でも変更するものではなく、これらのTIリソースを提供することによって、TIにはいかなる追加義務または責任も発生しません。TIは、自社のTIリソースに訂正、拡張、改良、および、その他の変更を加える権利を留保します。TIは、特定のTIリソース用に発行されたドキュメントで明示的に記載されている以外のテストを実行していません。

設計者は、個別のTIリソースを、そのTIリソースに記載されているTI製品を搭載したアプリケーションの開発に関連する目的でのみ、使用、複製、および改変することが認められています。明示または黙示を問わず、禁反言の法理その他どのような理由でも、他のTIの知的所有権に対するその他のライセンスは与えられず、ITまたはいかなる第三者のテクノロジまたは知的所有権についても、いかなるライセンスも与えるものではありません。これには、TI製品またはサービスが使用される組み合わせ、機械、またはプロセスに関連する特許権、著作権、回路配置利用権、その他の知的所有権が含まれますが、これらに限られません。第三者の製品やサービスに関する、またはそれらを参照する情報は、そのような製品またはサービスを利用するライセンスを構成するものではなく、それらに対する保証または推奨を意味するものでもありません。TIリソースを使用するため、第三者の特許または他の知的所有権に基づく第三者からのライセンス、もしくは、TIの特許または他の知的所有権に基づくTIからのライセンスが必要な場合があります。

TIのリソースは、それに含まれるあらゆる欠陥も含めて、「現状のまま」提供されます。TIは、TIリソースまたはその使用に関して、明示か黙示かにかかわらず、他のいかなる保証または表明も行いません。これには、正確性または完全性、権原、続発性の障害に関する保証、ならびに、商品性、特定目的への適合性、および、第三者の知的所有権の非侵害に対する黙示の保証が含まれますが、これらに限られません。TIは、設計者への弁護または補償を行う義務はなく、行わないものとします。これには、任意の製品の組み合わせに関する、または、それらに基づく侵害の請求も含まれますが、これらに限られず、また、その事実についてTIリソースまたはその他の場所に記載されているか否かを問わないものとします。いかなる場合も、TIリソースまたはその使用に関連して、またはそれらにより発生した、実際、直接的、特別、付随的、間接的、懲罰的、偶発的、または、結果的な損害について、そのような損害の可能性についてTIが知らされていたか否かにかかわらず、TIは責任を負わないものとします。

TIが特定の業界標準(例えば、ISO/TS 16949およびISO 26262を含む。)の要求に適合していることを明示的に指定した個々の本製品でない限り、TIは、業界標準の要求事項を満たしていなかったことについて、いかなる責任も負いません 。

TIが製品について、機能的安全性の促進、または業界の機能的安全性基準の遵守を特に推進している場合、そのような製品は、お客様が該当の機能的安全性基準および要件を満たすアプリケーションを自ら設計および製作するために役立てることを意図したものです。アプリケーションにこれらの製品を使用することのみで、アプリケーションの安全性が確立されるものではありません。設計者は、自らのアプリケーションについて、該当する安全性関連の要件および基準の遵守を保証する必要があります。設計者は、安全でないことが致命的となる医療機器にTI製品を使用してはいけません。但し、両当事者の権限のある役員間で、かかる使用について具体的に規定した特別な契約が締結された場合はその限りではありません。安全でないことが致命的となる医療機器とは、かかる機器の不具合が重大な身体的障害又は死亡を引き起こすものを指し、生命維持装置、ペースメーカー、除細動器、心臓マッサージ機、神経刺激装置および移植医療機器を含みます。かかる機器には米国の食品医薬品局(FDA)がクラスIIIに指定するもの、また、米国外で同等に分類されているものを含みますがこれらに限られません。

TIは、特定の本製品が特別な品質(Q100、軍需対応グレード品、機能強化製品を例とする。)を満たしていることを明示的に指定することがあります。設計者は、自らのアプリケーションに適した品質が確保された本製品を選択するために必要な専門的知識を持ち、かつ、本製品の選択は買主の責任で行うことに同意するものとします。設計者は、かかる選択に関連して、法規制で要求される事項を遵守する責任を単独で負うものとします。

設計者は、自らがこのお知らせの条項および条件に従わなかったために発生した、いかなる損害、コスト、損失、責任からも、TIおよびその代表者を完全に免責するものとします。

Copyright © 2017, Texas Instruments Incorporated日本語版 日本テキサス・インスツルメンツ株式会社