logy dna topo - iramis.cea.friramis.cea.fr/dna2006/lectures/roca1.pdf · dna topology dna...
Embed Size (px)
TRANSCRIPT

DNA TOPOLOGY
DNA supercoiling
DNA topoisomerases
Topo II DNA preferences
DNA knots
Topo II mechanics
DNA relaxation in vivo
INTRODUCTION TO
KEY EXPERIMENTS ON
Lecture 1
Lecture 2
Lecture 3

The Problem of Unwinding the “Long” Double Helix
( 1953 ... )

Polyoma viral DNA sediments into 2 forms:
Electron Microscopy: Both forms are circular !
Circular ( no free ends )
Discovery of Circular DNA and Supercoiled DNA Molecules
( Vinograd, 1960s )
Linear ( free ends )
form I
compact & hard to denature
form II
less compact & denaturable

form I form II
nick

Measure of DNA “supercoiling” : Linking Number (Lk)
Lk = + 4
N = number of base pairs
h = helical repeat : average bp / turn ( h ~ 10.5 at 0.2M NaCl, pH 7, 37°C )
Lko = Lk of relaxed DNA ( minimal torsional energy ) = N / h
DextroLk = links between 2 closed curves in space:
When DNA is supercoiled ( has torsional energy ) : Lk = Lk - Lk0
Specific Linking Difference or Supercoiling Density : = Lk / Lk0

Lk0 = Lower energy Lk in a “given conditions”
Since N / h may not be an Integer
Then, Lkm = Close Integer to LKo
3’ 5’
5’ 3’
Lk0 = 4
Lkm = 4
3’ 3’
5’ 5’
Lk0 = 3.5
Lkm= 3 o 4
G K ( Lk) 2
Calculate the Free Energy of DNA Supercoiling
Calculate the Helical repeat of DNA in solution
h 10.5
Thermal fluctuation of DNA creates a normal distribution of Lk values
Agarose gel electrophoresis

Torsional energy ( Lk) generates topoisomers of different shape

DNA deformations driven by torsional energy ( Lk)
Wr
Tw
Wr ( Writhe ) Deviations from planarity of the DNA axis
Tw ( Twist ) Strand turnnig around the DNA axis
Lk = Tw + Wr
James White (1969)
Topology Geometry

Interconversion between Tw and Wr
Being Lk constant :
Tw = - Wr
Tw <<< Wr
Tw >>> Wr
GLOBAL Tw and Wr = Local Tw and Wr

Lk = Tw + Wr TOPOLOGY TOPOGRAPHY
Strand Break
&
Passage
TOPOISOMERASES
DNA INTERACTIONS
- Intercalators
- Grove binders
- Benders
- Unwinders
- Trackers
- .....
B-DNA TRANSITIONS
- Cruciforms, Z-DNA, H-DNA …
DNA PHYSICS
- Bending rigidity
- Torsional rigidity
- Efective diameter

DNA behaves like a stiff rod :
--> tendency to maximize base stacking
--> mutual interphosphate repulsion
Sequence
x
Thermal motion
-- Bend & twist rigidity
-- Intrinsic bend / twist
-- Induced bend / twist

Bending Rigidity :
Persistence length (P) is a measure of resistance to lateral bending
For B-DNA, P ~ 50 nm (150 bp)
Torsional Rigidity :
The distance between two DNA sites to become insensitive to torsional
phasing is ~ 2000 bp
Effective DNA Diameter :
Contributions of water ions to charge repulsion between duplexes

Lk = Tw + Wr
“Natural partition”
by torsional energy
~ 30% Tw
~ 70% Wr
PHYSICAL DNA
Solenoid vs Plectoneme folding

Lk = Tw + Wr TOPOLOGY GEOMETRY
Strand Break
&
Passage
TOPOISOMERASES
DNA INTERACTIONS
- Intercalators
- Grove binders
- Benders
- Unwinding
- Tracking
- .....
B-DNA TRANSITIONS
- Cruciforms, Z-DNA, H-DNA …
DNA PHYSICS
- Bending rigidity
- Torsional rigidity
- Efective diameter

B-DNA TRANSITIONS generated by torsional energy ( < 0 )
Z-DNA
Cruciform H-DNA
Tw
Tw
Wr

Lk = Tw + Wr TOPOLOGY GEOMETRY
Strand Break
&
Passage
TOPOISOMERASES
DNA INTERACTIONS
- Intercalators
- Grove binders
- Benders
- Unwinders
- Trackers
- .....
B-DNA TRANSITIONS
- Cruciforms, Z-DNA, H-DNA …
DNA PHYSICS
- Bending rigidity
- Torsional rigidity
- Efective diameter

Effect of DNA intercalators
Intercalators reduce Tw, therefore increase Wr in closed-circular molecules

- +
Wr < 0 Wr > 0Wr ~ 0

Intercalators
Tw Wr
Grove binder
Tw Wr

© JRB
( - )
+ intercalator
R
( + )
R

-16
-17
B-DNA transitions revealed by 2D electrophoresis
Altered migration in the FIRST dimension :
Torsional energy drives a B-DNA transition
Normal migration in the SECOND dimension :
Intercalator stabilizes torsional energy
&
the transition reverts
Z-DNA H-DNA Cruciform

Lk = Tw + Wr TOPOLOGY GEOMETRY
Strand Break
&
Passage
TOPOISOMERASES
DNA INTERACTIONS
- Intercalators
- Grove binders
- Benders
- Unwinders
- Trackers
- .....
B-DNA TRANSITIONS
- Cruciforms, Z-DNA, H-DNA …
DNA PHYSICS
- Bending rigidity
- Torsional rigidity
- Efective diameter

Each nucleosome estabilises Lk ~ – 1.0
Nucleosome ~ 1.8 levo DNA turns ( Wr ~ -1.8 )
Then, DNA must be overtwisted ( Tw ~ + 0 8 ) such that average h ~ 10.0
NUCLEOSOMAL DNA TOPOLOGY and the “Linking Number Paradox”
DNAse I, Hydroxy radical
AA/TT periodics
X-tall structures
h ~ 10.2
However,

Solutions :
Geometry of linker regions
h is not uniform and fluctuates
Average Wr ~ -1.5
NUCLEOSOMAL DNA TOPOLOGY and the “Linking Number Paradox”
(-) (+)open

Dynamics of site juxtaposition in supercoiled DNA
Huang, Schlick, and Vologodskii (2005)
Supercoiling does not correspondingly increase the rate of juxtaposition between any sites

Random walks
Strong interactions
Bio - tunning
Weak & Transient Interactions
Directed walks

Lk = Tw + Wr TOPOLOGY GEOMETRY
Strand Break
&
Passage
TOPOISOMERASES
DNA INTERACTIONS
- Intercalators
- Grove binders
- Benders
- Unwinders
- Trackers
- .....
B-DNA TRANSITIONS
- Cruciforms, Z-DNA, H-DNA …
DNA PHYSICS
- Bending rigidity
- Torsional rigidity
- Efective diameter


Allow the passage of anotherstrand, or strands, of DNA acrossthe transient break.
DNA TOPOISOMERASES
1.
2.
Break and rejoin DNA strands bymeans of a trans-estherificationreaction, during which a covalentphospho-tyrosyl intermediate isform.

DNA TOPOISOMERASE FAMILIES
Type-1A
Type-1B
Type-2

Type 1A Type 1B Type 2A Type 2B
Gene (Protein) Gene (Protein) (Protein)Gene Gene (Protein)
TopRG (Gyrase Reverse)
H. sapiens
D. melanogaster
C. elegans
S. pombe
S. cerevisiae
A. thaliana
EUKARYA
TOP3a
TOP3b
TOP3a
TOP3b
TOP3a
TOP3b
TOP3
TOP3
(Topoisomerase III )
(Topoisomerase III )
(Topoisomerase III )
(Topoisomerase III )
(Topoisomerase III )
(Topoisomerase III )
(Topoisomerase III)
(Topoisomerase III)
TOP1
TOP1
TOP1
TOP1
TOP1
TOP1
TOP2a
TOP2b
TOP2
TOP2
TOP2
TOP2
TOP2
(Topoisomerase I)
(Topoisomerase I)
(Topoisomerase I)
(Topoisomerase I)
(Topoisomerase I)
(Topoisomerase I)
(Topoisomerase II)
(Topoisomerase II)
(Topoisomerase II)
(Topoisomerase II)
(Topoisomerase II)
(Topoisomerase II )
(Topoisomerase II )
VIRUS
BACTERIA
ARCHEA
Phage T4
Poxvirus
E. coli
H. pylori
TopA
TopB
(Topoisomerase I)
(Topoisomerase III)
TopA (Topoisomerase I)
TopA
TopB
(Topoisomerase I)
(Topoisomerase III)
TopA (Topoisomerase I)
(Topoisomerase IV)
(Topoisomerase IV)
(Gyrase)
(Gyrase)
(Gyrase)
(Gyrase like)(( Topoisomerase V ))
GyrA + GyrB
GyrA + GyrB
GyrA + GyrB
GyrA + GyrB
ParC + ParE
ParC + ParE
TOP1 (Topoisomerase I)
(Topoisomerase II)
TopVIA + TopVIB(Topoisomerase VI)
Genes (39+52+60)
TOPOISOMERASES
D. radiodurans TopIB (Topoisomerase I)
TOP3 (Topoisomerase III)

Type-1B Topoisomerases
Y
Topoisomerase I(H. sapiens )(S. cerevisiae)
Topoisomerase I(vaccinia virus)
N C
Y
80-110 kDa
N C 36 kDa
Tyrosin
Recombinases

Type-1B Mechanism
Reactions
No ATP required

ATP
Y
Type - 2 Topoisomerases
(GyrB) (GyrA)
N
ATP
N
N
Topoisomerase II(S. cerevisiae ,..,..,..)
Topoisomerase IV(E. coli ,..,..,.. )
Gyrase(E. coli ,..,..)
(Top2)
(ParE)
C
C
C
Y
(ParC)
dim 170 kDa x 2

Type-2 Mechanism Reactions

GYRASE : A type - 2 topoisomerase that reduces Lk
(+)(+) (-) (-)
Reactions

Type-1A Topoisomerases
Topoisomerase I (E. coli)
Topoisomerase III (E. coli)
Topoisomerase III (S. cerevisiae)
“Reverse Gyrase” (M. janaschii)
Y
H e l i c a s e
N C
97 kDa
Y

ReactionsMechanism Type 1A
No ATP required
ssDNA

Reverse GYRASE : A type-1A topoisomerase that increases Lk
Topoisomerase
+
Helicase (ATP)


in vivo
ROLES OF TOPOISOMERASES

( + )( - )
DNA transcription
Topo I
Topo IV Gyrase
E. Coli
~ - 0.06
( chromatin ? )

( + )( - )
DNA transcription
Topo I
Topo II
S. cerevisiae
~ - 0.05
( chromatin )


Catenates of sister duplexes
Fork Collision

Topo IV Gyrase

Topo II
Topo I


Figure adapted from Bancaud et al (2006)
Relaxation of Supercoiled DNA in the Chromatin Context
