m. robinson -- au2018/04/07  · michael robinson acknowledgements collaborators: – cliff joslyn,...

68
Michael Robinson Topological Filters A Toolbox for Processing Dynamic Signals

Upload: others

Post on 22-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

Michael Robinson

Topological FiltersA Toolbox for Processing Dynamic Signals

Page 2: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Acknowledgements● Collaborators:

– Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL)– Chris Capraro, Grant Clarke, Janelle Henrich (SRC)– Jason Summers, Charlie Gaumond (ARiA)– J Smart, Dave Bridgeland (Georgetown)

● Students:– Eyerusalem Abebe– Olivia Chen– Philip Coyle– Brian DiZio

● Recent funding: DARPA, ONR, AFRL

– Jen Dumiak– Samara Fantie– Sean Fennell– Robby Green

– Noah Kim– Fangfei Lan– Metin Toksoz-Exley– Jackson Williams– Greg Young

Page 3: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Key points● Systems can be encoded as sheaves● Datasets are assignments to a sheaf model of a system● Consistency radius measures compatibility between

system and dataset– Global sections have zero consistency radius– Data fusion minimizes consistency radius

● Filters transform global sections via pairs of sheaf morphisms

Page 4: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

Michael Robinson

What is a sheaf?

A sheaf of _____________ on a ______________(data type) (topological space)

Page 5: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Overlap constructs topology

Page 6: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Changing overlaps changes the topology

Page 7: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Sheaves are about consistency

Non-numeric data types of varying complexity can certainly be supported!

Page 8: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Finite topologies from partial orders● Partial orders describe the relationships between observations in a

system… order relations correspond to (differential) operators

● Every partial order has a natural topology, the Alexandroff topology– Presheaves and sheaves “are the same thing” in this topology, since the

gluing axiom is satisfied trivially– Commutativity is the only actual constraint on a sheaf diagrams

Tracks

Tracks

Text report

Error ellipse

Subtracks

Lat/lon regionLat/lon/vel region

Lat/lon/vel region

Lat/lon/vel region

Page 9: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Topologizing a partial order

Page 10: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Topologizing a partial order

Open sets are unionsof up-sets

Page 11: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Topologizing a partial order

Open sets are unionsof up-sets

Page 12: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Topologizing a partial order

Closed sets arecomplements of open sets

Page 13: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Topologizing a partial order

Intersectionsof up-sets are alsoup-sets

Page 14: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Topologizing a partial order

Intersectionsof up-sets are alsoup-sets

Page 15: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

( )( )

A sheaf on a poset is...

A set assigned to each element, calleda stalk, and …

ℝ2 ℝ2

ℝ3

0 1 11 0 1

1 0 10 1 1

(1 0)(0 1)

ℝ ℝ2

ℝ2

(1 -1) ( )0 11 0

( )-3 3-4 4

This is a sheaf of vector spaces on a partial order

ℝ3

( )0 1 11 0 1

(-2 1)

(The stalk on an element in the posetis better thought of beingassociated to the up-set)

231

2 -23 -31 -1

Page 16: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

( )( )

A sheaf on a poset is...

… restriction functions between stalks, following the order relation…

ℝ2 ℝ2

ℝ3

0 1 11 0 1

1 0 10 1 1

(1 0)(0 1)

ℝ ℝ2

ℝ2

(1 -1)

231

( )0 11 0

( )-3 3-4 4

2 -23 -31 -1

This is a sheaf of vector spaces on a partial order

ℝ3

( )0 1 11 0 1

(-2 1)

(“Restriction” because it goes frombigger up-sets to smaller ones)

Page 17: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

( )( )

A sheaf on a poset is...ℝ

ℝ2 ℝ2

ℝ3

0 1 11 0 1

1 0 10 1 1

(1 0)(0 1)

ℝ ℝ2

ℝ2

(1 -1) ( )0 11 0

( )-3 3-4 4

This is a sheaf of vector spaces on a partial order

ℝ3

( )0 1 11 0 1

(-2 1)

(1 -1) =

( )0 1 11 0 1(1 0) = (0 1) ( )1 0 1

0 1 1

( )0 11 0( )-3 3

-4 4( )1 0 10 1 1

2 -23 -31 -1

=

… so that the diagramcommutes!

231

231

2 -23 -31 -1

2 -23 -31 -1

Page 18: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

( )( )

An assignment is...

… the selection of avalue from all stalks

0 1 11 0 1

1 0 10 1 1

(1 0)(0 1)

(1 -1)

231

( )0 11 0

( )-3 3-4 4

2 -23 -31 -1 ( )0 1 1

1 0 1

(-2 1)

(-1)

( )23

( )-4-3

( )-3-4

( )32

(-4)

(-4)

230

-2-3-1

The term serration is more common, but perhaps more opaque.

Page 19: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

( )( )

A global section is...

… an assignmentthat is consistent with the restrictions

0 1 11 0 1

1 0 10 1 1

(1 0)(0 1)

(1 -1)

231

( )0 11 0

( )-3 3-4 4

2 -23 -31 -1 ( )0 1 1

1 0 1

(-2 1)

(-1)

( )23

( )-4-3

( )-3-4

( )32

(-4)

(-4)

230

-2-3-1

Page 20: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

( )( )

Some assignments aren’t consistent

… but they mightbe partially consistent

0 1 11 0 1

1 0 10 1 1

(1 0)(0 1)

(1 -1)

231

( )0 11 0

( )-3 3-4 4

2 -23 -31 -1 ( )0 1 1

1 0 1

(-2 1)

(+1)

( )23

( )-4-3

( )-3-4

( )32

(-4)

(-4)

231

-2-3-1

Page 21: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

( )( )

Consistency radius is...… the maximum (or some other norm)distance between the value in a stalk and the values propagated along the restrictions

0 1 11 0 1

1 0 10 1 1

(1 0)(0 1)

(1 -1)

231

( )0 11 0

( )-3 3-4 4

2 -23 -31 -1 ( )0 1 1

1 0 1

(-2 1)

(+1)

( )23

( )-4-3

( )-3-4

( )32

(-4)

(-4)

231

-2-3-1

231( )0 1 1

1 0 1 ( )32- = 2

( )23(1 -1) - 1 = 2

(+1) - 231

-2-3 = 2 14-1 MAX ≥ 2 14

Note: lots more restrictions to check!

Page 22: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

( )( )

The space of global sections

It’s a subset of the product of the stalks over the minimal elements

ℝ2 ℝ2

ℝ3

0 1 11 0 1

1 0 10 1 1

(1 0)(0 1)

ℝ ℝ2

ℝ2

(1 -1) ( )0 11 0

( )-3 3-4 4

ℝ3

( )0 1 11 0 1

(-2 1)

Global sections ⊆ ℝ2×ℝ3 ⊆ ℝ17

Thm: (R.) Consistency radius sets a lower bound on the distance to the nearest global section

Data fusion selects thenearest global section

231

2 -23 -31 -1

Page 23: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

Michael Robinson

Chris Capraro, Janelle Henrich

Separating sinusoids from noise● Consider a signal formed from N sinusoids

– Each sinusoid has a (real) frequency ω– Each sinusoid has a (complex) amplitude a

● Task: Recover these parameters from M samples f is an arbitrary

known functionPossibilities:● Magnitude● Phase● Identity function● Quantizer output● Signal dispersion

Gaussian noiseSample time

Sinusoid frequency

Sinusoid amplitude

Page 24: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

Michael Robinson

Chris Capraro, Janelle Henrich

Separating sinusoids from noise● Consider a signal formed from N sinusoids

– Each sinusoid has a (real) frequency ω– Each sinusoid has a (complex) amplitude a

● Model the situation as a sheaf over a poset... 

ℂ ℂ ℂ…

Parameter spaces become stalks

Signal models become restrictions

ℝN×ℂN

Page 25: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

Michael Robinson

Chris Capraro, Janelle Henrich

Separating sinusoids from noise● Consider a signal formed from N sinusoids

– Each sinusoid has a (real) frequency ω– Each sinusoid has a (complex) amplitude a

● The samples become an assignment to part of the sheaf  

ℝN×ℂN

x1 ∈ ℂ x2 ∈ ℂ xM ∈ ℂ Observed…

Page 26: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

Michael Robinson

Chris Capraro, Janelle Henrich

Separating sinusoids from noise● Consider a signal formed from N sinusoids

– Each sinusoid has a (real) frequency ω– Each sinusoid has a (complex) amplitude a

● Find the unknown parameters by minimizing consistency radius

(ω1,…,ωN,a1,…,aN) ∈ ℝN×ℂN

x1 ∈ ℂ x2 ∈ ℂ xM ∈ ℂ Observed

Inferred

 

Page 27: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

Michael Robinson

Chris Capraro, Janelle Henrich

Sheaves deliver excellent performance

8x improvement over state-of-the-art in heavy noise!

Sheaf result

Page 28: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

More complex example: flight tracking

Page 29: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

… turns into a search and rescue mission

Actualflight path

Observations generated using realistic simulated data...(known crash location withheld for validation)

Page 30: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Virtual (inferred) sensors

Sheaf model of the sensors● We can form a partial order of the sensors and

their overlaps

ATCradar

Last knownposition

RDF 1 RDF 2Satelliteimage

Bearing 1 Bearing 2Crash time

Dead reckoning

Partial order

Physical sensors

Reported data

Page 31: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Sheaf model of the sensors● We can form a partial order of the sensors and

their overlaps

ATCradar

Last knownposition

RDF 1 RDF 2Satelliteimage

Bearing 1 Bearing 2Crash time

Dead reckoning

Partial orderSheaf modelRestrictions A, B, C, D compute bearings from lat/lonRestriction E computes estimated crash location from last known position, velocity, time

Page 32: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Case 1: Known flight path

Raw data:Consistency radius: 15.7 kmCrash site error: 16.1 km (using last known position only)

Post-fusion: Crash site error: 2.0 km

Page 33: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Case 2: Minor RDF angle error

Raw data:Consistency radius: 11.6 kmCrash site error: 17.3 km (using last known position only)

Post-fusion: Crash site error: 8.4 km

Page 34: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Case 3: Major flight path error

Raw data:Consistency radius: 152 kmCrash site error: 193 km (using last known position only)

Post-fusion: Crash site error: 74.4 km

High consistency radius means data and model are in conflict...

Page 35: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

Michael Robinson

Topological filters

Page 36: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Discrete-time LTI filters● Linear Translation-Invariant filters are the

workhorses of modern signal processing

time

time

Input Signal

Output Signal

Linear operation

Page 37: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Discrete-time LTI filters● Linear Translation-Invariant filters are the

workhorses of modern signal processing

time

time

Input Signal

Output Signal

Linear operation

Page 38: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Discrete-time LTI filters● Linear Translation-Invariant filters are the

workhorses of modern signal processing

time

time

Input Signal

Output Signal

Linear operation

Page 39: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Filters as sheaf morphisms● Theorem: Every discrete-time LTI filter can be

encoded as a sequence of two sheaf morphisms

S1 S

2 S

3

Input Internal state Output

Weighted sum

Sheaf formalism

Hardware

Shift register

projection combination

Page 40: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Proof sketch: Input sheaf● Sections of this sheaf are timeseries, instead of

continuous functions

time

Input Signal

Page 41: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Proof sketch: Input sheaf● Sections of this sheaf are timeseries, instead of

continuous functions

ℝ0ℝ0ℝ0ℝ0

time

Input Signal

Page 42: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Proof sketch: Input sheaf● Sections of this sheaf are timeseries, instead of

continuous functions

ℝ0ℝ0ℝ0ℝ0

Page 43: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Proof sketch: Output sheaf● The output sheaf is the same

ℝ0

ℝ0

ℝ0

ℝ0

ℝ0

ℝ0

ℝ0

ℝ0

Page 44: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Proof sketch: The internal state● Contents of the shift register at each timestep● N = 3 shown

ℝ3ℝ2

ℝ0

ℝ3ℝ2

ℝ0

ℝ3ℝ2

ℝ0

ℝ3ℝ2

ℝ0

1 0 00 1 0

0 1 00 0 1( )

( )0 1 00 0 1( ) 0 1 0

0 0 1( ) 0 1 00 0 1( )

1 0 00 1 0( ) 1 0 0

0 1 0( )ℝ0ℝ0ℝ0ℝ0

Page 45: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Proof sketch: The internal state● Loads a new value with each timestep

ℝ0

ℝ3ℝ2

ℝ0

ℝ3ℝ2

ℝ0

ℝ3ℝ2

ℝ0

ℝ3ℝ2

ℝ0ℝ0ℝ0ℝ0

(0 0 1) (0 0 1)(0 0 1)

Page 46: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Proof sketch: The internal state● Computes linear functional of the shift register at

each timestep (for instance, compute the mean)

ℝ3ℝ2ℝ3ℝ2ℝ3ℝ2ℝ3ℝ2

ℝ0ℝ0ℝ0ℝ0

(0 0 1) (0 0 1)(0 0 1)

ℝ0ℝ0ℝ0ℝ0

(⅓ ⅓ ⅓) (⅓ ⅓ ⅓) (⅓ ⅓ ⅓)

Page 47: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Proof sketch: Finishing both morphisms● Put in a few zero maps!

ℝ3ℝ2ℝ3ℝ2ℝ3ℝ2ℝ3ℝ2

ℝ0ℝ0ℝ0ℝ0

ℝ0ℝ0ℝ0ℝ0

Page 48: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

Michael Robinson

A practical topological filter

The QuasiPeriodic Low Pass Filter

(QPLPF)

Page 49: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Circumventing bandwidth limits● Traditional: averaging in a connected window

– Noise cancellation (Good)– Distortion to the signal (Bad)

● Knowledge of the phase space: can safely do more averaging across the entire signal

Page 50: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Stage 2:Topological

filtering

QPLPF block diagram

Input signal QuasiperiodicFactorization

Quotientconstruction Averaging filter Output signal

Stage 1:Topological estimation

Tim

e

Neighbors

Average along rows

Page 51: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Stage 2:Topological

filtering

How is this a topological filter?

Input signal QuasiperiodicFactorization

Quotientconstruction Averaging filter Output signal

Stage 1:Topological estimation

Input base space is ℤ

Output base space is ℤ

Internal state base space is learned from the data

Page 52: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Stage 2:Topological

filtering

How is this a topological filter?

Input signal QuasiperiodicFactorization

Quotientconstruction Averaging filter Output signal

Stage 1:Topological estimation

Samples grouped according to learned topology

Input timeseries

Output timeseries

AverageProject

Page 53: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

QPLPF results

Extremely stable output amplitudeSome lowfrequencydistortion

Page 54: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Compare: standard adaptive filter

Unstable amplitude

Page 55: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Filter performance comparison● QPLPF combines good noise removal with signal

envelope stability

Page 56: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Ocean radar image despecklingAfter topological filtering:● Speckle and contrast improved

QPLPF

Page 57: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

Michael Robinson

High-pass filtering

Detecting missing and spurious data

joint work with Fernando Benadon and Andy McGraw

Page 58: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Context: Afro-Cuban drumming

photo credit: Andrew McGraw

● Five instrumentalists● No musical score● Varying degrees of structure

Onset list Inter-OnsetIntervals

Page 59: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Extracting musical structure● The clave is highly regular… it provides the timing

for the ensemble

PCA

Sliding window array

Page 60: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Extracting musical structure● The clave is highly regular…● QPLPF acts by tightening the note clusters

QPLPF+PCA

Sliding window array (ignore the nuisance rotation!)

Page 61: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Extracting musical structure● … so much that it can be transcribed easily

Page 62: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Some instruments are less clear● The segundo is pretty structured...

Outliers present

Note clusters from main theme

Page 63: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Some instruments are less clear● … but automated transcription is frustrated by

ghost notes. (There’s considerable musical nuance)

“Extra” notes

“Missing” notes

NB: These might be “extra” or “missing” on purpose!

Page 64: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Deghosting process● Use QPLPF as a baseline, look at the difference!● This is the QuasiPeriodic High Pass Filter

Form measure window

array

QPLPF Difference Peak detect

Add/remove notes

IOI timeseries

Corrected IOI timeseriesQPHPF

Page 65: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Peak detection subtlety● Two musically-separate halves of the piece. ● They need to be handled differently

time (s)

Dev

iatio

n fr

om b

asel

ine

(s)

time (s)

Extra notes

Missing notes

Page 66: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

Features now visibleTem

p o incr ease

First few measures are different, before stabilizing to regular pattern

Segundo follows an 11-note pattern

Distinct anomalous measures, possibly to re-synch with other drummers, or maybe just weaker ghosts...

Page 67: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

The future● Computational sheaf theory

– Small examples can be put together ad hoc– Larger ones require a software library

● PySheaf: a software library for sheaves– https://github.com/kb1dds/pysheaf– Includes several examples you can play with!

● Connections to statistical models need to be explored● Extensive testing on various datasets and scenarios

Page 68: M. Robinson -- AU2018/04/07  · Michael Robinson Acknowledgements Collaborators: – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL) – Chris Capraro, Grant Clarke,

  Michael Robinson

For more information

Michael Robinson

[email protected]

Preprints available from my website:

http://www.drmichaelrobinson.net/