machine learning. Курс лекций

497
МАШИННОЕ ОБУЧЕНИЕ (Machine Learning) Н.Ю. Золотых 2009, сентябрь–декабрь

Upload: zolotykh

Post on 21-Nov-2014

3.845 views

Category:

Education


1 download

DESCRIPTION

Презентации к курсу лекций по машинному обучению, который я читаю в Нижегородском государственном университете им.Н.И.Лобачевского на факультете ВМК

TRANSCRIPT

  • 1. (Machine Learning) .. 2009,
  • 2. 1
  • 3. Agenda ?
  • 4. 1.1. ? Machine learning . , , - , , . , , , . . .
  • 5. 1.2. () , , . . / ( ). () : , , . , - . . . . . , , . .
  • 6. 1.3. , (supervised learning). (unsupervised learning). (active learning). (reinforcment learning). ... .
  • 7. 1.4. X (samples) Y (responds) f : X Y f x1, x2, . . . , xN : f (xi) = yi (i = 1, 2, . . . , N ). (xi, yi) X Y . {(x1, y1), (x2 , y2), . . . , (xN , yN )} , . : f
  • 8. f ? f : X Y , : f , . . f (xi) = f (xi) f (xi) f (xi) (i = 1, 2, . . . , N ). f : ( ) f , . f ( ) , , , , . . . f . f , (fitting) .
  • 9. , f , X , . , , : X D. D , , . , , , D = {1, 2, . . . , s}. |D| = 2 , , , D = {0, 1}, . D , , D = {, , , } D R, ...
  • 10. (1, 2, . . . , p) , 1(x), 2(x), . . . , p(x) x. . x : x = (x1, x2, . . . , xp) = 1(x), 2(x), . . . , p(x) , X = D1 D2 . . . Dp . y Y . Y : y = (y1, y2, . . . , yq ) = 1(y), 2 (y), . . . , q (y) , q = 1, . . y . x , y xj x () .
  • 11. Y . Y , , Y = {1, 2, . . . , K}, ( ): X K Xk = {x X : f (x) = k} (k = 1, 2, . . . , K). x , . Y = R . f , f . ...
  • 12. 1.5. : , f , , . , , , . . . , x1, x2, . . . , xN , f (x) . . , , , (.. ) .
  • 13. - f . , , f . : (), , , .
  • 14. 1.6. () 0 9 . , . , ( ) 32 32. 1 , 0 . , . x 322 = 1024 . X = {0, 1}1024. 10 : Y = {0, 1, 2, . . . , 9} : x X k Y .
  • 15. x1, x2, . . . , xp . (xi, ki) (i = 1, 2, . . . , N ). 1934 .
  • 16.
  • 17. . . (26 ) .
  • 18. ( , , 0 15; 20000 ): 1. x , 2. y , 3. , 4. , 5. 6. x 7. y 8. x 9. y 10. x y 11. x2y 12. xy 2 13. 14. y 15. 16. x
  • 19. (), , , . ., , ( ). , , . . , . : (, ), ( , , . .), ( , , , ), ( , , ).
  • 20. , , 768 (. R Julian J. Faraway). 8 , , . . , , ( ) . 768 8- .
  • 21. 8 - Diabetes Triceps Pregnant 0.0 1.0 2.0 0 40 80 0 5 10 15 0 0 0 1 1 1 Age Insulin Glucose 20 40 60 80 0 400 800 0 50 150 0 0 0 1 1 1 BMI Diastolic 0 20 40 60 0 40 80 120 0 0 1 1
  • 22. (/2), ( ).
  • 23. glucose 50 100 150 200 20 30 40 bmi 50 60
  • 24. : ( , ), ( ) . .
  • 25. , . , , , , , , , , . . . , , . .
  • 26. Boston Housing Data StatLib (Carnegie Mellon University) : , , . , . 506.
  • 27. 1. , 2. , ( 25000 . ), 3. , 4. 1, ; 0 ( ), 5. , 107, 6. ( ), 7. , 1940 . , 8. 5 , 9. , 10. $10000, 11. , ( ), 12. = 1000( 0.63)2, -, 13. .
  • 28. , . , ( ) $1000. .
  • 29. , , , , , , . . 100 . 0 15 4 6 8 14 20 5 20 40 MEDV 10 15 INDUS 0 0.7 NOX 0.4 8 6 RM 4 80 AGE 20 20 PTRATIO 14 0 200 B 20 LSTAT 5 10 40 0.4 0.7 20 80 0 200
  • 30. , , , (biochip, microarray) , . , . , (, ). , . . ( ) . ( ) .
  • 31. . . 132 72 = 9504 . Brown, V.M., Ossadtchi, A., Khan, A.H., Yee, S., Lacan, G., Melega, W.P., Cherry, S.R., Leahy, R.M., and Smith, D.J.; Multiplex three dimensional brain gene expression mapping in a mouse model of Parkinsons disease; Genome Research 12(6): 868-884 (2002).
  • 32. , , , . , , , ( ). : () , , . () . , , . , -, . () . , . , , . () () .
  • 33. 60 . Genomics Bioinformatics Group , . 100 ( 1375). , , .
  • 34. ME.LOXIMVI ME.MALME.3M ME.SK.MEL.2 ME.SK.MEL.5 ME.SK.MEL.28 LC.NCI.H23 ME.M14 ME.UACC.62 LC.NCI.H522 LC.A549.ATCC LC.EKVX LC.NCI.H322M LC.NCI.H460 LC.HOP.62 LC.HOP.92 CNS.SNB.19 CNS.SNB.75 CNS.U251 CNS.SF.268 CNS.SF.295 CNS.SF.539 CO.HT29 CO.HCC.2998 CO.HCT.116 CO.SW.620 CO.HCT.15 CO.KM12 OV.OVCAR.3 OV.OVCAR.4 OV.OVCAR.8 OV.IGROV1 OV.SK.OV.3 LE.CCRF.CEM LE.K.562 LE.MOLT.4 LE.SR RE.UO.31 RE.SN12C RE.A498 RE.CAKI.1 RE.RXF.393 RE.786.0 RE.ACHN RE.TK.10 ME.UACC.257 LC.NCI.H226 CO.COLO205 OV.OVCAR.5 LE.HL.60 LE.RPMI.8226 BR.MCF7 UN.ADR.RES PR.PC.3 PR.DU.145 BR.MDA.MB.231.ATCC BR.HS578T BR.MDA.MB.435 BR.MDA.N BR.BT.549 BR.T.47D 248589 248257 245939 245868 245450 244736 242678 241935 241037 240566 239001 233795 232896 222341 221263 220376 211995 211515 211086 209731 208950 203527 200696 197549 189963 175269 166966 162077 159512 158337 158260 152241 146311 145965 145292 144758 143985 136798 135118 130532 130531 130482 130476 128329 126471 125308 124918 122347 116819 114116 112383 108840 108837 86102 79617 79319 76539 74275 74070 73185 72214 72199 68068 67939 61539 52519 52218 52128 51904 51104 50914 50250 50243 49729 46818 46694 46173 45720 44449 43555 41232 38915 37627 37330 37153 37060 37054 36380 35271 31905 31861 29194 26811 26677 26599 25831 25718 23933 22264 21822
  • 35. (Swadesh) 207 , ( ) (, 15, , . .)
  • 36. 1 I ich io je j a 2 you du tu tu ty 3 he er lui il on 4 we wir noi nous my 5 you ihr voi vous vy 6 they sie loro ils oni 7 this dieses questo ceci tento 8 that jenes quello cela tamten 9 here hier qui ici zde 10 there dort l a l a tam 11 who wer chi qui kdo 12 what was che quoi co 13 where wo dove o` u kde 14 when wann quando quand kdy 15 how wie come comment jak 16 not nicht non ne. . . pas ne ................................................................................. 205 if wenn se si jestlize 206 because weil perch e parce que protoze 207 name Name nome nom jm no e
  • 37. . , -.
  • 38. , .
  • 39. English German Dutch Swedish Danish Italian French Spanish Portuguese Latin Esperanto Slovene Czech Polish Slovio Lithuanian Latvian Hungarian Finnish Estonian Euskara Quenya Sindarin English German Dutch Swedish Danish Italian French Spanish Portuguese Latin Esperanto Slovene Czech Polish Slovio Lithuanian Latvian Hungarian Finnish Estonian Euskara Quenya Sindarin
  • 40. . 23 , English German Dutch Swedish Danish Italian French Spanish Portuguese Latin Esperanto Slovene Slovio Czech Polish Lithuanian Latvian Hungarian Finnish Estonian Quenya Sindarin Euskara
  • 41. : , ()
  • 42. R : R . , !
  • 43. [1] Hastie T., Tibshirani R., Friedman J. The elements of statistical learning. Springer, 2001. [2] Ripley B.D. Pattern recognition and neural networks. Cambridge University Press, 1996. [3] Bishop C.M. Pattern recognition and machine learning. Springer, 2006. [4] Duda R. O., Hart P. E., Stork D. G. Pattern classification. New York: JohnWiley and Sons, 2001. [5] Mitchell T. Machine learning. McGraw Hill,1997. [6] .. . . , , 2005.
  • 44. [7] .. . : - - , 1999. [8] . . . .: , 2006.
  • 45. [9] .., .., .. : . .: , 1983. [10] .., .., .. : . .: , 1985. [11] .., .., .., .. : . .: , 1989. [12] .., .. . .: , 1974. [13] .. . .: , 1979. [14] Vapnik V.N. The nature of statistical learning theory. New York: Springer, 1995. [15] Vapnik V.N. Statistical learning theory. New York: John Wiley, 1998. wiki-:
  • 46. : ( , , R, ) Intel. : .
  • 47. 2
  • 48. 1.7. (x, y) (p + 1)- (X, Y ), X Y , F, Pr . X Rp, Y R. P (x, y) = P (x |y)P (y) , {(x1 , y1), (x2, y2), . . . , (xN , yN )} , (xi, yi) (X, Y ). f : X Y , x y.
  • 49. () L(y |y) = L(f (x)| y). x , y y = f (x) ( ): L(y |y) = (y y)2 . 0, f (x) = y, L(y |y) = 1, f (x) = y. K K K L = ( ky ), ky = L(k |y). , , Y = {0, 1}, y = 0 , y = 1 . L(1|1) = L(0|0) = 0 L(1|0) = 1 L(0|1) = 10
  • 50. :
  • 51. . R(f ) = E L f (x)| y = L f (x)| y dP (x, y) XY c , . : f F , R(f ). : P (x, y) R(f ). : 1) P (x, y) , R(F ) 2)
  • 52. 1.8. 1.8.1. R(f ) = L f (x)| y dP (x, y) () XY 1) (x1, y1 ), . . . , (xN , yN ) P (x, y). 2) P (x, y) (*) P (x, y) . P (x, y) . N .
  • 53. 1.1 , , , . , ( ) .
  • 54. 1.8.2. {(x1, y1), . . . , (xN , yN )} , P (X, Y ), 1 N R(f ) R(f ) = R(f, x1, y1, . . . , xN , yN ) = N L f (xi)|yi , i=1 R(f ) . xi, yi , R(f ) (). , 2 E R(f ) = E L f (X)|Y = R(f ), D R(f ) = , N 2 L(f (X)| Y ). , 2 f . ?
  • 55. 1.2 1 R(f ) R(f ) R(f ) + . N N . D R(f ) Pr |R(f ) E R(f )| > 2 . . , 2 E R(f ) = E L f (X)|Y = R(f ), D R(f ) = . N . 1.3 f F lim Pr |R(f ) R(f )| > = 0, N . . R(f ) R(f ).
  • 56. , .
  • 57. ( ) : F f , R(f ), f f . , R(f ) R(f ). , , R(f ), R(f ) , . 1.3, : lim Pr sup |R(f ) R(f )| > = 0. N f F
  • 58. ? . . 1 Y = {0, 1}, p(Y = 0) = p(Y = 1) = 2 . f , . 1 R(f ) = 0, R(f ) = 2 , (, ). 1.2?
  • 59. F = {f : f (x, ), [0, 1]} R() , R() f (x, ) R() R() R() R( ) R() R( ). lim Pr |R(f ) R(f )| > = 0. N
  • 60. R() R() R() R( ) lim Pr sup |R(f ) R(f )| > = 0. N f F
  • 61. 1.4 . , 1 N 2 R(f ) = yi f (xi) . N i=1 . 1 N R(p) = N ln p(xi) i=1 ().
  • 62. 1.8.3. R(f ) = L f (x)| y dP (x, y) = L f (x)| y dP (y | x) dP (x), XY X Y . . R(f ) = E L f (x)| Y |x dP (x) X
  • 63. : 2 2 R(f ) = y f (x) dP (y |x) dP (x) = E Y f (x) |x dP (x). X Y X , R(f ) : f (x) = argmin E (Y c)2 | x , (1) c f (x) = E (Y |x). (2) . , y x . 1.5 , (1) (2), R(f ) = E D (Y | X). 1.6 , L(y | y) = |y y|, f (x) = median(Y |x).
  • 64. E (Y |x) . 1) f (x) 1 f (x) = yi, |I(x)| iI(x) I(x) = {i : xi = x} , , , x . 2) k 1 f (x) = yi, k xiNk (x) Nk (x) k , ( ) x. () , f (x) = yi, xi x .
  • 65. k 1.0 1.5 2.0 2.5 3.0 3.5 4.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 k=1 k=2 1.0 1.5 2.0 2.5 3.0 3.5 4.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 k=5 k = 14
  • 66. , , , .
  • 67. 1.8.4. . Y = {1, 2, . . . , K}. K R(f ) = L f (x)| y Pr (y | x) dP (x). () y=1 X 0, y = y, L(y |y) = 1, y = y. (**) ( x) R(f ) = 1 Pr Y = f (x)| x dP (x), X f (x) = argmin R(f ): f (x) = argmin 1 Pr (y | x) , yY
  • 68. , , f (x) = argmax Pr (y |x). (+) yY f (x), , . . , , . Pr (y | x) y, (+) . , . . Pr (y) = 1/K, p(x |y) Pr (y) p(x |y) Pr (y | x) = = p(x) Kp(x) f (x) = argmax p(x |y). (++) y p(x |y) (likelihood), (++) (maximum-likelihood method).
  • 69. , . , Pr (y | x) . ? Pr (y | x) 1) ( ) 2)
  • 70. , , Pr (y |x) k ( ) . k . Nk (x) k x ( ) , Ik (x, y) xi Nk (x), yi = y. k f (x) Ik (x, y): f (x) = argmax |Ik (x, y)|, y () , f (x) = yi, xi x . y
  • 71. 50 .
  • 72. Pr (y | x) . X p(x) = 0, p(x |y) Pr (y) p(x |y) Pr (y) Pr (y | x) = = K . p(x) p(x |k) Pr (k) k=1 , p(x |y) Pr (y).
  • 73. 1.8.5. [Robins, Monroe, 1951, , , , 1965, Amari, 1967, , 1971, 1973]. F : F = {f (x) = f (x, ) : Rq } . , R() = L f (x, )| y dP (x, y). XY (k+1) = (k) k L f (x(k), (k))|y (k) (k = 1, 2, . . . , N ). k L f (x, )| y , R(). . .
  • 74. 3, 4
  • 75. 2
  • 76. Agenda
  • 77. (18221911) (1885 .) .
  • 78. 74 72 70 Child height 68 66 64 data x=y 62 regression means 64 66 68 70 72 74 Parents height 928 ch = 0.65par + 24 = 68.2 + 0.65 (par 68.2)
  • 79. 5 Residuals 0 5 64 66 68 70 72 74 Parents height
  • 80. x = . 1- y = . , 2- 5.0 4.5 2nd semester 4.0 3.5 3.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 1st semester 79
  • 81. 5.0 4.5 2nd semester 4.0 3.5 3.0 data x=y 2.5 regression means 3.0 3.5 4.0 4.5 5.0 5.5 1st semester sem2 = 0.93 + 0.77 sem1 3.86 + 0.77 (sem1 3.82) 3.82 1- 3.86 2-
  • 82. 5e+03 African elephant Asian elephant Human Giraffe 5e+02 Donkey Horse Chimpanzee Cow Gorilla Rhesus monkey Sheep Pig Jaguar Brachiosaurus Potar monkey Grey wolf Goat 5e+01 Triceratops brain Kangaroo Dipliodocus Cat Rabbit Mountain beaver 5e+00 Guinea pig Mole Rat Golden hamster 5e01 Mouse 1e01 1e+01 1e+03 1e+05 body lg brain = 0 + 1 lg body 0 = 0.94, 1 = 0.75 brain = 8.6 (body)3/4
  • 83. (x1, y1), (x2, y2), . . . , (xN , yN ) xi X , yi Y (i = 1, 2, . . . , N ) f (xi) = yi (i = 1, 2, . . . , N ) f Y =R
  • 84. : y = f (x) + , (), x, E = 0. f (x) = E (Y |X = x) P (y | x) X f (x).
  • 85. , f (x) . , : p f (x) = 0 + xj j (1) j=1 ( ) q f (x) = j hj (x), (2) j=1 j , hj (x) . (1) (2) j ( ) , y = 1e1 x + 2e2x.
  • 86. , , (residual sum of squares) N 2 RSS() = yi f (xi, ) . i=1 .
  • 87. c Y . . p(y, ), . N Y : Y1, Y2, . . . , YN (N ..) N : y1, y2, . . . , yN .. (Y1 , Y2, . . . , YN ): L() = p(y1, y2, . . . , yN , ) = p(y1, ) p(y2, ) . . . p(yN , ) L() : N () = ln L() = ln p(yi, ). i=1 ( Y , p(yi, ) Pr {Y = yi}) , L() ( ()).
  • 88. y = f (x, ) + , N (0, 2) p(y |x) : 2 1 y f (y, ) 1 2 2 p(y | x, ) = e 2 N N 1 N () = ln p(yi |x, ) = ln 2 N ln 2 yi f (xi, ) 2 i=1 2 2 i=1 RSS() ,
  • 89. 2.1. : p f (x) = 0 + xj j j=1 Xj : ; (, .); ; , , X3 = X1 X2. = (0, 1, . . . , p) , 2 N N p RSS() = yi f (xi) = yi 0 xij j 2 . i=1 i=1 j=1
  • 90. , . , xi , yi xi.
  • 91. y y = 0 + 1 x1 + 2 x2 x2 x1
  • 92. 1.0 0.5 y 0.0 0.0 0.2 0.4 0.6 0.8 1.0 x
  • 93. 1.0 0.5 y 0.0 0.0 0.2 0.4 0.6 0.8 1.0 x
  • 94. 1.0 0.8 0.6 y 0.4 0.2 0.0 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 x
  • 95. data y~x 1.0 x~y prin. comp. 0.5 y 0.0 0.0 0.2 0.4 0.6 0.8 1.0 x
  • 96. RSS()? 1 x11 x12 . . . x1p y1 1 x x ... x y2 21 22 2p X= , y= . .................. . 1 xN 1 xN 2 . . . xN p yN 2 RSS() = y X = (y X) (y X). ( ) X = y ( ). RSS() p + 1 () 0, 1, . . . , p. , : RSS 2RSS = 2X (y X), = 2X X.
  • 97. x0, x1, . . . , xp X. x0, x1, . . . , xp , X X , RSS() , : X (y X) = 0 X X = X y. = (X X)1X y , X = y X X = X y. X+ = (X X)1 X () X. x1, x2, . . . , xN y = (y1 , y2, . . . , yp) = X = X(X X)1X y. H = X(X X)1X , y = Hy y y , x0, x1, . . . , xp
  • 98. H
  • 99. y x2 y x1
  • 100. X , , RSS(), , , -, y y x0, x1, . . . , xp .
  • 101. 2.1.1. - ( ) p Yi = 0 + j xij + Ei (i = 1, 2, . . . , N ), j=1 j (j = 0, 1, . . . , p). xij ( ), Ei , E Ei = 0, Var Ei = 2, Cov(Ei, Ej ) = 0 (i = j). Yi , p E Yi = 0 + j xij , (1) j=1 Var Yi = 2, Cov(Yi, Yj ) = 0 (i = j). (1) E y = X.
  • 102. , . = (X X)1X y, E = (X X)1 X E y = (X X)1X X = , Cov = (X X)1X 2X(X X)1 = (X X)1 2. E = , . p ei = yi yi = yi j xij j=1 . , N ei = 0. (2) i=1
  • 103. (2) , n y = 0 + j xj , j=1 N N 1 1 y= N yi, x= N xi . i=1 i=1 , N N yi = yi. i=1 i=1
  • 104. 2 N 1 2 = (yi yi)2. N p 1 i=1 , RSS y (I H)y, E RSS = 2(N p 1). N p 1 . .
  • 105. RSS : (: ) N TSS = (yi y)2 i=1 , (: , ) n SSR = (yi y)2. i=1 , TSS = RSS + SSR . 2.1 , TSS = RSS + SSR. , , y y y y, y , y.
  • 106. . , 2 SSR RSS r = =1 . TSS TSS RSS Yi f (xi), TSS yi y, r2 , . 0 r2 1. r2 1, RSS TSS. r2 . 2 2 1 r2 ra =r . N p1 , 0.
  • 107. . Ei : Ei N (0, ) (i = 1, 2, . . . , N ). Ei . , N , (X X)1 2 (N p 1) 2 22 p1. N j .
  • 108. . j = 0 (j ): Xj , p 1 . ( j = 0) j tj = , (3) se j se j = vj j , vj j- (X X)1. , j = 0, tj t- tN p1. |tj | , j = 0 . j = 0 , , j .
  • 109. j = j ( ), j . j j tj = . se j tj tN p1. .
  • 110. . ( , ): , . (RSS2 RSS1)/(p1 p2) F = , RSS1 /(N p1 1) RSS1 p1 + 1 , RSS2 c p2 + 1 , ( , p1 p2 ). , (??) , F F (p1 p2, N p1 1) . , F zj (3).
  • 111. . 1, . . . , p ( 0) , p + 1 , y = 0 . , N 1 0 = y = N yi. i=1 , ( ) 2 N N 1 TSS = yi yi i=1 N i=1 F - (TSS RSS)/p F = , RSS /(N p 1) RSS = RSS() .
  • 112. Fp, N p1. , TSS = RSS + SSR, n SSR = (yi y)2 i=1 , . , (, , 0) , , , . , .
  • 113. . j j z (1) vj , j + z (1) vj , z (1) (1 )- : z (10.1) = 1.645, z (10.05) = 1.96, z (10.01) = 2.58, . . (vj j- (X X)1 , se j = vj j ). , 2 se 95%.
  • 114. . . . 1, 50 , (speed) (dist). dist = 0 + 1 speed. 1 Ezekiel M. Methods of Correlation Analysis. Wiley. 1930
  • 115. 120 100 80 dist 60 40 20 0 5 10 15 20 25 speed 50 . 0 = 42.980, 1 = 145.552.
  • 116. 120 data 1st order poly 2nd order poly 100 80 dist 60 40 20 0 5 10 15 20 25 speed . : dist = 0 + 1 speed. : dist = 0 + 1 speed + 2 speed2.
  • 117. r2 = 0.6511, 2 ra = 0.6438. , 65% .
  • 118. : se 0 = 2.175, se 1 = 15.380, t0 = 19.761, t1 = 9.464. 48 . t0 t1 t- 48 , , 0 = 0 p-value 2 1016, 1 = 0 1.49 1012. , , = 0.01, . , . = 15.38. F - F = 89.57 F - F1,48. p-value, 1.490 1012. , .
  • 119. dist = 0 + 1 speed + 2 speed2. 0 = 42.980, 1 = 145.552, 1 = 22.996. r2 = 0.6673, 2 ra = 0.6532, se 0 = 2.146, se 1 = 15.176, se 2 = 15.176, t0 = 20.026, t1 = 9.591, t2 = 1.515. 47 . p-value 0 = 0 2 1016. 1 = 0 2 1.2112, 2 = 0 0.136. , = 0.01 2 = 0 . 2 . = 15.18. F - F = 47.14 F - F2,47. p-value, 5.852 1012. , .
  • 120. . , () , , , , . , .
  • 121. 15 10 Frequency 5 0 20 0 20 40 Residuals dist = 0 + 1 speed .
  • 122. QQ- ( ). . N (0, 1). , .
  • 123. 40 20 Sample Quantiles 0 20 2 1 0 1 2 Theoretical Quantiles QQ- .
  • 124. : 2, . ., , , . - , . W = 0.9451. p-value 0.02153. = 0.01 . (: ) . N 1 (ei+1 ei)2 i=1 D= N . e2 i i=1 2.2 , 0 D 4. D < D L() D > 4 D L(),
  • 125. . D L() < D < D U() 4 D U() < D < 4 D L(), . D U() < D < 4 D U(), . D L() D U() , N , p , , [, . 1, . 211].
  • 126. : P (x) X . H0: P (x) = P (x). H1. 1- : H0 ( H1), . 2- : H0 , . .
  • 127. , , 1- (, 0.1, 0.05, 0.01) t t(X), ( H0). T = T (H0, ) t(X), , Pr (t T |H0) = . t T , H0 . t T , , / H0, H0 . p(t) p(t) t T t T
  • 128. T (H0, ) p(t) t {t : t t } t T p(t) t {t : t t } T t p(t) t {t : |t| t} T t t T .
  • 129. 2.1.2. p-value p-value [0, 1] t t(X) ( H0, ). p-value , t t(X) T (H0, ): p-value(t , H0) = inf { : t T (H0, )} p-value. p-value , H0 . H0 .
  • 130. T = {t : t t }, p-value = Pr {t(X) t} p(t) t t t T = {t : t t }, p-value = Pr {t(X) t} p(t) t t t T = {t : |t| t}, p-value = Pr {|t(X)| |t|} p(t) t t t t t p-value = , =
  • 131. 2.2. , , . : . , : . , , , , - , , .
  • 132. data 2.5 degree = 1 degree = 2 degree = 5 degree = 8 2.0 y 1.5 1.0 0.2 0.4 0.6 0.8 1.0 x Y = X 2 0.8X + 7 + , N (0, 0.05)
  • 133. 1e+04 train test 1e+02 RSS/N 1e+00 1e02 0 2 4 6 8 10 12 degree
  • 134. k
  • 135. 1.0 1.5 2.0 2.5 3.0 3.5 4.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.2 0.2 0.4 0.4 k=5 k=1 0.6 0.6 0.8 0.8 1.0 1.5 2.0 2.5 3.0 3.5 4.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.2 0.2 0.4 0.4 k = 14 k=2 0.6 0.6 0.8 0.8
  • 136. 0.8 test train 0.6 RSS/N 0.4 0.2 0.0 2 4 6 8 10 12 14 k
  • 137. RSS/N 0.0 0.2 0.4 0.6 0.8 1 2 N/k 5 10 train test
  • 138. R R
  • 139. ( ) : X (. . X , ). max j (X X) max dj cond2X = = min j (X X) min dj ( X ) . , .
  • 140. 2.3. ? ( ) .
  • 141. 2.3.1. k {0, 1, . . . , p} k, RSS() . ! k k + 1
  • 142. 13
  • 143. 0 15 4 6 8 14 20 5 20 40 MEDV 10 15 INDUS 0 0.7 NOX 0.4 8 6 RM 4 80 AGE 20 20 PTRATIO 14 0 200 B 20 LSTAT 5 10 40 0.4 0.7 20 80 0 200
  • 144. : 80 70 60 RSS/N 50 40 30 20 0 2 4 6 8 10 12 subset size
  • 145. : 80 70 60 RSS/N 50 40 30 0 2 4 6 8 10 12 subset size
  • 146. 80 70 60 RSS/N 50 40 30 20 0 2 4 6 8 10 12 subset size
  • 147. , , . , , 0, , . , k , . . RSS() RSS() F = . RSS()/(N k 2) , F . , , F 90% 95% F (1, N k 2) . , .
  • 148. 2.3.2. () () (ridge regression) RSS , j : N 2 p p ridge = argmin yi 0 xij j + j , 2 i=1 j=1 j=1 : , , : N 2 p p ridge = argmin yi 0 xij j , j s. 2 i=1 j=1 j=1 s , .
  • 149. 2 O ridge 1
  • 150. , . , Xi Xj . : j , i : Xi Xj , j xj ixi. , j .
  • 151. 0 , Xj . 0 . , : 1. : xij xij xj (i = 1, 2, . . . , N ; j = 1, 2, . . . , p) 0 y, N N 1 1 xj = N xij , y= N yi. i=1 i=1 2. ( 0) , , X p ( p + 1)
  • 152. RSSridge(, ) = (y X) (y X) + , RSSridge(, ) min , : RSSridge 2 RSSridge = 2X (y X) + 2, = 2X X + 2I. ridge = (X X + I)1 X y ( ) , ridge , y. > 0, X X + I ( ), X ( ) , X = y (X X + I) = X y
  • 153. . (.. ) (X X + I) = X y X = y. , > 0. () () (X X + I) = X y. 2.3 (.. ) n , n > 0 n 0. (n) X = y ( ). ( , , ) , , () . n , .
  • 154. 2.3.3. , SVD- (singular value decomposition), X N p X = U D V N p N p pp pp U N p (U U = I), V p p (V = V1), D = diag(d1, d2, . . . , dp) p p , d1 d2 . . . dp 0. d1, d2, . . . , dp ( ) X U V , u1, u2, . . . , up U , x1, x2, . . . , xp X.
  • 155. ls yls ( ), SVD: 1 ls = (X X)1 X y = (UDV ) UDV (UDV ) y = 1 = VDU UDV VDU y = (V )1D2V1VDU y = VD1 U y p yls = X ls = UDV VD1U y = UU y = uj uj y j=1 , uj (uj y) y uj , ( ) y , u1 , u2 , . . . , up . , : p d2 yridge = X ridge = X(X X + I)1X y = UD(D + I)1 DU y = uj j uj y j=1 d2 j +
  • 156. p d2 yridge = UD(D + I)1 DU y = uj j uj y j=1 d2 j + , , u(uj y) y uj , d2 j 1. d2 + j dj , 1. dj , 0. , , dj .
  • 157. dj ? , -, , . S = XX /N , 1 1 S= XX = VDU (VDU ) = V D2/N V . N N , v1, v2, . . . , vp V S, 2 dj /N . vj ( ) (principal components) X.
  • 158. 4 2 x2 0 2 4 6 4 2 0 2 4 6 x1
  • 159. zj = Xvj . , d2 j Var(zj ) = Var(Xvj ) = , zj = Xvj = dj uj . N u1 , z1 X. uj , u1, . . . , uj1, , zj . zp . , dj vj , zj , .
  • 160. 1.0 0.8 0.6 y 0.4 0.2 0.0 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 x
  • 161. 2.3.4. (R. Tibshirani) N 2 p p lasso = argmin yi 0 xij j , |j | s. i=1 j=1 j=1 lasso s , j 0. ? ( , , )
  • 162. 2 2 O ridge 1 O lasso
  • 163. ridge j . 3 RM RAD 2 ZN 1 B CHAS INDUS 0 AGE j 1 CRIM TAX 2 NOX PTRATIO 3 DIS LSTAT 4 2 0 2 4 6 10 10 10 10 10
  • 164. p d2 = 2 j df() = tr X(X X + I)1X . j=1 dj + = 0 ( ), df() = p. , df() 0.
  • 165. ridge j df() 3 RM RAD 2 1 ZN B CHAS INDUS 0 AGE j 1 CRIM TAX 2 NOX PTRATIO 3 DIS LSTAT 4 0 2 4 6 8 10 12 df()
  • 166. . s t= p |j | j=1 lasso t = 0 j . lasso t = 1 j = j (j = 1, 2, . . . , p).
  • 167. lasso s j t = p |j | j=1 . 4 3 RM RAD 2 ZN 1 B CHAS INDUS j 0 AGE 1 CRIM TAX 2 NOX PTRATIO 3 DIS LSTAT 4 0 0.2 0.4 0.6 0.8 1 t
  • 168. 2.3.5. (principal component regression): y z1, z2, . . . , zM , M p. z1, z2, . . . , zM , M M y, zm y pcr =y+ mzm, pcr (M ) = mvm, m = zm, zm . m=1 m=1 . X, , , , p M .
  • 169. 2.3.6. (partial least squares) xj (j = 1, 2, . . . , p) zm (m = 1, 2, . . . , M ). xj y.
  • 170. y xj , 0, 1. begin y(0) = 1y x(0) = xj (j = 1, 2, . . . , p) j for m = 1, 2, . . . , p p zm = mj x(m1), mj = y, x(m1) j j j=1 (m) (m1) y, zm y =y + mzm, m = zm, zm x(m1), zm j xj = x(m1) (m) j zm (j = 1, 2, . . . , p) zm, zm end m pls y (m) (m = 1, 2, . . . , p) jm = j =1 end p pls y (m) = jmxj (m = 1, 2, . . . , p) j=1
  • 171. , xj y xj y
  • 172. , vm max Var(X) : = 1, v S = 0, = 1, 2, . . . , m 1 , S = X X/N X. v S = 0 , zm = X z = Xv ( < m). max Corr2(y, X) Var(X) : = 1, S = 0, = 1, 2, . . . , m 1 .
  • 173. 2.3.7. ( ) : QR-, , SV D- . O(N p2 + p3) .
  • 174. . N 2 p lasso = argmin yi 0 xij j , i=1 j=1 p p |j | s j j s, j {1, 1} . j=1 j=1 p + 1 2p ! (+) () (+) () j = j j , j 0, j 0 (j = 1, 2, . . . , p) p (+) () j + j s, (+) j 0, () j 0 (j = 1, 2, . . . , p)