machine learning to explore fish species interaction in the northern gulf of st lawrence
Embed Size (px)
DESCRIPTION
Machine Learning to explore fish species interaction in the Northern gulf of St Lawrence. Dr Allan Tucker Centre for Intelligent Data Analysis Brunel University West London UK. Talk Outline. Introduce myself and research group Introduce Machine Learning Describe Bayesian network models - PowerPoint PPT PresentationTRANSCRIPT
-
Machine Learning to explore fish species interaction in the Northern gulf of St Lawrence Dr Allan TuckerCentre for Intelligent Data AnalysisBrunel UniversityWest LondonUK
-
Talk Outline Introduce myself and research group Introduce Machine Learning Describe Bayesian network models Document some preliminary results on fish population data Conclusions
-
Who Am I? Research Lecturer at Brunel University, West London Member of Centre for IDA (est 1994)
X
-
What is the ? Over 25 members (academics, postdocs, and PhDs) with diverse backgrounds (e.g. maths, statistics, computing, biology, engineering) Over 140 journal publications & a dozen research council grants since 2001 Many collaborating partners in UK, Europe, China and USA Bi Annual Symposia in Europe
-
Some Previous Work in Machine Learning and Temporal Analysis Oil Refinery ModelsForecastingExplanation Medical Data: Retinal (Visual Field)Screening Forecasting Bioinformatics:Gene ClustersGene Regulatory Networks
-
Some Previous Work in
-
What is Machine Learning?Part 1
-
What is Machine Learning? (and why not statistics?) Data oriented Extracting useful info from data As automated as possible Useful when lots of data and little theory Making predictions about the future
-
What Can we do with ML? Classification and Clustering Feature Selection Prediction and Forecasting Identifying Structure in Data
-
E.g. Classification Given some labelled data (supervised) Build a model to allow us to classify other unlabelled data e.g. A doctor diagnosing a patient based upon previous cases
-
Classification e.g. medical Scatterplot of patients 2 variables:Measurement of expression of 2 genes
-
Classification How do we classify them? Nearest Neighbour / Linear / Complex Fn?
-
Classification Trivial case with Cod and Shrimp Data
Chart2
2.0451.843
1.9890.691
2.1750.1472
1.4110.334
1.1890.2737
1.7750.2446
1.0290.5867
0.6029
0.7027
0.5349
0.6292
0.3127
0.6799
0.1519
0.4414
Pre 1990
Post 1990
Shrimp
Cod
Sheet1
Class27438
11.1332.045
10.76571.989
10.26112.175
10.63961.411
10.71481.189
10.31151.775
10.77451.029
20.17451.843
20.27480.691
20.090190.1472
20.042690.334
20.50660.2737
20.040380.2446
20.093230.5867
20.048320.6029
20.052550.7027
20.1710.5349
20.091310.6292
20.10030.3127
20.096740.6799
20.12740.1519
20.20720.4414
Sheet1
Pre 1990
Post 1990
Shrimp
Cod
Sheet2
Sheet3
-
The Data Northern Gulf (region a)Two ships (Needler and Hammond) combined by normalising according to overlap yearMultivariate Spatial Time Series (short)Missing Data
-
Background Northern Gulf considered to be one ecosystem / fish community Quite heavily fished until about 1990 Most fish populations collapsed since Some say that moved to an alternative stable state and unlikely to come back to cod dominated community without some chance event beyond human control. Lots of speculation: cold water large increases in population of predators. Examine nature and strength of interactions between species in the two periods. Ask what if ? questions:For other parts of community to recover, we would need cod to have X strength of interaction with Y number of other species?
-
ML for Northern Gulf Data Network buildingknowledge and data of interactions Feature Selection for Classification of relevant species to the cod collapse State Space / Dynamic models for predicting populations Hidden variable analysis
-
Bayesian Networks for Machine LearningPart 2
-
Bayesian Networks Method to model a domain using probabilities Easily interpreted by non-statisticians Can be used to combine existing knowledge with data Essentially use independence assumptions to model the joint distribution of a domain
-
Bayesian Networks Simple 2 variable Joint Distribution
can use it to ask many useful questions but requires kN probabilities
Species2 Species2 Species10.890.01 Species1 0.030.07P(Collapse1, Collapse2)
-
Bayesian Network for Toy DomainSpeciesCSpeciesDSpeciesEP(A)P(B).001.002A B P(C)T T .95T F .94F T .29F F .001C P(E)C P(D)T .70F .01T .90F .05SpeciesASpeciesB
-
Bayesian Networks Bayesian Network Demo [Species_Net] Use algorithms to learn structure and parameters from data Or build by hand (priors) Also continuous nodes (density functions)
-
Informative Priors To build BNs we can also use prior structures and probabilities These are then updated with data Usually uniform (equal probability) Informative Priors used to incorporate existing knowledge into BNs
-
Bayesian Networks for Classification & Feature Selection Node that represents the class label attached to the data
-
Dynamic Bayesian Networks for Forecasting
Nodes represent variables at distinct time slices Links between nodes over time Can be used to forecast into the future[Species_Dynamic_Net]
-
Hidden Markov ModelsLike a DBN but with hidden nodes:
Often used to model sequencesHT-1HTOT-1OT
-
Typical Algorithms for HMMs Given an observed sequence and a model, how do we compute its probability given the model? Given the observed sequence and the model, how do we choose an optimal hidden state sequence? How do we adjust the model parameters to maximise the probability of the observed sequence given the model?
-
Summary Different learning tasks can be used to solve real world problems Machine Learning techniques useful when lots of data and lots of gaps in knowledge Bayesian Networks: probabilistic framework that can perform most key ML tasks Also transparent & can incorporate expert knowledge
-
Some Preliminary Results on Northern Gulf DataPart 3
-
Expert Knowledge Ask marine biologists to generate matrices of expected relationships Can be used to compare models learnt from data Also to be used as priors to improve model quality
-
Results: Expert networks
-
Results: Data networks (BN from correlation) 85% conf. imputed from 70% data
Warning: data quality, spurious relationsCodHaddockWitch FlounderShrimp(Lumpfish)(Silver Hake)(Atlantic soft pout / Bristlemouths)(Eel pout / Ocean Sun Fish)
-
Example DBN Lets look at an example DBN [NGulfDynamic - range] Structure Encoded by knowledge Updated by data Explore with queries Supported by previous knowledge:In the Northern gulf of st. Lawrence, cod (code 438) and redfish (792,793,794,795,796) collapsed to very low levels in the mid 1990s. Subsequently the shrimp (8111) increased greatly in biomass so one will see this signal in the data. It is hypothesised that these are exclusive community states where you never get high abundance of both at the same time owing to predatory interactions.
-
Feature Selection Given that we know that from 1990 the cod population collapsed
Can we apply Feature Selection to see what species characterise this collapse
[Learn BN and apply CV]
-
Results 7: Feature Selection with BootstrapWrapper method using BNsFilter method using Log LikelihoodRedfish
Chart4
-36.5564189799
-37.3316582121
-37.5326895759
-37.9626205356
-38.0331424642
-38.3125407541
-39.9497392547
-40.4576665159
-40.5617131986
-40.6349436003
-40.8780666356
-41.3795512009
-41.5769545061
-42.1324446291
-42.2365944398
-42.3787338697
-42.5592419824
-42.5613224744
-42.5802634215
-42.586722187
-42.6207796689
-43.1770677446
-43.2347050764
-43.2993031199
-43.351442117
-43.5276588939
-44.0645779225
-44.1488270168
-44.4228045865
-44.5445747055
-44.7694816522
-44.7968659676
-44.8636211186
-44.8778249295
-44.8975067025
-44.9293756824
-45.0320310134
-45.1532559396
-45.180354309
-45.3273497095
-45.3668805595
-45.3789295849
-45.4639782337
-45.4749551049
-45.5028529795
-45.5282433626
-45.5345956723
-45.5432893369
-45.5976323711
-45.6351646581
-45.6415628655
-45.7831833953
-45.7903192138
-45.8070805423
-45.8304134011
-46.018729707
-46.1770700279
-46.2660244895
NaN
Sheet1
IDFilterLogLikIDBNWrapper
438NaN438NaN
890-36.55641897994410.76
447-37.33165821214470.7
441-37.53268957598900.34
449-37.9626205356120.32
90-38.0331424642900.3
8135-38.31254075414490.28
320-39.94973925471930.26
12-40.45766651593200.24
859-40.56171319864610.24
745-40.63494360034440.14
27-40.8780666356270.12
478-41.37955120097210.12
461-41.576954506181350.12
193-42.13244462911500.1
730-42.23659443984260.1
849-42.37873386979660.1
187-42.55924198241870.08
8217-42.56132247445720.08
8111-42.58026342157000.08
444-42.5867221877920.06
4753-42.62077966898590.06
8196-43.177067744647530.06
150-43.234705076480570.06
721-43.299303119981120.06
8213-43.3514421174430.04
844-43.52765889397010.04
24-44.06457792257170.04
443-44.14882701687450.04
966-44.422804586581380.04
451-44.544574705581960.04
792-44.769481652282170.04
426-44.7968659676240.02
726-44.86362111864780.02
700-44.87782492957260.02
809-44.89750670257300.02
9995-44.92937568248080.02
893-45.03203101348090.02
819-45.15325593968920.02
8112-45.18035430980930.02
8178-45.327349709581110.02
889-45.3668805595910
814-45.37892958494510
572-45.46397823377110
808-45.47495510497160
836-45.50285297958120
8138-45.52824336268140
711-45.53459567238190
8218-45.54328933698350
4894-45.59763237118360
701-45.63516465818440
716-45.64156286558490
892-45.78318339538890
835-45.79031921388930
812-45.807080542348940
8057-45.830413401181780
91-46.01872970782130
717-46.177070027982180
8093-46.266024489599950
Sheet1
NaN
Sheet2
NaN
Sheet3
Chart3
0.76
0.7
0.34
0.32
0.3
0.28
0.26
0.24
0.24
0.14
0.12
0.12
0.12
0.1
0.1
0.1
0.08
0.08
0.08
0.06
0.06
0.06
0.06
0.06
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
NaN
Sheet1
IDFilterLogLikIDBNWrapper
438NaN438NaN
890-36.55641897994410.76
447-37.33165821214470.7
441-37.53268957598900.34
449-37.9626205356120.32
90-38.0331424642900.3
8135-38.31254075414490.28
320-39.94973925471930.26
12-40.45766651593200.24
859-40.56171319864610.24
745-40.63494360034440.14
27-40.8780666356270.12
478-41.37955120097210.12
461-41.576954506181350.12
193-42.13244462911500.1
730-42.23659443984260.1
849-42.37873386979660.1
187-42.55924198241870.08
8217-42.56132247445720.08
8111-42.58026342157000.08
444-42.5867221877920.06
4753-42.62077966898590.06
8196-43.177067744647530.06
150-43.234705076480570.06
721-43.299303119981120.06
8213-43.3514421174430.04
844-43.52765889397010.04
24-44.06457792257170.04
443-44.14882701687450.04
966-44.422804586581380.04
451-44.544574705581960.04
792-44.769481652282170.04
426-44.7968659676240.02
726-44.86362111864780.02
700-44.87782492957260.02
809-44.89750670257300.02
9995-44.92937568248080.02
893-45.03203101348090.02
819-45.15325593968920.02
8112-45.18035430980930.02
8178-45.327349709581110.02
889-45.3668805595910
814-45.37892958494510
572-45.46397823377110
808-45.47495510497160
836-45.50285297958120
8138-45.52824336268140
711-45.53459567238190
8218-45.54328933698350
4894-45.59763237118360
701-45.63516465818440
716-45.64156286558490
892-45.78318339538890
835-45.79031921388930
812-45.807080542348940
8057-45.830413401181780
91-46.01872970782130
717-46.177070027982180
8093-46.266024489599950
Sheet1
NaN
Sheet2
NaN
Sheet3
-
Results : Feature Selection Change in Correlation of interactions between cod and high ranking species before and after 1990:
Chart2
0.37066995510.3495395732
0.14144041280.1610910182
0.1297695368-0.3051676038
0.6612700760.4350176057
-0.58003523060.3907450991
0.3528178170.0459166222
0.34551652790.6154142485
-0.35723547510.2332149257
-0.5374458998-0.1179199749
pre 1990 correlation
post 1990 correlation
Sheet1
pre 90post90pre 1990 correlationpost 1990 correlation
120.37066995510.3495395732white hake0.37066995510.349539573212white hakeUrophycis tenuis
24-0.4222590092-0.0139235787thorny skate0.14144041280.161091018290thorny skateAmblyraja radiata
27-0.2081447127-0.1057748952sea raven0.1297695368-0.3051676038320sea ravenHemitripterus americanus
900.14144041280.1610910182haddock0.6612700760.4350176057441haddockMelanogrammus aeglefinus
91-0.753221550.4009819183white hake-0.58003523060.3907450991447white hakeUrophycis tenuis
150-0.4609864394-0.1510233633silver hake0.3528178170.0459166222449silver hakeMerluccius bilinearis
1870.18084000390.1680898651witch flounder0.34551652790.6154142485890witch flounderGlyptocephalus cynoglossus
193-0.3338545374-0.344478486redfish*-0.35723547510.2332149257792
3200.1297695368-0.3051676038shrimp*-0.5374458998-0.11791997498111
426-0.6980991635-0.1338940721
4410.6612700760.4350176057
4430.2822837644-0.5644773614
444-0.23786317150.3074223492
447-0.58003523060.3907450991
4490.3528178170.0459166222
4510.6734159957-0.2742618724
461-0.28450222760.0681090425
4780.0306269028-0.2278689811
572-0.66974634430.3493657921
700-0.7383421838-0.2919316427
7010.6634773306-0.1635767821
711-0.5721417324-0.4777842184
716-0.4737570426-0.4348755415
717-0.5726933449-0.6384393546
721-0.7638557754-0.3587563312
726-0.45655618920.3196667832
7300.43787956840.0640002301
7450.57352394-0.3026726781
792-0.35723547510.2332149257
808-0.61922697580.3112109633
8090.3835075484-0.4600289539
812-0.44014455240.2901187777
814-0.2645512063-0.4094937806
8190.5089207144-0.4985525354
8350.14176096620.0496341378
836-0.4119734170.1698328398
8440.5195978596-0.1910841268
8490.33334742890.1285411531
8590.0335278698-0.0987958955
889-0.04430713170.5360750363
8900.34551652790.6154142485
8920.47558402030.0509279898
8930.4396211304-0.0680518719
966-0.2841761436-0.604453909
47530.0797362762-0.097116562
4894-0.5307580478-0.3757597184
8057-10.1861906686
80931-0.3815856512
8111-0.5374458998-0.1179199749
8112-1-0.0491881636
813510.3794762569
8138-1-0.3990574726
81780.593840903-0.1011763657
8196-0.6159174238-0.4327924872
8213-0.0408136207-0.1217855432
8217-0.6677242963-0.033252965
82180.29107542470.0654612811
9995-0.79891816010.6166102403
Sheet1
pre 1990 correlation
post 1990 correlation
Sheet2
Sheet3
-
Dynamic Models Given that the data is a time-series Can we build dynamic models to forecast future states? Can we use HMM to classify the time-series?
-
Multivariate Time Series N Gulf is process measured over time Autoregressive Correlation Function (here cod) Cross Correlation Function (here hake to cod)ACFCCF
Chart1
1
0.674
0.564
0.371
0.227
0.232
0.083
-0.013
-0.148
-0.205
-0.199
-0.219
-0.179
-0.248
Time Lag
Correlation
Sheet1
Sheet2
Sheet3
Chart1
0.071
0.216
0.244
0.463
0.683
0.686
0.791
0.561
0.46
0.392
0.317
Time Lag
Correlation
temp
CODACF
012345678910111213
10.6740.5640.3710.2270.2320.083-0.013-0.148-0.205-0.199-0.219-0.179-0.248
CODHAKECCF
-5-4-3-2-1012345
0.0710.2160.2440.4630.6830.6860.7910.5610.460.3920.317
temp
Time Lag
Correlation
Time Lag
Correlation
-
Results 3: Fitting Dynamic ModelsHMM Expert with CCF > 0.3 (maxlag = 5)LSS = 8.3237
-
Results 3: Fitting Dynamic ModelsLearning DBN from CCF dataLSS = 5.0106Fluctuation: Early Indicator of Collapse?
-
Results 4: Examining DBN NetData only Dynamic Links:CodHakesHaddockWhite HakeRedfishWitch FlounderShrimpThorny Skate
-
Results 5: Fitting Dynamic ModelsLearning DBN from Expert biased CCF data CCF > 0.5 (maxlag=5)LSS = 6.1326
-
Results 6: Examining DBN NetData Biased Expert Dynamic Links:CodWitch FlounderHerringMackerel / Capelin
-
Results 7: Linear Dynamic SystemInstead of hidden state, continuous var:
Could be interpreted as measure of fishing? Predator population (e.g. seals)? Water temperature?198419911987 (white fur ban)1997 (white fur hunt)
-
Conclusions Hopefully conveyed the broad idea of machine learning Shown how it can be used to help analyse data like fish population data Potentially applicable to other data studied here at MLI
-
Potential ProjectsSpatio-Temporal AnalysisUse Spatio-Temporal BNs to model fish stock data. Nodes would represent species in specific regionsCombining Expert Knowledge and Data for improved PredictionLooking for Un/Stable States and the factors that influence themFunctional Analysis of Data from Multiple Locations
-
E.G. Spatial Analysis Spatial Bayesian Network Analysis [NGulfCodSpatial]
-
E.G. Functional Models Functional Models to assimilate data from different oceans...
-
Acknowledgements:
Daniel DupliseaPanayiota Apostolaki
Any Questions?
************************************************