machining part i - cutting theory

59
Machining Part I Metal cutting theory 1 Figures taken from Kalpakjian S. and Schmid S., Manufacturing Engineering and Technology, Addison-Wesley

Upload: syam-sun

Post on 03-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 1/59

Page 2: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 2/59

Computer Aided Manufacturing

Learning targets

Design chip removal

manufacturing processes.

Improve manufacturing

processes

Optimize costs in machining

2

Page 3: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 3/59

Computer Aided Manufacturing

Outline

Recall of material mechanical properties

Theory of metal cutting

Cutting forces

Cutting power

3

Page 4: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 4/59

Computer Aided Manufacturing

Machining processes

Goal: to remove material to transform the raw part

into the desired geometry.

In general they are the last processes performed

on the mechanical components.

If we compare them to casting or forming,

machining processes allow to obtain: Good tolerances

Good surface finish

4

Page 5: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 5/59

Computer Aided Manufacturing

Turning

Drilling

Milling

Grinding

Other

processes

Machining processes

5

Page 6: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 6/59

Computer Aided Manufacturing

Engineering stress-strain plot

6

o A

 P  R  

P : applied force

 Ao: origi

nal area of test specimen

l : length at any point during elongation

l o: original gage length

E : modulus of elasticityo

o

l l e

 

  = E  e 

Page 7: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 7/59Computer Aided Manufacturing

True stress-strain plot

7

1100-O aluminum

plotted on a log-log

scale 

 A

 P   

 A: actual (instantaneous)area resisting the load 

o

l   l 

l l 

dl 

o

ln)ln(0  

nk     

Page 8: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 8/59

Computer Aided Manufacturing

Loading & unloading

8

Page 9: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 9/59

Computer Aided Manufacturing

Flow curve for various materials

9

Page 10: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 10/59

Computer Aided Manufacturing

Elastic and perfectly plastic

Stiffness defined by E  

Once Y  reached, deforms

plastically at same stress

level Flow curve: K = Y , n = 0

Metals behave like this

when heated to

sufficiently hightemperatures (above

recrystallization)

10

Page 11: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 11/59

Computer Aided Manufacturing

Ductility

 Ability of a material to plastically strain without fracture

Ductility measure = elongation EL

where EL: elongation; l f : specimen length at fracture; and l o: originalspecimen length

l f is measured as the distance between gage marks after two piecesof specimen are put back together.

o

o f  

l l  EL

11

Page 12: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 12/59

Computer Aided Manufacturing

Elongation

12

Page 13: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 13/59

Computer Aided Manufacturing13

Toughness

 Amount of energy per unit volume that the material

dissipates prior to fracture

Page 14: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 14/59

Computer Aided Manufacturing14

Y

Mechanical properties

Strength

DuctilityElastic Plastic

UTS

Toughness

Malleability

Stiffness

Page 15: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 15/59

Computer Aided Manufacturing

Mechanical properties

15

Page 16: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 16/59

Computer Aided Manufacturing

Recrystallization in Metals

● Most metals strain harden at room temperature

according to the flow curve (n > 0)

● But if heated to sufficiently high temperature

and deformed, strain hardening does not occur

o Instead, new grains are formed that are free of strain

o The metal behaves as a perfectly plastic material; that

is, n = 0

16

n = 0

Page 17: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 17/59

Computer Aided Manufacturing

Temperature effect

17

Most materials display

similar temperature

sensitivity for elastic

modulus, yield strength,

ultimate strength, and

ductility.

Increasing T

Page 18: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 18/59

Computer Aided Manufacturing

Strain rate effect

18

The effect of strain rate on the

ultimate tensile strength of

aluminum.

Note that as temperatureincreases, the slope increases.

Thus, tensile strength becomes

more and more sensitive to

strain rate as temperature

increases. Source: After J. H.

Hollomon.

Page 19: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 19/59

Computer Aided Manufacturing

Machining processes

We will study:

  “Orthogonal” cutting 

 A “simplified” process

Industrial processes 

Cinematically more complex:

Turning

Drilling Milling

etc

19

Page 20: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 20/59

Computer Aided Manufacturing

Orthogonal cutting

Not much used in the real world, we study it

because:

● It is simple  to describe from the cinematic

(motions) and dynamic (forces) points of

views.

● It allows us to understand  the elementary

mechanism of chip formation.

● Many of the variables met in orthogonal

cutting are present in the industrial processes

(turning, milling, etc).

20

Page 21: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 21/59

Computer Aided Manufacturing

Orthogonal cutting

We have orthogonal cutting when the cinematic anddynamic variables belong to a plane.

21

Relevant Variables:

• v c  = cutting speed

•  b = cutting width

•  hD = cutting thickness(Uncut chip thickness)

Section

plane

HKLM

Section

tool

hD

b

hD

vc

Page 22: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 22/59

Computer Aided Manufacturing

Orthogonal cutting

Uncut chip area:

22

Chip thickness: hch

Chip transversal section: AD = hD b Cutting ratio:

Chip

transversal

section

ch

 D

h

hr  

tool

Section

plane

vc

b

hD

Page 23: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 23/59

Computer Aided Manufacturing

The tool

The tool is composed of:

● Rake face: surface

on which the chip

flows.● Flank face: surface

looking at the

machined surface.

● Cutting edge:intersection line

between rake face

and flank.

23

Rake

Flank

Cuttingedge

Page 24: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 24/59

Computer Aided Manufacturing

The tool

Cutting angles:

Rake angle g 

Between the rake face and the

normal to the cutting direction:-15° < g  < 30°

Clearance (or relief) angle

Between the flank and the

direction of the cutting direction:

2° < a  < 15°

Solid angle

Between rake and flank faces:

a + b + g 90 

24

vc

chip

thickness 

Page 25: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 25/59

Page 26: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 26/59

Computer Aided Manufacturing

Cutting process

Part

Uncut chip

   R  e   l  a   t   i  v  e   t  o  o

   l  -  p  a  r   t  m  o   t   i  o  n

Heat

Chip

Forces

Machined

surface

The chip removal mechanism

 Associated to chip removal:

● Forces: The tool and the part

exchange the forces needed to

deform the working stock, separate

it from the part and transform it into

chip.

● Heat: Plastic deformation  of theuncut chip plus the friction 

between the tool and the chip

involve the generations of a large

heat amount.

26

Tool

Page 27: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 27/59

Computer Aided Manufacturing

   t  e  m  p  e  r  a   t  u  r  e

  s   t  r  e  s  s  e  s

Stress and temperature

Page 28: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 28/59

Computer Aided Manufacturing

Temperature

28

Page 29: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 29/59

Computer Aided Manufacturing

The chip removal mechanism

How does the machining allowancetransforms into chip ?

29

The tool stresses the material until

this deforms plastically. With goodapproximation it can be said that the

area where the material is deformed

is a plane, called shear plane.

The deformation proceeds until the

separation between chip and part. Itis therefore the working stock that is

transformed into chip, that flows on

the tool.

Shear

plane

Chip

Shear stress

Page 30: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 30/59

Computer Aided Manufacturing

The chip removal mechanism

Comparison with reality

30

Shear plane

Page 31: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 31/59

Computer Aided Manufacturing

Shear zone

31

h D 

h ch 

v c g  

Cutting edge

a  

Shear plane Shear zone

Page 32: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 32/59

Computer Aided Manufacturing

The chip removal mechanism

32

Source:  After M.C. Shaw, P.K. Wright, and S.

Kalpakjian.

Page 33: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 33/59

Computer Aided Manufacturing

Discontinuos chip

33

Source:  After M.C. Shaw, P.K.

Wright, and S. Kalpakjian.

Page 34: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 34/59

Computer Aided Manufacturing

Continuous chip

34

Source:  After M.C. Shaw, P.K.

Wright, and S. Kalpakjian.

Page 35: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 35/59

Computer Aided Manufacturing

Serrated (segmented) chip

35

Source:  After M.C. Shaw, P.K.

Wright, and S. Kalpakjian.

Page 36: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 36/59

Computer Aided Manufacturing

Built Up Edge

36

Source:  After M.C. Shaw, P.K.

Wright, and S. Kalpakjian.

Page 37: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 37/59

Computer Aided Manufacturing

Chip orientation

37

(a) tightly curled chip

(b) chip hits workpiece and breaks

(c) continuous chip moving away from workpiece

(d) chip hits tool shank and breaks off

Source: G. Boothroyd, Fundamentals of Metal Machining and Machine Tools. Copyright ©1975; McGraw-Hill

Publishing Company.

Page 38: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 38/59

Computer Aided Manufacturing

Chip breakers

38

Grooves as

chip breakers

Page 39: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 39/59

Computer Aided Manufacturing

Card deck model of chip formation

Mechanics of chip formation

39

g       ++   tancot

OC 

OB

OC 

 AO

OC 

 ABShear strain

Shear Strain:

b

a  

g  

 

cos

sin

ch

 D

h

hr Cutting ratio

g

g

a

Page 40: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 40/59

Computer Aided Manufacturing

Mechanics of chip formation

40

ch Dc  hvhv   g 

Since hch > hD  vg < v c  

From the velocity diagram: 

 g g  g 

sincoscos

vvv shc

Where v sh is the velocity at which shearing takes place in the shear plane.

g  

 g 

cos

sin

cc

ch

 D

c   vr vh

h

vv

Mass continuity 

90+g

gg

90g

vc

vg

vsh

Page 41: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 41/59

Computer Aided Manufacturing

Shear strain rate

41

The shear strain rate is then the ratio of

v sh  to the thickness a of the sheared

element (shear zone), or:

a

v

adt 

dAB

OC 

 AB

dt 

dt 

d  sh

 

  

 

  1    

Experimental evidence indicates that a is on the order of 10-2 to

10-3 mm. This means that, even at low cutting speed, the shear

strain rate is very high, on the order of 103 to 106 s-1.

g

g

a

Page 42: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 42/59

Computer Aided Manufacturing

Shear strain rate

42

vc  

Page 43: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 43/59

Computer Aided Manufacturing

Force circle

43

 b : friction angle b  

Between the tool and the part a force F  is developed that can be

subdivided in two components according to different directions:

● rake

● shear plane

● cutting direction

Page 44: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 44/59

Computer Aided Manufacturing

F g and F gN  

44

 F g : force tangential to the rake plane

● F g N : force normal to the rake plane

 F g = F  sen  b F g N = F  cos  b

 F g 

 F g N 

 b

Page 45: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 45/59

Computer Aided Manufacturing

F c  and F 

f

 Cutting force (F c ), parallel

to the cutting speed .

● Feed force (F f ), normal to

the cutting speed.

These forces are not known,

but they can be measured orpredicted with mathematical

models.

45

 F c = F  cos ( b   g )

 F f  = F  sen ( b   g )F  f  

F  c 

Page 46: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 46/59

Computer Aided Manufacturing

F sh 

 and F shN 

 

46

 F sh = F  cos (  + b   g )

 F shN = F  sen (  + b   g )

 F sh: force in the shear plane

● F shN : force normal to the shear plane

Page 47: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 47/59

Computer Aided Manufacturing

Estimation of forces (theory)

47

c

sh

D

cos sen

cos

 F ( )

 A ( )

b g   

 b g 

+

γ   f c f c

γN c f c f  

cos sen tantan

cos sen tan

 F    F F F F  

 F F F F F 

g g g  b 

g g g 

+ +

Parameters:

• g  is a property of the cutting tool

•  b  can be estimated:

g , b ,  ,  sh

g

g

  g

 g

g

  g

)cos(

sen)(sensen)(sensen

D

c

DD

shNsh

g  b 

 g  b   g  b    

+

+

 A

 F 

 A

 F 

 A

 F 

Page 48: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 48/59

Computer Aided Manufacturing

Estimation of forces (theory)

48

 F c = F  cos ( b   g )

 F sh = F  cos (  + b   g ))cos(

sh

g  b     +

 F 

 F 

)cos(

)cos(shc

g  b  

g  b 

+

 F 

 F     

sen

D

shshshsh

 A A F   

)cos(

)cos(

sen

Dshc

g  b  

g  b 

  

+

 A

 F   c

sh

D

cos sen

cos

 F ( )

 A ( )

b g   

 b g 

+

Page 49: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 49/59

Computer Aided Manufacturing

Estimation of shear angle

49

Cutting ratio method

ch ch chD

c

ch D D D

b l l hr 

h b l l  

ch ch D ch DD

c

ch D D D

b l h b l hhr 

h b l h M  

   

  

c

c

costan

1 sen

g  

Chip length

Chip mass

D D D ch ch chh b l h b l  

Constant chip volume:

D chb b b

Orthogonal cutting:

c

ch

sin sin

cos cos

 Dh A' B

r h A' B

 

g g  

Page 50: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 50/59

Computer Aided Manufacturing

Pijspanen model

• No strain hardening

• No Built Up Edge

• No friction on the flank

• Plastic deformation begins

when  max =  sh (elastic strain isnot considered)

• No friction between tool’s  rake

and chip

Estimation of shear angle

 Angle    assumes a value that minimizes the shear strain g  

  2 2

1 1cot tan( ) 0

sen cos ( )

g  g 

g  

+ +

  24

g      +

50

(g)

 

( -g)

(g)

 

( -g)

 A’  

Page 51: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 51/59

Computer Aided Manufacturing

Estimation of shear angle

Ernst & Merchant model

• No strain hardening

• No Built Up Edge

• No friction on the flank

• Constant  sh 

• No friction between tool’s rake and chip

• Shear angle assumes the value that minimizes the energy

51

 Angle    assumes a value that minimizes the energy of cutting

Page 52: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 52/59

Computer Aided Manufacturing

Ernst & Merchant model

Estimation of shear angle

)cos(

)cos(

sen

Dshc

g  b  

g  b 

  

+

 A

 F 

 H  A

 H  F U   

+

)cos(

)cos(

sen

Dshcc

g  b  

g  b 

  

0c

 

224

 b g      +

52

Page 53: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 53/59

Page 54: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 54/59

Page 55: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 55/59

Computer Aided Manufacturing

The cutting pressure kc is defined from the relationship:

def 

c c D F k A

Cutting pressure method

kc depends on:

• AD 

• Mechanical characteristics of the workpiece material

• Tool material and geometry (g   in particular)

• vc 

• lubrication conditions

Page 56: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 56/59

Computer Aided Manufacturing

Kronenberg relationship:

 y x bh

k k    cs

where k cs is the specific cutting pressure to remove a chip

section of 1 mm2 with h = 1 mm and b = 1 mm

Typically,  y  0, thus: cs

 x

k k 

h

• k cs related to the material to machine

• k c decreases as h increases

• x costant mainly related to the tool material

Cutting pressure

Page 57: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 57/59

Page 58: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 58/59

Page 59: Machining Part I - Cutting Theory

8/12/2019 Machining Part I - Cutting Theory

http://slidepdf.com/reader/full/machining-part-i-cutting-theory 59/59

Cutting with an oblique tool

In practice most of the cutting processes use oblique tools