mae 140 winter 12 hw4 solutions - university of...

5
1 MAE140 Win12 HW4 Solutions T R & T, 3.9, 3.10, 3.12, 3.15 a) and c), 3.20 a) and b), 3.22, 3.26, 4.2, 4.6, 4.13 39 (a) To write meshcurrent equations by inspection, we note that the total resistances in mesh A and B are 10 + 5, and 10 + 5, respectively. The resistance common to meshes A and B is 5. Using these observations, we write the mesh equations as, Mesh A: 10 + 5 ! 5 ! 12 = 0 Mesh B: 10 + 5 ! 5 ! + 4 = 0 (b) Solving the equations, we can get: ! = 0.8, ! = 0 (c) Using the results, ! = 10 ! = 8 ! = ! ! = 0.8 310 (a) Writing meshcurrent equations by inspection, we can get: : 4 + 2 + 4 ! 4 ! 15 + 15 = 0 : 4 + 2 + 4 ! 4 ! 15 = 0 (b) Solving the matrix, we can get ! = 0.7143 , ! = 1.7857 (c) Using the results, ! = 4 ! = 7.14 ! = ! ! = 1.07

Upload: domien

Post on 22-Apr-2018

221 views

Category:

Documents


7 download

TRANSCRIPT

 

 

1  

 

MAE140  Win12  HW4  Solutions  T  R  &  T,  3.9,  3.10,  3.12,  3.15  a)  and  c),  3.20  a)  and  b),  3.22,  3.26,  4.2,  4.6,  4.13    3-­‐9  

 

 (a) To  write  mesh-­‐current  equations  by  inspection,  we  note  that  the  total  resistances  in  mesh  A  and  B  are  

10𝑘𝛺 + 5𝑘𝛺,  and  10𝑘𝛺 + 5𝑘𝛺,  respectively.  The  resistance  common  to  meshes  A  and  B  is  5𝑘𝛺.  Using  these  observations,  we  write  the  mesh  equations  as,    

Mesh  A: 10𝑘𝛺 + 5𝑘𝛺 𝑖! − 5𝑘𝛺𝑖! − 12𝑉 = 0  

Mesh  B:   10𝑘𝛺 + 5𝑘𝛺 𝑖! − 5𝑘𝛺𝑖! + 4𝑉 = 0  

 

(b) Solving  the  equations,  we  can  get:    

𝑖! = 0.8𝑚𝐴, 𝑖! = 0𝑚𝐴  

(c) Using  the  results,    

𝑣! = 10𝑘𝛺𝑖! = 8𝑉  

𝑖! = 𝑖! − 𝑖! = 0.8𝑚𝐴  

3-­‐10  

 (a) Writing  mesh-­‐current  equations  by  inspection,  we  can  get:  

𝑀𝑒𝑠ℎ  𝐴: 4𝑘𝛺 + 2𝑘𝛺 + 4𝑘𝛺 𝑖! − 4𝑘𝛺𝑖! − 15𝑉 + 15𝑉 = 0  

𝑀𝑒𝑠ℎ  𝐵:   4𝑘𝛺 + 2𝑘𝛺 + 4𝑘𝛺 𝑖! − 4𝑘𝛺𝑖! − 15𝑉 = 0  

(b) Solving  the  matrix,  we  can  get  

𝑖! = 0.7143  𝑚𝐴, 𝑖! = 1.7857  𝑚𝐴  

(c) Using  the  results,    

𝑣! = 4𝑘𝛺  𝑖! = 7.14𝑉  

𝑖! = 𝑖! − 𝑖! = 1.07  𝑚𝐴  

 

 

2  

 

3-­‐12  

 

 

 

 

 (a) Creating  a  supermesh  as  shown  in  the  figure,  we  can  get  

𝑖! = 𝑖! − 𝑖!    

𝑅! + 𝑅! 𝑖! + 𝑅! + 𝑅! + 𝑅! 𝑖! − 𝑣! = 0  

(b) Using  the  given  values,  we  can  get  

𝑖! = −25𝑚𝐴, 𝑖! = 75𝑚𝐴  

                                         So  we  obtain,    

𝑣! = 𝑖!𝑅! = 18.75𝑉  𝑖! = −𝑖! = 0.025  𝐴  

(c) The  total  power  𝑃 = 𝑖!! 𝑅! + 𝑅! + 𝑖!! 𝑅! + 𝑅! + 𝑅! − 𝑖!𝑣! = 3.75𝑊.    Please  pay  attention  to  the  direction  of  the  current  and  voltage.    

 

3-­‐15      

 

 

(a) Writing  mesh-­‐current  equations  by  inspection,  we  can  get:    𝑀𝑒𝑠ℎ  𝐴: 𝑖! 2𝑘𝛺 + 4𝑘𝛺 − 𝑖! ∙ 4𝑘𝛺 − 𝑖! ∙ 2𝑘𝛺 = 40𝑉    𝑀𝑒𝑠ℎ  𝐵:   − 𝑖! ∙ 4𝑘𝛺 + 𝑖! 4𝑘𝛺 + 8𝑘𝛺 = 25𝑉    𝑀𝑒𝑠ℎ  𝐶: 𝑖! = 5𝑚𝐴      

(c) Node  voltage;  there  is  only  one  equation  to  solve.  

   

𝑖!   𝑖!  

supermesh  

 

 

3  

 

 

3-­‐20  

 

 

 

 

 

(a) Writing  the  mesh-­‐current  equations  by  inspection,  we  can  get:  𝑀𝑒𝑠ℎ  𝐴: 4𝑘𝛺 + 10𝑘𝛺 𝑖! − 10𝑘𝛺 ∙ 𝑖! + 10 = 0    𝑀𝑒𝑠ℎ  𝐵:   − 10𝑘𝛺𝑖! + 1𝑘𝛺 + 10𝑘𝛺 + 2𝑘𝛺 𝑖! − 2𝑘𝛺𝑖! = 0    𝑀𝑒𝑠ℎ  𝐶:   − 2𝑘𝛺𝑖! + 2𝑘𝛺 + 8𝑘𝛺 + 6𝑘𝛺 𝑖! − 6𝑘𝛺𝑖! = 0    𝑀𝑒𝑠ℎ  𝐷: 6𝑘𝛺𝑖! − 6𝑘𝛺𝑖! − 10 − 5 = 0    Write  in  matrix  form:  4𝑘𝛺 + 10𝑘𝛺 −10𝑘𝛺 0 0−10𝑘𝛺 1𝑘𝛺 + 10𝑘𝛺 + 2𝑘𝛺 −2𝑘𝛺 00 −2𝑘𝛺 2𝑘𝛺 + 8𝑘𝛺 + 6𝑘𝛺 −6𝑘𝛺0 0 −6𝑘𝛺 6𝑘𝛺

𝑖!𝑖!𝑖!𝑖!

=

−100015

 

Solving  the  equations,  we  can  get        𝑖! = −1.2565  𝑚𝐴        𝑖! = −0.7592  𝑚𝐴        𝑖! =  1.3482  𝑚𝐴          𝑖! = 3.8482  𝑚𝐴  

 (b) By  looking  at  the  figure,  we  can  find  v! = 5V,  v! = 15V.  Then  we  can  write  the  node-­‐voltage  equations.    

Node  B:  − !!𝑣! +

!!+ !

!"+ 1 𝑣! − 𝑣! −

!!"𝑣! = 0  

Node  C:  −𝑣! + 1 + !!+ !

!𝑣! −

!!𝑣! = 0  

Solving  the  equations,  we  can  get      𝑣! =  10.0262  V      𝑣! =  10.7853  V    It’s  obvious  that  node-­‐voltage  needs  less  effort.        

3-­‐22  

Using  current  division,  we  can  get  

𝑖! =

1𝑅! + 𝑅!

1𝑅!+ 1𝑅!

+ 1𝑅! + 𝑅!

𝑖!    ⇒      𝐾 =𝑖!𝑖!=

1𝑅! + 𝑅!

1𝑅!+ 1𝑅!

+ 1𝑅! + 𝑅!

 

 

A  

B  

C  

D  

 

 

4  

 

_+

12V

200

200

100

6V

200

200

100

_+

 3-­‐26            

   

                                                                                                                                                           𝑣!! = 12𝑉 ∙ !""||!""!""!!""||!""

  = 3𝑉          𝑣!! = 6𝑉 ∙ !""||!""!""!!""||!""

  = 3𝑉  

𝑣! = 𝑣!! + 𝑣!! = 6𝑉        4-­‐2  

 Using  the  current  division  in  the  input  circuit,  we  can  get  

𝑖! =100

100 + 100𝑖! =

12𝑖!  

Similarly,  the  output  current  𝑖!  can  be  found  in  the  output  circuit  by  current  division.    

𝑖! =2

2 + 2𝑖! =

12𝑖!  

At  node  A,  KCL  requires  that  𝑖! = −100𝑖! = −50𝑖!.  So  we  can  get  

𝑖! =12𝑖! = −25𝑖!    ⇒    

𝑖!𝑖!= −25  

Using  Ohm’s  law,  we  can  get  𝑣! = 2000𝑖! = −5×10!𝑖!  

𝑣! = 100𝑖! = 50𝑖!  𝑣!𝑣!

=−5×10!𝑖!20𝑖!

= −1000  

The  power  supplied  by  the  independent  current  source  is    𝑃! = 100||100 𝑖!! = 0.2  𝑚𝑊  

The  power  delivered  to  the  2𝑘Ω  load  is    𝑃! = 2000𝑖!! = 5𝑊  

 

A        𝑖!  

 

 

5  

 

   Applying  KCL  at  node  A,  we  can  get:  

𝑖! + 𝛽𝑖! − 𝑖! = 0   ⇒     𝑖! =1

1 − 𝛽𝑖!  

𝑖! = −𝛽𝑖! =𝛽

𝛽 − 1𝑖!    ⇒    

𝑖!𝑖!=

𝛽𝛽 − 1

 

 

 Using  Ohm’s  law,  we  can  get  

𝑅!" =𝑣!"𝑖!

=𝑖!𝑅𝑖!

 

 At  node  A,  applying  KCL,    

𝑖! − 𝑖! + 𝛽𝑖! = 0     ⇒       𝑖! =1

1 − 𝛽𝑖!

 So  the  result  is    

𝑅!" =1

1 − 𝛽𝑅  

+  

𝑣!"  

-­‐  

A