magma evolution of poikilitic shergottite nwa 7397 from ... · magma evolution of poikilitic...

1
RESEARCH POSTER PRESENTATION DESIGN © 2015 www.PosterPresentations.com NWA 7397 Poikilitic shergottite Discovered in Morocco in June, 2012 [1] 2.13 kg, partially covered in fusion crust 3 rd REE-enriched permafic (after RBT 04262 and GRV 020090) [2] Crystallization age: ?? Comprised of 2 lithologies [2] : Poikilitic: olivine, pyroxene, chromite Non-poikilitic: olivine, pyroxene, maskelynite, minor spinel, phosphate, sulfide, Fe-oxide Olivine of both lithologies contain melt inclusions (MIs) Introduction Determine the melt inclusion (MI)-source magmas and their progressive differentiation using textural observations Understand the evolution of shergottite magmatic systems Objectives 7 MIs of a thick section of NWA 7397 (Fig. 3) were studied by- EDX-elemental maps and BSE-images JEOL-SEM 7600F @ NASA-JSC Major oxide analysis of host olivines and MIs Cameca SX-100 electron microprobe @ NASA-JSC Modal composition (in wt.%) calculation of MIs ImageJ software Post-entrapment Fe-Mg re-equilibration correction PETROLOG3 software Methods Melt Inclusions (MIs) References [1] Meteoritical Bulletin Database. [2] Howarth et al. (2014) MAPS, 49, 1812-1830. [3] Danyushevsky et al. (2002) Chem Geo, 183, 5-24. [4] Potter et al. (2015) LPSC XLVI, Abstr. #2945. [5] Basu Sarbadhikari et al. (2011) GCA, 75, 6803-6820. [6] Basu Sarbadhikari et al. (2016) MAPS, 1-17. [7] Agee et al. (2013) Science, 339, 780-785. [8] Filiberto & Dasgupta (2011) EPSL, 304, 527-537. [9] McSween et al. (2009) Science, 324, 736-739. [10] McSween et al. (2006) JGR, 111, E02S10. [11] Schmidt et al. (2014) JGR, 119, 64-81. Compared to RBT 04262 1 University of Houston, Houston TX 77204, USA, [email protected], 2 Jacobs, NASA-Johnson Space Center, Mail Code X13, Houston TX 77058, USA J. Ferdous 1 , A. D. Brandon 1 and A. H. Peslier 2 Magma Evolution of Poikilitic Shergottite NWA 7397 from its Olivine-hosted Melt Inclusions Figure 1: NWA 7397. block is 1 cm. Source: www.meteoritemarket.com Figure 3: Energy Dispersive X-ray (EDX) map of NWA 7397 thick section showing major phases with the poikilitic (P) and non-poikilitic (nP) lithologies outlined by the black line. The analyzed melt inclusion (MI) locations are marked by red boxes. Figure 5: Compositional diagram of primary pyroxenes [2] and MI-pyroxenes (MI PX) of NWA 7397. Melt Compositions Figure 2: Major phases and modal abundances of NWA 7397 [2]. Host Olivine MI Ca-poor PX MI Ca-rich PX a) Host Olivine MI Ca-poor PX MI Ca-rich PX b) Host Olivine MI-1 Mg-rich PX rim MI-1,2 K-Na-rich Glass MI-2 Ca-rich PX rim c) MI-1 MI-2 Host Olivine MI-1,2 PX MI-1,2 K-Na-rich Glass d) MI-1 MI-2 Host Olivine MI Mg-rich PX rim MI Ca-rich PX rim MI Plag-rich Glass MI K-feld-rich Glass e) f) Host Olivine MI Ca-P-rich PX MI Plag-rich Glass Figure 4: Compositional maps of NWA 7397 melt inclusions generated using ImageJ software. Poikilitic MIs (a-b) and Non-poikilitc MIs (c-g). PX= pyroxene, Plag= plagioclase, K-feld= K-feldspar. Host Olivine MI Plag-rich Glass MI K-feld-rich Glass MI Sulfide MI Phosphate g) Primary PX MI PX Figure 6: MgO/FeO ratios of NWA 7397 MIs and corrected for Fe-Mg exchange with host olivine vs. forsterite content (Fo) of host olivine. Black arrow= equilibrium conditions between olivine and basaltic melt [3]. Figure 8: SiO 2 vs. (a) FeO/MgO ratio and (b) Na 2 O+K 2 O- diagrams of MI-trapped magma compositions (MC) of NWA 7397, RBT 04262 [4], LAR 06319 [5] and Tissint [6] with other Martian surface rocks [7,8] and Martian mantle average [8]. Blue arrows= fractionation trends in terrestrial magmas [9]. Blue shaded area= SNC-bulk composition field, Pink shaded area= Gusev crater rock composition field [10], Green shaded area= Gale crater rock composition field [11]. Figure 7: Molar Mg# vs. (a) SiO 2 , (b) Al 2 O 3 , (c) CaO and (d) CaO/Al 2 O 3 contents of MIs of NWA 7397 and another olivine-phyric shergottite RBT 04262 [4] before and after the post-entrapment corrections [3]. P= Poikilitic MI, nP= Non-poikilitic MI, PBC= Present Bulk Composition, MC= Trapped Magma Composition. Compared to Other Meteorites and Rover data 0 5 10 15 20 25 0 10 20 30 40 50 60 70 80 Al 2 O 3 (wt %) (b) 0 5 10 15 20 25 0 10 20 30 40 50 60 70 80 CaO (wt %) Molar Mg# (c) 0 0.4 0.8 1.2 1.6 2 0 10 20 30 40 50 60 70 80 CaO/Al 2 O 3 Molar Mg# (d) (a) (b) Conclusions MI of NWA 7397 and RBT 04262 have higher SiO 2 and distinct alkali-contents compared to SNC bulk-rock and Bounce rock. Their compositions can be linked by fractional crystallization processes. Some MI of NWA 7397 and RBT 04262 have compositions resembling that of rocks analyzed by the Pathfinder rover. One MI from NWA 7397 has a composition similar to those of Gale crater rocks. 45 55 65 75 0 10 20 30 40 50 60 70 80 SiO 2 (wt%) NWA-P-PBC NWA-P-MC NWA-nP-PBC NWA-nP-MC RBT-P-PBC RBT-P-MC RBT-nP-PBC RBT-nP-MC (a)

Upload: others

Post on 30-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Magma Evolution of Poikilitic Shergottite NWA 7397 from ... · Magma Evolution of Poikilitic Shergottite NWA 7397 from its Olivine-hosted Melt Inclusions Figure 1: NWA 7397. block

RESEARCH POSTER PRESENTATION DESIGN © 2015

www.PosterPresentations.com

NWA 7397

• Poikilitic shergottite

• Discovered in Morocco in June, 2012 [1]

• 2.13 kg, partially covered in fusion crust

• 3rd REE-enriched permafic (after RBT 04262 and GRV 020090) [2]

• Crystallization age: ??

• Comprised of 2 lithologies [2] :

Poikilitic: olivine, pyroxene, chromite

Non-poikilitic: olivine, pyroxene, maskelynite, minor spinel, phosphate, sulfide, Fe-oxide

• Olivine of both lithologies contain melt inclusions (MIs)

Introduction

• Determine the melt inclusion (MI)-source magmas and their progressivedifferentiation using textural observations

• Understand the evolution of shergottite magmatic systems

Objectives

7 MIs of a thick section of NWA 7397 (Fig. 3) were studied by-

• EDX-elemental maps and BSE-images JEOL-SEM 7600F @ NASA-JSC

• Major oxide analysis of host olivines and MIs Cameca SX-100 electronmicroprobe @ NASA-JSC

• Modal composition (in wt.%) calculation of MIs ImageJ software

• Post-entrapment Fe-Mg re-equilibration correction PETROLOG3 software

Methods

Melt Inclusions (MIs)

References

[1] Meteoritical Bulletin Database. [2] Howarth et al. (2014) MAPS, 49, 1812-1830. [3] Danyushevsky et al. (2002) Chem Geo, 183, 5-24. [4] Potter et al. (2015) LPSC XLVI, Abstr. #2945. [5] Basu Sarbadhikari et al. (2011) GCA, 75, 6803-6820. [6] Basu Sarbadhikari et al. (2016) MAPS, 1-17. [7] Agee et al. (2013) Science, 339, 780-785. [8] Filiberto & Dasgupta (2011) EPSL, 304, 527-537. [9] McSween et al. (2009) Science, 324, 736-739. [10] McSween et al. (2006) JGR, 111, E02S10. [11] Schmidt et al. (2014) JGR, 119, 64-81.

Compared to RBT 04262

1University of Houston, Houston TX 77204, USA, [email protected], 2Jacobs, NASA-Johnson Space Center, Mail Code X13, Houston TX 77058, USA

J. Ferdous1, A. D. Brandon1 and A. H. Peslier2

Magma Evolution of Poikilitic Shergottite NWA 7397

from its Olivine-hosted Melt Inclusions

Figure 1: NWA 7397. block is 1 cm.

Source: www.meteoritemarket.com

Figure 3: Energy Dispersive X-ray (EDX) map of NWA 7397 thick section showing major phaseswith the poikilitic (P) and non-poikilitic (nP) lithologies outlined by the black line. The analyzedmelt inclusion (MI) locations are marked by red boxes.

Figure 5: Compositional diagram of primarypyroxenes [2] and MI-pyroxenes (MI PX) ofNWA 7397.

Melt Compositions

Figure 2: Major phases and modalabundances of NWA 7397 [2].

Host OlivineMI Ca-poor PXMI Ca-rich PX

a)Host OlivineMI Ca-poor PXMI Ca-rich PX

b)

Host OlivineMI-1 Mg-rich PX rimMI-1,2 K-Na-rich GlassMI-2 Ca-rich PX rim

c)

MI-1

MI-2

Host OlivineMI-1,2 PXMI-1,2 K-Na-rich Glass

d)

MI-1

MI-2

Host OlivineMI Mg-rich PX rimMI Ca-rich PX rimMI Plag-rich GlassMI K-feld-rich Glass

e) f)Host OlivineMI Ca-P-rich PXMI Plag-rich Glass

Figure 4: Compositional maps of NWA7397 melt inclusions generated usingImageJ software. Poikilitic MIs (a-b) andNon-poikilitc MIs (c-g). PX= pyroxene,Plag= plagioclase, K-feld= K-feldspar.

Host OlivineMI Plag-rich GlassMI K-feld-rich GlassMI SulfideMI Phosphate

g)

Primary PXMI PX

Figure 6: MgO/FeO ratios of NWA 7397 MIs andcorrected for Fe-Mg exchange with host olivinevs. forsterite content (Fo) of host olivine. Blackarrow= equilibrium conditions between olivineand basaltic melt [3].

Figure 8: SiO2 vs. (a) FeO/MgO ratio and (b) Na2O+K2O- diagrams of MI-trapped magma

compositions (MC) of NWA 7397, RBT 04262 [4], LAR 06319 [5] and Tissint [6] with other

Martian surface rocks [7,8] and Martian mantle average [8]. Blue arrows= fractionation trends in

terrestrial magmas [9]. Blue shaded area= SNC-bulk composition field, Pink shaded area= Gusev

crater rock composition field [10], Green shaded area= Gale crater rock composition field [11].

Figure 7: Molar Mg# vs. (a) SiO2, (b) Al2O3, (c) CaO and (d) CaO/Al2O3 contents of MIs of NWA7397 and another olivine-phyric shergottite RBT 04262 [4] before and after the post-entrapmentcorrections [3]. P= Poikilitic MI, nP= Non-poikilitic MI, PBC= Present Bulk Composition, MC=Trapped Magma Composition.

Compared to Other Meteorites and Rover data

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80

Al 2

O3

(wt

%)

(b)

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80

CaO

(w

t %

)

Molar Mg#

(c)

0

0.4

0.8

1.2

1.6

2

0 10 20 30 40 50 60 70 80

CaO

/Al 2

O3

Molar Mg#

(d)

(a)

(b)

Conclusions

• MI of NWA 7397 and RBT 04262 have higher SiO2 and distinct alkali-contentscompared to SNC bulk-rock and Bounce rock. Their compositions can be linkedby fractional crystallization processes.

• Some MI of NWA 7397 and RBT 04262 have compositions resembling that ofrocks analyzed by the Pathfinder rover.

• One MI from NWA 7397 has a composition similar to those of Gale craterrocks.

45

55

65

75

0 10 20 30 40 50 60 70 80

SiO

2(w

t%)

NWA-P-PBC NWA-P-MC NWA-nP-PBC

NWA-nP-MC RBT-P-PBC RBT-P-MC

RBT-nP-PBC RBT-nP-MC(a)