magnetically- and bacteria-actuated mobile micro-robots · 2015. 10. 14. · micron scale mobile...

23
1 © Metin Sitti, MPI/CMU Magnetically- and Bacteria-Actuated Mobile Micro-Robots Director, MPI for Intelligent Systems, Stuttgart, Germany Professor, Carnegie Mellon University, Pittsburgh, USA 21 November 2014 © Metin Sitti, MPI/CMU Outline Introduction Bacteria Propelled Swimming Micro-Robots Magnetically Actuated Micro-Robots Conclusions

Upload: others

Post on 04-Oct-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Magnetically- and Bacteria-Actuated Mobile Micro-Robots · 2015. 10. 14. · Micron Scale Mobile Robots? Challenge: *M. Sitti, Nature 458, 1121, April 2009 (News & Views) Miniaturization

1

© Metin Sitti, MPI/CMU

Magnetically- and Bacteria-Actuated Mobile Micro-Robots

Director, MPI for Intelligent Systems, Stuttgart, Germany

Professor, Carnegie Mellon University, Pittsburgh, USA

21 November 2014

© Metin Sitti, MPI/CMU

Outline

•  Introduction

•  Bacteria Propelled Swimming Micro-Robots •  Magnetically Actuated Micro-Robots

•  Conclusions

Page 2: Magnetically- and Bacteria-Actuated Mobile Micro-Robots · 2015. 10. 14. · Micron Scale Mobile Robots? Challenge: *M. Sitti, Nature 458, 1121, April 2009 (News & Views) Miniaturization

2

© Metin Sitti, MPI/CMU

Small Scale Perception, Control and Action

An Amoeba during Phagocytosis

© Metin Sitti, MPI/CMU

Small Scale Biological Coordination and Swarming

S. Pratt, ASU Collective food retrieval by ant teams

H. Berg, Harvard Swarming of Salmonella typhimurium

Page 3: Magnetically- and Bacteria-Actuated Mobile Micro-Robots · 2015. 10. 14. · Micron Scale Mobile Robots? Challenge: *M. Sitti, Nature 458, 1121, April 2009 (News & Views) Miniaturization

3

© Metin Sitti, MPI/CMU

Characteristics of Micro-Robots •  Small scale physics and dynamics:

–  Increased surface area to volume (S/V) ratio:

•  Surface forces/drag/friction >> Inertial forces –  Sticky & dissipative world!

•  Fluidics: low Reynolds number (Re) –  Inherently nonlinear, fast and stochastic dynamics –  More sensitive to disturbances

S/V = 10-4 /mm Re = 108

0.4 body length/sec

S/V = 103 /mm Re = 10-4

30-50 body length/sec

1 µm

~2 m

13

2−∝∝ L

L

L

V

S

•  Limited everything on-board (actuation, power, computing, communication, sensing)

•  New design, fabrication and control methods

© Metin Sitti, MPI/CMU 10 cm 1 cm 1 mm 100 µm 10 µm

Our Miniature Mobile Robot Portfolio

Page 4: Magnetically- and Bacteria-Actuated Mobile Micro-Robots · 2015. 10. 14. · Micron Scale Mobile Robots? Challenge: *M. Sitti, Nature 458, 1121, April 2009 (News & Views) Miniaturization

4

© Metin Sitti, MPI/CMU

Micron Scale Mobile Robots?

Challenge:

*M. Sitti, Nature 458, 1121, April 2009 (News & Views)

Miniaturization limitations on on-board power source & actuation*

© Metin Sitti, MPI/CMU On-Board Actuation Approach: Cell-Actuated (Self-Propelled)

Bio-Hybrid Micro-Robots •  Harvesting the motility of cells to actuate micro-systems •  Chemical energy inside the cell

Nature Comm. (2014)

Adv. Mat. (2014)

APL (2007), PNAS (2005), Biophys. J. (2004), …

R. Carlsen & M. Sitti, Small, on-line published (2014)

Nature Materials, 4 (2005)

Page 5: Magnetically- and Bacteria-Actuated Mobile Micro-Robots · 2015. 10. 14. · Micron Scale Mobile Robots? Challenge: *M. Sitti, Nature 458, 1121, April 2009 (News & Views) Miniaturization

5

© Metin Sitti, MPI/CMU

Selected Bio-Actuator: Serratia Marcescens Bacterium

•  Speed: ~30 µm/s

•  Sticks to surfaces with their cell body

•  Chemotactic

Kwangshin Kim Science Photo Library Howard Berg

Harvard Univ.

© Metin Sitti, MPI/CMU

Attaching Bacteria to a 10 µm Polystyrene Bead

Blotting on the culture plate

B. Behkam and M. Sitti, Appl. Phys. Lett., 90, 23902 (2007)

Page 6: Magnetically- and Bacteria-Actuated Mobile Micro-Robots · 2015. 10. 14. · Micron Scale Mobile Robots? Challenge: *M. Sitti, Nature 458, 1121, April 2009 (News & Views) Miniaturization

6

© Metin Sitti, MPI/CMU

Bacteria Attachment Density Control

Attachment Time

Attachment Density

(Bacteria/µm2)

Sample Size

# of Bacteria on 10 µm bead

30 sec 0.17 1 54

1 min 0.35 ± 0.14 10 111 ± 45

5 min 0.47 ± 0.14 7 149 ± 44

10 µm 10 µm 10 µm

30 sec 1 min 5 min

Representative Images for different attachment times:

© Metin Sitti, MPI/CMU

Stochastic 3D Bead Translation & Rotation

MD : rotational drag on the bead FD : translational drag on the bead Fb : bacteria propulsive force

Motion parameters: •  Flagella run and tumble rates •  Flagella propulsion force & torque •  Flagella hook flexibility & orientation •  Bacteria number & surface distribution •  Bead radius •  Neighboring flagella microfluidic coupling? •  Neighboring bacteria communication?

Hook

V. Arabagi, B. Behkam, E. Cheung, & M. Sitti, J. Appl. Phys. 109, 114702 (2011)

Page 7: Magnetically- and Bacteria-Actuated Mobile Micro-Robots · 2015. 10. 14. · Micron Scale Mobile Robots? Challenge: *M. Sitti, Nature 458, 1121, April 2009 (News & Views) Miniaturization

7

© Metin Sitti, MPI/CMU

3D Motion Tracking from 2D Images using Light Diffraction

Calibration images

© Metin Sitti, MPI/CMU

Different 3D Motion Patterns Near vs. Away From the Surface

Away from the glass slide Near the surface

5 micron beads

M. Edwards, R. Wright, & M. Sitti, Appl. Phys. Lett. 102(14), 143701 (2013)

Spiral motion of single bacterium attached beads away from surface: Bacterium torque/force measurement

Page 8: Magnetically- and Bacteria-Actuated Mobile Micro-Robots · 2015. 10. 14. · Micron Scale Mobile Robots? Challenge: *M. Sitti, Nature 458, 1121, April 2009 (News & Views) Miniaturization

8

© Metin Sitti, MPI/CMU

Steering Control using Chemotaxis?

Chemoattractant (L-aspartate) Diffusion

Bacteria attached beads moving towards chemical attractant gradients?

© Metin Sitti, MPI/CMU

Uniform Chemical Gradient Generation

Page 9: Magnetically- and Bacteria-Actuated Mobile Micro-Robots · 2015. 10. 14. · Micron Scale Mobile Robots? Challenge: *M. Sitti, Nature 458, 1121, April 2009 (News & Views) Miniaturization

9

© Metin Sitti, MPI/CMU

Chemotactic Behavior of Unpatterned Beads

10 µm bead, 2.5x speed

© Metin Sitti, MPI/CMU

2D Motion Trajectories No Chemoattractant Chemoattractant

Vmean = 1.8 ± 0.8 µm/s Vmean = 3.3 ± 1.3 µm/s

D. Kim et al. Biomedical Microdevices 14(6), 1009 (2012)

Page 10: Magnetically- and Bacteria-Actuated Mobile Micro-Robots · 2015. 10. 14. · Micron Scale Mobile Robots? Challenge: *M. Sitti, Nature 458, 1121, April 2009 (News & Views) Miniaturization

10

© Metin Sitti, MPI/CMU

Active Steering Control using Remote Magnetic Fields

R. W. Carlsen, M. R. Edwards, J. Zhuang, C. Pacoret, & M. Sitti, Lab Chip 14(19), 3850 (2014)

© Metin Sitti, MPI/CMU

Bacteria Propelled Swimming Micro-Robotic Swarms for Future Medical Applications?

Bacteria

Physical platform •! Environment sensing

•! Bacterial actuation

•!Chemotactic/magnetotactic control

Statistical physics computational model

•!Emergence and dynamics of dense networks of bacteria propelled micro-robotic swarms

•!Characterization of collective and competitive behavior

Targeted region

Micro-robotic swarm

Single micro-robot within a swarm

Dense networks of micro-robotic swarms

Page 11: Magnetically- and Bacteria-Actuated Mobile Micro-Robots · 2015. 10. 14. · Micron Scale Mobile Robots? Challenge: *M. Sitti, Nature 458, 1121, April 2009 (News & Views) Miniaturization

11

© Metin Sitti, MPI/CMU

Off-Board Approach: External Actuation

Electrostatics Donald et al.,

Dartmouth College, USA (2005)

Scratch-drive

Nelson et al. (2009) Fischer, et al. (2009)!ETHZ Bacterial propulsion

Magnetics

Thermal Sul et al., U. North

Carolina, USA (2006)

Laser excitation 20 µm

100 µm

Yamakazi et al., Tohoku University, Japan (2001)3) Rotational swimmer

Nelson et al., ETHZ (2007) Inertial resonant drive

© Metin Sitti, MPI/CMU

Why Magnetics?

•  Versatile and Robust –  No specialized surfaces

(vs. Electrostatic) –  Long range –  No specialized environments

(vs. dirt & humidity) –  No line of sight (vs. Optical)

•  Favorable to micron scale –  High (forces &) torques

Abbott et al., IEEE RAM 14 (2007)

Page 12: Magnetically- and Bacteria-Actuated Mobile Micro-Robots · 2015. 10. 14. · Micron Scale Mobile Robots? Challenge: *M. Sitti, Nature 458, 1121, April 2009 (News & Views) Miniaturization

12

© Metin Sitti, MPI/CMU Proposed Micro-Robot Motion Principle:

Rotational Stick-Slip Motion •  Robot body

–  Permanent magnet –  Arbitrary geometry

•  Pulsed magnetic fields –  Torque-based asymmetric

rocking inducing stick-slip –  Less than 1 mT sufficient

•  Works on complex surfaces •  Operates in liquid/air/vacuum

–  < 60 mm/s in air –  < 40 mm/s in water

C. Pawashe, S. Floyd, and M. Sitti, I. J. Robotics Research 28(8), 1077 (2009)

Mag-µBot

Horizontal coil (x)

Bottom coil (z)

z

x

© Metin Sitti, MPI/CMU

Experimental Setup

Permanent magnet micro-robot

Page 13: Magnetically- and Bacteria-Actuated Mobile Micro-Robots · 2015. 10. 14. · Micron Scale Mobile Robots? Challenge: *M. Sitti, Nature 458, 1121, April 2009 (News & Views) Miniaturization

13

© Metin Sitti, MPI/CMU

Modeling Mag-µBot Behavior in 2-D •  Forces

–  Ty: Magnetic torques (1s of µN) –  Dy: Damping torque (1s of µN) –  Ff: Friction Force (100s of nN) –  N: Normal Force (100s of nN) –  Fadh: Adhesion (100s of nN) –  mg: Weight (100s of nN) –  Fx, Fz: Magnetic forces (10s of nN) –  Lx, Lz: Damping force (1s of nN)

•  Objective –  Create a dynamic simulation –  Predict robot behavior –  Predict robot velocity

Side-­‐View  Free  Body  Diagram  

Painlevé Paradox (1895)

© Metin Sitti, MPI/CMU

Contact Manipulation in Liquids

4 mm 350 µm micro-robot

underwater, 1x realtime

Page 14: Magnetically- and Bacteria-Actuated Mobile Micro-Robots · 2015. 10. 14. · Micron Scale Mobile Robots? Challenge: *M. Sitti, Nature 458, 1121, April 2009 (News & Views) Miniaturization

14

© Metin Sitti, MPI/CMU

Autonomous Two-Particle Assembly

C. Pawashe, E. Diller, S. Floyd, and M. Sitti, IEEE Trans. on Robotics 28(2), 467 (2012)

u Vision-based control

u  Iterative learning of the pushing distance

•  Star-bot on glass in

silicone oil (20 cSt) •  210 µm polymer

sphere •  7.5 µm error tolerance •  2x video speed

© Metin Sitti, MPI/CMU

Fabrication and micro-robotic manipulation of cell-encapsulating hydrogels

Page 15: Magnetically- and Bacteria-Actuated Mobile Micro-Robots · 2015. 10. 14. · Micron Scale Mobile Robots? Challenge: *M. Sitti, Nature 458, 1121, April 2009 (News & Views) Miniaturization

15

© Metin Sitti, MPI/CMU

Cell Laden Micro-Gel Assembly 1 mm

1 mm

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

S. Tasoglu, E. Diller, S. Guven, M. Sitti & U. Demirci, Nature Communications 5 (2014)

© Metin Sitti, MPI/CMU

Versatility of Micro-robotic Assembly

Page 16: Magnetically- and Bacteria-Actuated Mobile Micro-Robots · 2015. 10. 14. · Micron Scale Mobile Robots? Challenge: *M. Sitti, Nature 458, 1121, April 2009 (News & Views) Miniaturization

16

© Metin Sitti, MPI/CMU

Three-Dimensional Micro-robotic Assembly

© Metin Sitti, MPI/CMU

Spatially Coded Constructs for

Tissue Culturing

Page 17: Magnetically- and Bacteria-Actuated Mobile Micro-Robots · 2015. 10. 14. · Micron Scale Mobile Robots? Challenge: *M. Sitti, Nature 458, 1121, April 2009 (News & Views) Miniaturization

17

© Metin Sitti, MPI/CMU

3-D Assembly using Untethered Micro-Grippers

E. Diller and M. Sitti, Advanced Functional Materials 24, 4397 (2014)

© Metin Sitti, MPI/CMU

Non-Contact Manipulation

•  Fluid boundary layers generated by moving micro-robot –  Drag force applied to micro-objects from fluid (Reynolds number < 1)

50 µm polystyrene sphere silicone oil (20 cSt)

C. Pawashe, S. Floyd, and M. Sitti, IEEE Trans. Robotics 25(6), 1332 (2009)

Finite element modeling of fluid flow for a translating star-bot

Page 18: Magnetically- and Bacteria-Actuated Mobile Micro-Robots · 2015. 10. 14. · Micron Scale Mobile Robots? Challenge: *M. Sitti, Nature 458, 1121, April 2009 (News & Views) Miniaturization

18

© Metin Sitti, MPI/CMU

Rolling Locomotion and Particle Transport

Z. Ye, E. Diller & M. Sitti, J. Appl. Phys.

112, 064912 (2012)

© Metin Sitti, MPI/CMU

Non-Contact Cell Transport

Z. Ye & M. Sitti, Lab on a Chip, 14(13), 2177 (2014)

Page 19: Magnetically- and Bacteria-Actuated Mobile Micro-Robots · 2015. 10. 14. · Micron Scale Mobile Robots? Challenge: *M. Sitti, Nature 458, 1121, April 2009 (News & Views) Miniaturization

19

© Metin Sitti, MPI/CMU

Non-Contact Motile Cell Transport

© Metin Sitti, MPI/CMU

3D Locomotion: Microswimmers

Page 20: Magnetically- and Bacteria-Actuated Mobile Micro-Robots · 2015. 10. 14. · Micron Scale Mobile Robots? Challenge: *M. Sitti, Nature 458, 1121, April 2009 (News & Views) Miniaturization

20

© Metin Sitti, MPI/CMU

Rotational Swimmer using Flexible Flagella }  Flexible straight tail + Magnetic body à

Rotational propulsion }  Simple to fabricate with many flagella

}  Body rotation à Passive bending of tails }  Multi-flagella à Extra propulsion

M

Ω

Z. Ye, S. Regnier, and M. Sitti, IEEE Trans. on Robotics 30(1), 3 (2014)

© Metin Sitti, MPI/CMU

Flexible Body Undulation based Soft Microswimmer

m(x)

B

B

B

(a)

(b)

(c)

(d)

(e)camera

coils

workspace

x

y

z

E. Diller, J. Zhuang, G. Z. Lum, M. R. Edwards, & M. Sitti, Applied Physics Letters 104, 174101 (2014)

Page 21: Magnetically- and Bacteria-Actuated Mobile Micro-Robots · 2015. 10. 14. · Micron Scale Mobile Robots? Challenge: *M. Sitti, Nature 458, 1121, April 2009 (News & Views) Miniaturization

21

© Metin Sitti, MPI/CMU

Multi-Robot Control

© Metin Sitti, MPI/CMU

Micron Scale Multi-Robot Control

•  Fundamental problem: How to address each micro-robot locally using global magnetic fields?

Page 22: Magnetically- and Bacteria-Actuated Mobile Micro-Robots · 2015. 10. 14. · Micron Scale Mobile Robots? Challenge: *M. Sitti, Nature 458, 1121, April 2009 (News & Views) Miniaturization

22

© Metin Sitti, MPI/CMU Addressing Micro-Robot Teams

Remotely using Novel Magnetic Composites

E. Diller, S. Miyashita, M. Sitti, RSC Advances 2(9), 3850 (2012)

Five spinning micro-robots that could control the fluid flow locally

•  No specialized surfaces •  In any fluid or air •  Many magnetic states •  Works also in 3-D •  Scalable

© Metin Sitti, MPI/CMU

Self-Organizing Magnetic Micro-Modules

S. Miyashita, E. Diller, & M. Sitti, Int. J. Rob. Res. 32(5), 591 (2013)

Page 23: Magnetically- and Bacteria-Actuated Mobile Micro-Robots · 2015. 10. 14. · Micron Scale Mobile Robots? Challenge: *M. Sitti, Nature 458, 1121, April 2009 (News & Views) Miniaturization

23

© Metin Sitti, MPI/CMU

Summary

•  Bio-hybrid (bacteria-propelled) micro-robots –  Chemotactic/pH and remote magnetic steering –  Many future challenges towards a clinical use, but the smallest micro-

robotic devices so far

•  Magnetic micro-robots –  Sub-mm devices possible –  Current bioengineering applications –  Will be exploring their clinical use (< 1 mm access capability?)

•  Potential applications –  Medical diagnosis, therapy, and local drug delivery –  Single cell manipulation and surgery –  Desktop micro-manufacturing