magnetism - graz university of technologyhadley/ss2/lectures17w/nov30.pdf · magnet br(t) hci(ka/m)...

33
Magnetism

Upload: others

Post on 23-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

Magnetism

Page 2: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

Mean field theory

Experimental points for Ni.tanh mm

t

tanh cS

s

T MM MT M

Source: Kittel and 2 4S B c

B

N zM g T JV k

Page 3: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

FerromagnetismMaterial Curie temp. (K)

Co 1388Fe 1043FeOFe2O3 858NiOFe2O3 858CuOFe2O3 728MgOFe2O3 713MnBi 630Ni 627MnSb 587MnOFe2O3 573Y3Fe5O12 560CrO2 386MnAs 318Gd 292Dy 88EuO 69 Electrical insulatorNd2Fe14B 353 Ms = 10 Ms(Fe) Sm2Co17 700 rare earth magnets

2

4

S B

cB

NM gV

zT Jk

Page 4: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

Curie - Weiss law

1 tanh2 2

B MF aB

B

g B BNM gV k T

2 22 2

14 B a

B B

N VM g zJM BVk T Ng

Above Tc we can expand the hyperbolic tangent

2 2

4aB

B c

Bg NMVk T T

c

dM CdH T T

2 2MFB

VB zJMNg

Critical fluctuations near Tc

Solve for M

Curie Weiss Law

4cB

zT Jk

tanh( ) for 1x x x

Page 5: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

Ferromagnets are paramagnetic above Tc

Ferromagnetic

Paramagnetic

Critical fluctuations near Tc.

Source: Kittel

Page 6: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400
Page 7: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

Magnetic ordering

Ferromagnetism

Ferrimagnetism

Antiferromagnetism

Helimagnetism

All ordered magnetic states have excitations called magnons

Page 8: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

Ferrimagnets

Magnetite Fe3O4(Magneteisen)

Ferrites MO.Fe2O3

M = Fe, Zn, Cd, Ni, Cu, Co, Mg

Spinel crystal structure XY2O4

8 tetrahedral sites A (surrounded by 4 O) 5B

16 octahedral sites B (surrounded by 6 O) 9B

per unit cell

Two sublattices A and B.MgAl2O4

Page 9: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

Ferrimagnets

Magnetite Fe3O4

Ferrites MO.Fe2O3

M = Fe, Zn, Cd, Ni, Cu, Co, Mg

Exchange integrals JAA, JAB, and JBB are all negative (antiparallel preferred)

|JAB| > |JAA|,|JBB|

Magnetite

Page 10: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

Ferrimagnetismgauss = 10-4 Toersted = 10-4/4×10-7 A/m

KittelD. Gignoux, magnetic properties of Metallic systems

Page 11: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

At low temperatures, below the Neel temperature TN, the spins are aligned antiparallel and the macroscopic magnetization is zero.

Spin ordering can be observed by neutron scattering.

At high temperature antiferromagnets become paramagnetic. The macroscopic magnetization is zero and the spins are disordered in zero field.

Antiferromagnetism

Negative exchange energy JAB < 0.

0A B

a

M M CTB

Curie-Weiss temperature

Page 12: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

Antiferromagnetism

Average spontaneous magnetization is zero at all temperatures.

Source: Kittel

Page 13: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

from Kittel

Page 14: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

Applications of magnetism

Hard magnets: permanent magnets, motors, generators, microphones

Soft magnets: transformers

Magnetic recording

Page 15: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

Magnetic domains (weisssche Bezirke )

Magnetic energy density2

02B

Costs energy to introduce domain walls where spin up regions are adjacent to spin down regions.

Page 16: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400
Page 17: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

Irreproducible jump between c and d.

Ferromagnetic domains

Weak fields: favorable domains expandStrong fields: domains rotate to align with field

Page 18: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

Magnetizing a magnet

Weak fields: favorable domains expandStrong fields: domains rotate to align with field

Page 19: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

Hysteresis

M

H

0B H M

Area of the loop is proportional to energy dissipated in traversing the loop.

1r

Remnant magnetization

Coercive field M H

0 0(1 ) rB H H

Page 20: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

Anisotropy energy

easy axis

hard axis

Spin-orbit coupling couples the shape of the wavefunction to the spin. The exchange energy depends on the overlap of the wavefunctions and thus on spin direction.

Page 21: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

Bloch wall

22 2cos 1

2i jw JS S JS JS

N

2 2

2JSNw

N

energy of two spins

energy of a line of spins

22

2w JS

neglecting the constant part

energy is lower if the Bloch wall is wide

energy per unit area 2 2

22JS

Na

a is the lattice constant

Page 22: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

Bloch wall

2 22

2 [J/m ]2JSE KNa

Na

N ~ 300 for iron

2 2

2 2

2 2

3

0 02

2

dE JS KadN N a

JSNKa

Na = thickness of wall

smaller for large N

Anisotropy energy depends on the number of spins pointing in the hard direction

KNa

anisotropy constant J/m3

Total energy per unit area:

smaller for small N

Page 23: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

Soft magnetic materials

Coercive field

Remnant Fieldsoft magnets

transformersmagnetic shieldingferrites have low eddy current losses

0rB H

0B H M

1r

B [T]

M H

Page 24: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

Single domain particles

Small 10 - 100 nm particles have single domains.

Elongated particles have the magnetization along the long axis. M

Single domains are used for magnetic recording. Long crystals can be magnetized in either of the two directions along the long axis.

Shape anisotropy.

Page 25: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

Hard magnets

Grains too small to contain Bloch walls must be flipped entirely by the field.

Alnico: 8-12% Al, 15-26% Ni, 5-24% Co, up to 6% Cu, up to 1% Ti, rest is Fe

Page 26: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

Coercive field

Remnant Field

hard magnetsMagnet Br (T) Hci (kA/m) (BH)max (kJ/m3) Tc (°C)

Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

Nd2Fe14B (bonded) 0.6–0.7 600–1200 60–100 310–400

SmCo5 (sintered) 0.8–1.1 600–2000 120–200 720

Sm(Co,Fe,Cu,Zr)7(sintered) 0.9–1.15 450–1300 150–240 800

Alnico (sintered) 0.6–1.4 275 10–88 700–860

Permanent magnets, magnetron, motors, generatorsferrites can also be hard magnets

Hard magnetic materials

Defects are introduced to pin the Bloch walls in a hard magnet.

Page 27: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

Motors, generators, speakers, microphone

Applications of hard magnets

Page 28: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

Superparamagnetism

Below the Curie temperature the thermal energy changes the direction of magnetization of the entire crystallites.

http

://w

ww.

imec

.be/

mic

rosy

stem

s/bi

oele

ctro

nics

/rese

arch

/fn2.

shtm

l

Page 29: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

Composite magnets

Injection molded magnets are a composite of various types of resin and magnetic powders

Flexible magnets are made by embedding magnetic particles in vinyl.

Powers deposited on tapes for magnetic storage.

Magnetic tapes are much cheaper per GB than hard disks.

Page 30: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

magnetic recording

Page 31: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

Giant magnetoresistance

D(E)

Espin up

spin down

spin value

Page 32: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

Peter Gruenberg Nobel Lecture 2007:From Spinwaves to Giant Magnetoresistance (GMR) and Beyond

Page 33: Magnetism - Graz University of Technologyhadley/ss2/lectures17W/nov30.pdf · Magnet Br(T) Hci(kA/m) (BH)max(kJ/m 3) T c(°C) Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400

Magnetic force microscope

In-plane magnetization of a hard disk.