major concepts - georgia institute of technologyrh143/courses/wordup/08a/lec/07.pdf · major...

14
Lecture #7 Ideal Systems 1 Major Concepts Calculating observables using Statistical Mechanics Noninteracting Systems Separable approximations Transformations to separable Hamiltonians Harmonic Oscillator Ideal Gas Other examples? Statistical Mechanics of Gases Classical Mechanical Systems The Kinetic Energy is “Separable” • Molecules Translations may satisfy ideal gas condition Rotations and vibrations are nearly separable In non-interacting limit, recover ideal gas law In general, must use numerics or approximate theories…

Upload: phungtuyen

Post on 01-Mar-2018

218 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Major Concepts - Georgia Institute of Technologyrh143/courses/wordup/08a/lec/07.pdf · Major Concepts •Calculating ... –Translations may satisfy ideal gas condition –Rotations

Lecture #7 Ideal Systems 1

Major Concepts• Calculating observables using Statistical Mechanics• Noninteracting Systems

– Separable approximations– Transformations to separable Hamiltonians– Harmonic Oscillator– Ideal Gas– Other examples?

• Statistical Mechanics of Gases– Classical Mechanical Systems

• The Kinetic Energy is “Separable”• Molecules

– Translations may satisfy ideal gas condition– Rotations and vibrations are nearly separable

• In non-interacting limit, recover ideal gas law– In general, must use numerics or approximate theories…

Page 2: Major Concepts - Georgia Institute of Technologyrh143/courses/wordup/08a/lec/07.pdf · Major Concepts •Calculating ... –Translations may satisfy ideal gas condition –Rotations

Lecture #7 Ideal Systems 2

Noninteracting Systems• Separable Approximation

• Note: lnQ is extensive!• Thus noninteracting (ideal) systems are reduced to

the calculation of one-particle systems!• Strategy: Given any system, use CT’s to construct

a non-interacting representation!– Warning: Integrable Hamitonians may not be separable

!

if "(qa ,qb , pa , pb ) ="(qa , pa) +"(qb , pb)

#Q =QaQb

Page 3: Major Concepts - Georgia Institute of Technologyrh143/courses/wordup/08a/lec/07.pdf · Major Concepts •Calculating ... –Translations may satisfy ideal gas condition –Rotations

Lecture #7 Ideal Systems 3

Harmonic OscillatorIn 1-dimension, the H-O potential:

!

V = 12 kx

2

!

H = T +V =p2

2m+1

2kx

2= E

!

Q =1

2"h

#

$ %

&

' ( dx) dp e

*+H (x,p )) =1

2"h

#

$ %

&

' ( e

*+

2kx2

) dx e*+ p 2

2m) dp

!

V = 12kx

2

The Hamiltonian:

The Canonical partition function:

Page 4: Major Concepts - Georgia Institute of Technologyrh143/courses/wordup/08a/lec/07.pdf · Major Concepts •Calculating ... –Translations may satisfy ideal gas condition –Rotations

Lecture #7 Ideal Systems 4

Gaussian Integrals

!

x = r cos"

y = r sin"

!

r2

= x2

+ y2

dxdy = rdrd"

!

e"ax2

"#

#

$ dx = e"ay2

dy

"#

#

$ e"ax2

"#

#

$ dx

%

&

' ' '

(

)

* * *

12

= dx

"#

#

$ dy e"a(x

2+y

2)

"#

#

$%

&

' ' '

(

)

* * *

12

= d+

0

2,

$ re"ar2

0

#

$ dr

%

&

' ' '

(

)

* * *

12

= 2, - 12

e"au

0

#

$ du

%

&

' ' '

(

)

* * *

12

where u = r2

and du = 2rdr

= , 0"1

a

%

& '

(

) *

%

& '

(

) *

12

=,

a

%

& '

(

) *

12

!

e"ax 2

"#

#

$ dx =%

a

Page 5: Major Concepts - Georgia Institute of Technologyrh143/courses/wordup/08a/lec/07.pdf · Major Concepts •Calculating ... –Translations may satisfy ideal gas condition –Rotations

Lecture #7 Ideal Systems 5

Harmonic Oscillator

!

Q =1

2"h

#

$ %

&

' ( e

)*

2kx2

+ dx e)* p 2

2m+ dp

!

Q =1

2"h

#

$ %

&

' (

2"

)k

#

$ %

&

' (

2"m

)

#

$ %

&

' ( =

m

h2) 2k

!

" #k

m

!

"Q =1

h#$

!

e"ax 2

"#

#

$ dx =%

a

The Canonical partition function:

After the Gaussian integrals:

Where:

Page 6: Major Concepts - Georgia Institute of Technologyrh143/courses/wordup/08a/lec/07.pdf · Major Concepts •Calculating ... –Translations may satisfy ideal gas condition –Rotations

Lecture #7 Ideal Systems 6

Harmonic Oscillator

!

Q =1

2"h

#

$ %

&

' ( e

)*

2kx2

+ dx e)* p 2

2m+ dp

!

"Q =1

h#$

The Canonical partition function:

But transforming to action-angle vailables…

!

Q =1

2"h

#

$ %

&

' ( d)

0

2"

* e+,-I

0

.

* dI

=1

2"h

#

$ %

&

' ( /2" /

1

,-

#

$ %

&

' (

Page 7: Major Concepts - Georgia Institute of Technologyrh143/courses/wordup/08a/lec/07.pdf · Major Concepts •Calculating ... –Translations may satisfy ideal gas condition –Rotations

Lecture #7 Ideal Systems 7

Classical Partition Function• Note that we have a factor of Planck’s

Constant, h, in our classical partitionfunctions:

• This comes out for two reasons:– To ensure that Q is dimensionless– To connect to the classical limit of the

quantum HO partition function…

!

Q =1

2"h

#

$ %

&

' (

N

dxN) dp

Ne*+H (xN ,pN ))

Page 8: Major Concepts - Georgia Institute of Technologyrh143/courses/wordup/08a/lec/07.pdf · Major Concepts •Calculating ... –Translations may satisfy ideal gas condition –Rotations

Lecture #7 Ideal Systems 8

Harmonic Oscillator

!

Q =1

h"#

!

E = "# ln(Q)

#$=#

#$ln h$%( )( ) =

1

$= kBT

!

e"ax 2

"#

#

$ dx =%

a

The Canonical partition function:

Recall

!

V = 12kx

2

!

V = 12kBT

Page 9: Major Concepts - Georgia Institute of Technologyrh143/courses/wordup/08a/lec/07.pdf · Major Concepts •Calculating ... –Translations may satisfy ideal gas condition –Rotations

Lecture #7 Ideal Systems 9

GasConsider N particles in volume, V

!

V (r r 1,...,

r r N ) = Vij

r r i "

r r j( )

i< j

#

!

Q =1

2"h

#

$ %

&

' (

3N

dr r ) d

r p ) e

*+Hr r ,

r p ( )

with a generic two-body potential:

The Canonical partition function:

!

dr r = dr

1dr2...dr

N

!

T(r p 1,...,

r p N ) =

r p i2

2mii

"

and kinetic energy:

Page 10: Major Concepts - Georgia Institute of Technologyrh143/courses/wordup/08a/lec/07.pdf · Major Concepts •Calculating ... –Translations may satisfy ideal gas condition –Rotations

Lecture #7 Ideal Systems 10

Integrating the K.E. Q in a Gas

!

Q =1

2"h

#

$ %

&

' (

3N

dr p ) e

*+pi2

2mii

N

,dr r ) e

*+Vr r ( )

!

Q =1

2"h

#

$ %

&

' (

3N2mi"

)

#

$ %

&

' (

i

N

*32

dr r + e

,)Vr r ( )

May generally be written as: (Warning:this is not separability!)

!

Q =1

2"h

#

$ %

&

' (

3N

dr r ) d

r p ) e

*+Hr r ,

r p ( )

!

e"ax 2

"#

#

$ dx =%

a

With the generic solution for any system

Page 11: Major Concepts - Georgia Institute of Technologyrh143/courses/wordup/08a/lec/07.pdf · Major Concepts •Calculating ... –Translations may satisfy ideal gas condition –Rotations

Lecture #7 Ideal Systems 11

InteractingIdeal GasAssume:

1. Ideal Gas V(r)=02. Only one molecule type: mi=m

!

Q =1

2"h

#

$ %

&

' (

3N2m"

)

#

$ %

&

' (

3N2

VN

!

dr r " e

#$Vr r ( )

= dr r " = V

N

!

2mi"

#

$

% &

'

( )

i

N

*32

=2m"

#

$

% &

'

( )

3N2

The ideal gas partition function:

Page 12: Major Concepts - Georgia Institute of Technologyrh143/courses/wordup/08a/lec/07.pdf · Major Concepts •Calculating ... –Translations may satisfy ideal gas condition –Rotations

Lecture #7 Ideal Systems 12

The Ideal Gas Law

!

Q =1

2"h

#

$ %

&

' (

3N2m"

)

#

$ %

&

' (

3N2

VN

!

P = "#A

#V

$

% &

'

( ) T ,N

!

dA = "SdT " PdV + µdN

!

A = "kBT ln Q( )

!

P = kBT" ln(Q)

"V

!

P = kBTN

VIdeal Gas Law!

Recall:

The Pressure

Page 13: Major Concepts - Georgia Institute of Technologyrh143/courses/wordup/08a/lec/07.pdf · Major Concepts •Calculating ... –Translations may satisfy ideal gas condition –Rotations

Lecture #7 Ideal Systems 13

Ideal Gas: Other Observables

!

E(T ,V ,N) = "# lnQ

#$

A(T ,V ,N) = "kT lnQ

S(T ,V ,N) =E " A

T Recall : A = E "TS

!

"(T ,P,N) = e#$PV

Q(T ,V ,N)dV

0

%

&G(T , p,N) = #kT ln"

S(T , p,N) = k ln" + kT' ln"

'T

(

) *

+

, - N,P

!

Q =1

2"h

#

$ %

&

' (

3N2m"

)

#

$ %

&

' (

3N2

VN

Page 14: Major Concepts - Georgia Institute of Technologyrh143/courses/wordup/08a/lec/07.pdf · Major Concepts •Calculating ... –Translations may satisfy ideal gas condition –Rotations

Lecture #7 Ideal Systems 14

Noninterating Two-Level Systems• Examples:

– Photon Gas– Phonon Gas– Magnetic Spins

• In all cases the Hamiltonian lookssomething like

!

"(H ,N) = #niµH

i=1

N

$