management engineering systems - mit sdm · addressed by esd researchers. image courtesy of acciona...

44
social sciences management engineering Engineering Systems

Upload: vuongthien

Post on 16-Sep-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

soci

al s

cien

ces

man

agem

ent

engi

neer

ing

Engineering Systems

energy and

SuStainability

CritiCal

infraStruCtureS

extended

enterpriSeS

health Care

delivery

ESD rESEarch DomainS

Engineering SystemsDivision

02 Challenges12 research24 education32 global reach38 eSd 2020

“Imaginethe excitementofworkingatthefrontiersofmacroscopic engineering—thedomainoflargerandlargerandmoreandmorecomplex systemsforenergy,theenvironment,communications,health

care, manufacturing,andlogistics.”CharlesVest,President,NationalAcademyofEngineering

p.6

p.3

pp.6,13

pp.10,18 pp.10,17,19,24,37

pp.11,23

pp.9,27,30

pp.9,21,31,34

“WhatMITisgoodfor:adoseofreality-basedhopethatwecanhelpaddressinarealwaythemostseriousoftheworld’sgreatchallenges.”

Susan Hockfield,President,MassachusettsInstituteofTechnology

MITE

NgINEErINgSySTE

MSD

IVISIoN

cH

al

lE

ng

ES

02 ::03

Highways, electrification, computers, fiber optics, the Internet, and health technologies are listed by the National Academy of Engineering as among the greatest achievements of the 20th century. Engineering advances produce better medicines, provide heat and air conditioning, enhance food production, supply a bounty of affordable products on store shelves, and speed emergency communications—improving the lives of billions of people throughout the world.

These benefits, however, were not delivered by the technological achievements alone, but rather by complex, intertwined engineering systems—systems that integrate technology, people, and services.

Many of the new challenges involving these big, “messy” systems stem from the interactions of people, organizations, and technology—leading to emergent properties over time. Strains of growth materialize at the nexus of changing social norms, shifting regulations, and new enterprise architectures. Breakdowns make the headlines, pointing to the enormity of the analytical, management, and design challenges: “Blackouts Cause North America Chaos” (BBC, 2003); “As More Toys Are Recalled, Trail Ends in China” (The New York Times, 2007); “Nine Thought Dead as Minneapolis Bridge Collapses” (MSNBC, 2007), “Report Finds a Heavy Toll from Medication Errors” (The New York Times, 2006).

Tacklingengineeringsystemschallengesrequiresanengineeringproblem-solvingmind-set,aswellasnewframingandmodelingmethodologies—whatwecallengineering systems approaches.Theseapproachescombineperspectivesfromengineering, management, and social sciencestoexplorethefundamentalstructuresunderlyingengineeringsystemsandtoframeandmodelproblemssothattheycanberigorouslyaddressed.

the simplicity of the single windmill in Zaragoza, Spain, belies the complexity of achieving energy security—one of the four problem domains addressed by eSd researchers.Image courtesy of Acciona

04 ::05MITE

NgINEErINgSySTE

MSD

IVISIoN

cH

al

lE

ng

ES

VIsIon,M

IssIon,Va

lues

ESD Vision

The fundamental principles and propertiesofengineeringsystems—thecomplexsocio-technicalconstructsthatarethefoundationofmodernsociety—arewell-understood,sothatthesesystemscanbemodeled,designed,andmanagedeffectively.

ESD MissionTosolvepreviously intractableengineeringsystemsproblemsby integrating approachesbasedonengineering,management,andsocialsciences,usingnewframingandmodelingmethodologies.Tofacilitatethebeneficial applicationofengineeringsystemsprinciplesandpropertiesbyexpandingthesetofproblemsaddressedbyengineers.

Topositionourgraduatesastomorrow’s system thinkers and leadersintacklingsociety’schallenges.

ESD ValuesWearecommittedtoscholarshipthataddresses significant global problemsbyinvestigatingthemanywaysinwhichengineeringsystemsbehaveandinteractwitheachother.Wedevelopandevaluatesystem-level solutions that are sustainableintermsofsocialequity,economicdevelopment,andenvironmentalimpact.Wevalue and accept intellectual risk.Thismeanstacklingissuesthatappear,atleastinpart,tobenon-quantifiableorvague.Wehavedeep respect for all the disciplineswebringtogetherandbuildupon,includingengineering,socialsciences,andmanagement.

the Mit engineering Systems division works with faculty across the institute—in engineering, management, and the social sciences—to collaborate on research that takes a holistic approach to tackling complex problems.Image courtesy of Alex Budnitz

1relatedtosystemsengineering,whichisanimportantprofessionandpractice,engineeringsystemsisafieldofscholarshipthatincludessystemsengineeringaswellasabroadersetofdisciplines.Engineeringsystemshasanaddedfocusonsocial,environmental,technological,andpoliticalcontexts.

2. 1. andWhat is engineering systems?

MITE

NgINEErINgSySTE

MSD

IVISIoN

cH

al

lE

ng

ES

WhaTIs

engIn

eerIn

gsys

TeMs?

06 ::07

a class of systems Engineeringsystemsarecharacterizedbya

highdegreeoftechnicalcomplexity,socialintricacy,andelaborateprocesses,aimedatfulfillingimportantfunctionsinsociety.

ESDfocusesonthefollowingdomains:

critical Infrastructures—includingtheelectricalgridfrompowergenerationtodistributiontoconsumerstopricingandregulation,aswellastransportation,information,defenseandcommunicationssystems,takingintoaccountallstakeholders.

Extended Enterprises—includingthedesign,manufacture,anddistributionofproductsandservices;accountingfortraderegulations,customs,andrelationshipsamongsuppliers,manufacturers,retailers,andcarriers;andmanagingtheglobalflowsofgoods,information,money,andknowledge.

Energy and Sustainability—includingissuesofenergyproduction,distribution,andconsumption;materialresourceavailabilityandreuse;thebalancebetweentheenvironmentandeconomicdevelopment;aswellastherelatedenergyandenvironmentalpolicies.

Health care Delivery—encompassingthedeliveryofvitalservicesforprevention,diagnosis,andtreatmentofdiseasesandmaintainingqualityoflifeforallsegmentsofthepopulation.

an emerging field of research and education Engineeringsystemsisanemergingfieldof

scholarshipthatseekssolutionstoimportant,multifacetedsocio-technicalproblems.1

Applyingapproachesfromengineering,thesocialsciences,andmanagement,engineeringsystemsscholarshipexploresmultiplestakeholderperspectives.Engineeringsystemsresearchdevelopsandemploysmultiplemethodologies,andbalancesquantitativeandqualitativeargumentswhilemaintainingscientificrigor.

ESDapproachesinclude: The Interface of Humans and Technology—examiningthewaysinwhichhumanattitudesandbehaviorsaffectthesuccessfuluseoftechnologies,aswellasdesignmethodologiesthatexplicitlyaccountforthehumaninterface.

Uncertainty and Dynamics—includingmodelingthesourcesofuncertaintyanddynamicsofcomplexsystemsaswellastheeffectsofuncertaintyineachofourdomainareas.

Design and Implementation—applyinglife-cycleconceptstocapturethevalueandcostflowsovertime,aswellasanalyzingenterprisearchitecturesanddevelopingchangemanagementprocessesthatarerequiredforsuccessfulimplementation.

networks and Flows—representing,analyzing,anddesigningsystemsasinterdependentmulti-layerednetworkswithmultipletypesofflows.

Policy and Standards—takingintoaccounttheroleofgovernmentpolicy,industrystandards,andotherfactors,whichtraditionallyhavebeentakenasexternalconstraints,butinsteadaretreatedasdesignvariablesbyESDresearchers.

ToassistthereaderinrecognizingthevariousconnectionsacrossESD,thisgraphickeyhighlightsthedomainsandapproachesrelevanttoindividualprojects.

ener

gy &

Su

stai

nabi

lity

exte

nded

en

terp

rise

s

hea

lth

Car

e d

eliv

ery

humans & technology

uncertainty &dynamics

design &implementation

networks & flows

policy &Standards

domains [ ]

appr

oach

es [

]

soci

al s

cien

ces

man

agem

ent

engi

neer

ing

Cri

tical

in

fras

truc

ture

s

and

Critical infrastructuresImprovingtheeffectivenessofnationalinfrastructures,suchasthoseprovidingelectricpower,transport,andcommunications,isanimportantchallenge.

Asthegraphbelowdemonstrates,USinvestmentininfrastructurehasnotkeptupwithincreasingneeds.In2005,theAmericanSocietyofCivilEngineersestimatedthattheUnitedStateswouldneedtospend$1.6trillionoverafive-yearperiodtobringitsexistinginfrastructureuptoanacceptablelevelofservice.Furthermore,infrastructurecomprisesnotonlyphysicalobjectssuchasroadsandairports,butalsothecomplexsystemsthatprovideforsecurity,defense,health,energy,communications,andthefunctioningofmarkets.Hereinliesanimportantresearchandeducationchallenge—developingmodelsandunderstandingthebehaviorofthis“systemofsystems”tobetterprovidetheinfrastructuressocietyrelieson.

Butthereisanevengreaterchallenge.overthenext50years,abillionmorepeoplewillbedemandingmodernservices,mainlyinthecitiesofthedevelopingworld.Theenvironmentalloadsandresourcedepletionresultingfromdevelopinginfrastructurestomeetthesedemands,alongthe20thcenturymodel,areunsustainable.

ESDhasmadeacommitmenttoadvancingresearchincriticalinfrastructurespreciselybecausetheseproblemsarebothimportantandchallenging.The

facetsthatdistinguishESDresearchincriticalinfrastructuresinclude:cross-domainviews;comparativearchitectureandthefactorsaffectingthem;newmodelsthatincludeboththetechnicalandsocialcomplexities;andnew,large-scalesimulationtechniqueswhichallowthecombinationofquantitativeandqualitativedata.

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

uS infraStruCture inveStMentPercentageofgrossdomesticproduct

1956

1962

1968

1974

1980

1986

1992

1998

2004

federal

State & lOCal

Much of the work in critical infrastructure involves better

management of existing facilities. drawing on systems

and control theory, optimization and economics, professor

hamsa balakrishnan’s research focuses on the development of

mechanisms to allocate airport and airspace resources. her

work accounts for multiple stakeholders (airlines,

passengers, pilots, controllers, and neighboring communities)

and multiple objectives (minimize delays and environmental impact, maximize safety and system-wide

performance). Shown: planes at JfK airport. Most airport

delays in the uS originate in the congested airports of new york

and new Jersey.©iStockphoto.com/Xavier Marchant

More than 70,000 bridges in the uS are rated as deficient —

one of them is the longfellow bridge leading from boston to Mit. red line trains were

slowed to 10 mph going over the bridge, trucks were banned, and traffic was restricted to a single lane after federal officials found

inspections lacking.Image courtesy of Yossi Sheffi

esd authors

critical infrastructures

MITE

NgINEErINgSySTE

MSD

IVISIoN

cH

al

lE

ng

ES

researchD

oMaIn

s08 ::09

Sour

ce: C

ongr

essi

onal

Bud

get O

ffice

extended enterprisesTeamsdesigningthenewBoeing787Dreamlinerspantheglobe,workingaroundtheclockandacrossmultipletimezones.AnIntelchipcrossesthePacificoceansixtimesasitgoesfromrawmaterialtobecomingaDellcomputercomponent.AT-shirtstartsinanEgyptiancottonfield,ismanufacturedintheFarEast,shippedtoLosAngelesforpackaging,andiseventuallysoldataWal-MartinPittsburgh.

MaritimecontainertrafficinUSportsgrewbyover300%between1990and2005.Theglobalsupplychainsthatkeepfoodinsupermarketaisles,medicalsuppliesathospitals,clothesonstoreshelves,andpartsonhandformanufacturing,demandglobalcoordinationandcontrolsofmind-bogglingcomplexity.Mostofthesupplychaincosts,however,arebeing“bakedin”whenproductdesignandengineeringdecisionsaremade.Thesedecisionsimplymanufacturinglocationsandthereforedetermineprocurementanddistributionstrategiesandoperations.Buildingflexibilityintotheproductarchitecture(throughmodularityandpartscommonality)aswellasintooperationalprocesses(throughriskpoolingandpostponement),hasbecomeacrucialcomponentofproductdesignandengineering.Today’sengineerneedstodesignproductsforthefulllifecycle,includingmanufacture,procurement,distribution,service,upgrade,anddisposal.

Thecomplexitiesofglobalsupplychains,theinteractionofcorporateobjectiveswithtradepolicies,currencyfluctuations,anddistributedproductandprocessdesign,presentanintricatesetofengineeringchallengesthatarecentraltoESD.Theyinvolvetheoptimizationoftheseglobalnetworksunderdemandandsupplyuncertaintiesthroughoutmanyregulatoryregimesandcultures.

esd authors

extended enterprises

EngInE nacEllESchulaVIsTa,ca

cEnTEr FUSElagEgroTTaglIe,ITaly

ForwarD FUSElagEnagoya,jaPan

FIxED TraIlIng EDgEnagoya,jaPan

wIngnagoya,jaPan

ForwarD FUSElagEWIchITa,kansas

cargo/accESS DoorSsWeDen

PaSSEngEr EnTry DoorSfrance

aFT FUSElagEcharlesTon,s.c.

MaIn lanDIng gEar wHEEl wEll

nagoya,jaPan

cEnTEr wIng boxnagoya,jaPan

lanDIng gEargloucesTer,uk

wIng/boDy FaIrInglanDIng gEar DoorSWInnIPeg,canaDa

wIng TIPSkorea

MoVablE TraIlIng EDgEausTralIa

TaIl FInfreDrIckson,WashIngTon

HorIzonTal STabIlIzErfoggIa,ITaly

FIxED anD MoVablE lEaDIng EDgETulsa,oklahoMa

EngInESge–eVenDale,ohIorolls-royce–Derby,uk

bringing the 787 tOgether

US

boeIng

sPIrIT

VoughT

ge

gooDrIch

canaDa

boeIng

MessIer-DoWTy

aUSTralIa

boeIng

jaPan

kaWasakI

MITsubIshI

fujI

korEa

kal-asD

EUroPE

MessIer-DoWTy

rolls-royce

laTecoere

alenIa

saab

the most important logistics innovation enabling international trade was the adoption of the standard container more than 50 years ago. today’s enterprises comprise networks of engineering, manufacturing, logistics, retail, and other services, spanning the globe and requiring sophisticated supply chain processes. ports, cargo ships, shipping lanes, human operators, and information systems form the backbone of this critical global infrastructure.Image courtesy of Alan Deveau, Airscapes Photography

Cou

rtes

y of

The

Boe

ing

Com

pany

energy and SustainabilityPercapitaenergyconsumptioninthedevelopingworldhasmorethandoubledoverthelast40years—andyetthedevelopedworldisstillconsumingenergyfivetimesfasterthanthat.Andtheincreasedconsumptionisnotlimitedtoenergyalone,asshowninthefigurebelow.

Asthepopulationandthedesireforhigherlivingstandardsgrowworldwide,demandforenergyandnaturalresourceswilloutstripconventionalsupplies.Asabillionmorepeoplestrivetoimprovetheirlivingstandards,thechallengeliesindoingsowithoutfurtheraffectingtheglobalclimateanddepletingscarceresources.

Alternativefuels,advancedmaterials,andimprovedindustrialprocessesareallheraldedaspossiblesolutions,butthesustainabilityofeachchoiceencompassesmorethantechnology.Engineersneedtoexpandthescopeoftheirdesignconsiderationstoincorporateinfrastructurerequirements,environmentalconsiderations,andsocietalimpact.

ESDisworkinginanumberofareastobetterframetheproblemofsustainability,toidentifyexistingapproachesthatcanbeusedtoaddressissues,andtoexpandthesetofrelevantanalyticalmethodsandtools.

Forexample,ESDresearchersaremakinglife-cycleassessmentsofalternativematerialsandmanufacturingprocesses,examiningtechniquesandstrategiestomitigateresourcescarcityandincreasetheuseofsecondarymaterials,andanalyzingtheprospectsfordifferentenergysourcesoverthenexthalf-century.ESDresearchersarealsoassessingalternativetransportationtechnologiesandmodelingtheenergyandenvironmentalcharacteristicsofelectricitygenerationandtransmissionunderalternativepolicydesigns,carbonmitigationstrategies,andelectricalnetworkarchitectures.

acciona energy, the world’s largest developer of wind parks, is collaborating with eSd researchers at the Zaragoza logistics Center to use systems modeling and analysis to guide large-scale energy infrastructure development in Spain. Image courtesy of Acciona

esd authors

energy andsustainability

3k

2.5k

2k

1.5k

1k

0

Overall uS COnSuMptiOn Of nOn-fuel Material

MIllIonM

eTr

IcTons

WWI

greaT

DePress

Ion

WWII

oIlcrIsIs

recess

Ion

consTrucTIonMaTerIals

InDusTrIalMInerals

recycleDMeTals

PrIMaryMeTals

nonreneWableorganIcs

recycleDPaPer

PrIMaryPaPer

WooDProDucTs

agrIculTure

1900

1995

g.M

atosand

l.W

agne

r,“con

sumptionofM

aterialsinth

eu.s.,”

Annu

al R

evie

w o

f Ene

rgy

and

the

Envir

onm

ent(1998)

MITE

NgINEErINgSySTE

MSD

IVISIoN

cH

al

lE

ng

ES

researchD

oMaIn

s10 ::11

health Care deliveryAccordingtotheWorldHealthorganization,100millionpeopleareimpoverishedeveryyearbypayingoutofpocketforhealthcare.IntheUnitedStates,about15percentofthepopulationisuninsuredandtensofthousandsofAmericansdieeachyearfrommedicalerrors,accordingtotheUSInstituteofMedicine.Furthermore,theagingpopulationinmuchofthedevelopedworldisconsuminganever-increasingshareofhealthcareoutlays(seechart).

Whileinnovativelocalinitiativeshavebeenshowntolowerthemedicalerrorratesandtheincidenceofstaphinfectionsatspecifichospitals,therearelarge-scalesystemsissuesinvolvingmedicaltraining,governmentregulations,andinsuranceincentivesthatarebeyondthescopeoflocalcontrol.

ESDresearcherstakeasystemsviewtomakehealthcaredeliverymoreefficientbyapplyinginventorytheoryandprocessimprovementmethodstotheoperationsofhospitalsandtheirsupplychains.Muchoftheworkinvolvestheanalysisoftrade-offsbetweenrisksandbenefitsofpatienttreatments;betweencostsandlevelofservice;andbetweenindividualrightsandsociety’sgoals.Suchworkinvolvesnotonlytechnologydevelopmentandimplementationbutalsoadeepunderstandingoftheorganizationalandethicalissues,aswellasthehumanbehaviorsinvolved—fromthesupplier,provider,insurer,andpatientperspective.

esd authors

health caredelivery

Multi-level deCOMpOSitiOn Of the StaKehOlderS in a health Care SySteM

Supplier

InsurerPatientPayer

Interestgroups

FluClinic PrimaryCare

HomeCare

NursingHome

SpecialistCare

AncillaryServicesHospital

Labs Pharmacy

operatingrooms

InpatientUnits

PrimaryCare

radiology

Cleaning Psychologist

Nurse Physician Studentresident

SupplyTechnician AdminStaff

Provider

EmergencyDepartment

regulatorthe lean advancement initiative’s health care research uses Straussian grounded theory for iterative data collection regarding the structure of the uS health care system. the figure depicts the multiple stakeholders in all the system’s echelons while the research is focused on understanding the various players’ incentives. Courtesy of the Lean Advancement Initiative headed by Professor Deborah Nightingale

age 00–14 | 0.88

age 15–19 | 0.82

age 20–49 | 0.77

age 50–64 | 1.00 (referencegroup)

age 65–69 | 5.01

age 70–74 | 5.02

health benefitS-age prOfile

age 75–79 | 8.52

age 80+ | 11.53

Indexofrelativehealthcareexpenditurebyage.(The50–64agegroupisthereferenceat1.00.)figuretakenfromhagist,christianandlaurencekotlikoff.“Who’sgoingbroke?comparinghealthcarecostsinTenoecDcountries.”

agelab has developed a robotic “pill pet” to assist in medication compliance. Image courtesy of AgeLab

“Theresponseofengineersandprogrammanagersduringthe16daysthatcolumbiawasinorbitraisesimportantissuesforeducatingandutilizingengineers,aswellasquestionsabouttheirresponsibilitytotreatsystem-levelissueswiththesamedisciplinaryrespectandexpertisewithwhichtheytreatcomponents.”

Sheila widnall,InstituteProfessor,MITandMemberofthespaceshuttlecolumbiaaccidentInvestigationboard

MITE

NgINEErINgSySTE

MSD

IVISIoN

rE

SE

ar

cH

12 ::13

esd authors

research methodologies

just as nanotechnology is deepening our understanding of the very small, engineering systems is expanding our understanding of the very large and complex systems that involve technology, people, and processes.

Macro-levelresearchbringswithitanewandexcitingsetofscholarlychallenges,nottheleastofwhichistheimpossibilityofconductingexperimentsintightlycontrolledenvironments.ESDthereforepartnerswithindustryandgovernmentstoaddressproblemsthatarerealisticandimportant,aswellastosimulatenewapproachesandtotesttheoriesinrealorganizations.

Macroscopicsystemsallexhibittechnical,managerial,andsocialcomplexity.ESDdrawsuponfacultymembersfromengineering,management,andthesocialsciencestointegratetheirmethodologiesanddevelopsolutionsineachofitsfourdomainsofconcentration.Morethan50facultymembersandresearchers,mostholdingdualorjointappointmentswithotherMITunits,aredevotedtoteachingandresearchinengineeringsystems.

The following cross-cutting approaches are some of the lenses which ESD researchers apply to multiple domains:

The Interface of Humans and Technology

Uncertainty and Dynamics Design and Implementation networks and Flows Policy and Standards

Notallapproachesfitneatlyintothesecategories,butinallcases,ESDresearchersbringanengineeringmind-settoproblemsthatdonotlendthemselvestopurelyquantitativeapproachesorpurelytechnicalsolutions.Theyseekoutfundamentalprinciplesthatcanbeusedtounderstand,design,andimplementengineeringsystems.

eSd phd students brandon Owens and blandine antoine discuss a system dynamics model of the possible causal loops that may have led to the Columbia accident. the model was originally developed by nicolas dulac (a&a phd ‘07) in professor nancy leveson’s research group. Image courtesy of Alex Budnitz

the interface of humans and technology Theexplosionofautomatedtechnologyandtheemergenceofcomplextechnologicalsystemshavegreatlyincreasedtheneedtosupporthumaninteractionwiththesesystems.Humanerrorsinaviation,forexample,currentlyaccountforalmost80percentofaccidents.Asignificantcontributorishumaninteractionwiththetechnology:pilotsareoftenconfusedbyautomatedmodechanges.

Complextechnologies—fromtheInternettoglobalpositioningsystems—arenowintegraltoeverydaylife,affectingdecisionsacrossESD’sfourdomains.yetever-more-automateddevicesdistancepeoplefromphysicalcontroloftheaction,whichcanchangebehaviorsandaffectsafety.Technologycanalsoputnewdemandsonorganizations,creatinganeedforrestructuring.

researchinESDfocusesonilluminatingthecomplexrelationshipbetweendesigners,users,andtechnologytofacilitatethedesignimprovementsandeffectiveoperationofcomplexsystems.recognizingthathumaninteractionwithcomplextechnologyhasbothindividualandgroupelements,ESDisdevelopingmethodologiesandinvestigatingkeyquestionsrangingfromsystemdesign,tohuman-in-the-loopmodeling,toprocessinterventions,toorganizationalstructures.

advances in medical technology—from magnetic resonance imaging

to laser surgery—have improved health care for millions, but the integration of new technologies with existing processes poses a

continuing challenge.Image courtesy of Intuitive

Surgical, Inc.

virtual reality displays attempt to close the distance between humans and technology. Still,

little is known about the cascading effects of automation on overall system performance and safety.

Image courtesy of NASA

esd authors

the interface of humans and technology

MITE

NgINEErINgSySTE

MSD

IVISIoN

rE

SE

ar

cH

aPProaches

14 ::15

driving innovation in aging and human technology interaction

Understandinghowolderpeoplelearn,interact,andadopttechnologyiscriticaltomovinginventionsintoeverydayuse.TheEngineeringSystemsDivision’sAgeLab—incollaborationwithcolleaguesinAeronauticsandAstronautics,BrainandCognitiveSciences,andtheComputerScienceandArtificialIntelligenceLaboratory—isworkingtodesignacarthatenablesolderpeopletodrivesafelylonger.

Thelab’scherryredVWBeetlefixed-basesimulator,“MissDaisy,”isdesignedtohelpresearchersexplorehowin-vehiclewarnings,navigation,andentertainmentsystems—aswellasbasicinnovationsincommunications—arelearned,adopted,andaffectdrivingperformanceacrossthehumanlifespan.MissDaisy’son-the-roadmirrorimage,“Missrosie,”isequippedwithsensorsandvideosystemstounderstandhowstrength,flexibility,anddiseaseaffectdriving—includingsuchbasictasksasbackingupandparking.

recently,theAgeLabdevelopedtheAwareCar—ablackVolvoSUVthatintegratesmorethan$1millionofsensors,software,anddataanalysissystemstounderstandhowvisualattention,health,physiologicalchange,cognitiveworkload,andin-vehicletechnologiesaffectdrivingperformance.Theresearchvisionistorealizeavehiclethatintegratesthreecriticalsubsystemsofsafedriving—thedriver,thevehicle,androadconditions.oneofthemostsophisticatedexperimentalvehiclesatanyuniversity,theAwareCarsensesthedriver’sperformanceandadaptsitsownperformancetoboththedriver’sneedsandroadconditionstoachieveoptimalsafetyandcomfort.

coughlin,j.andj.Pope,“aconsumer-centeredapproachtoIntelligenthomeservicestosupporthealth,Wellness&aging-in-Place,”IEEE Engineering in Medicine and Biology,27(4),47–52,july/august2008.

coughlin,j.,“DisruptiveDemographics,Designandthefutureofeverydayenvironments,”Design Management Review,18(2),53–59,spring2007.

eSd researchers use the agelab’s fixed-base simulator, Miss daisy (above) to test the effects of technology on driving performance of the elderly. Image courtesy of AgeLab

the agelab’s awareCar (right)adapts to both the driver’s needs and road conditions using an array of sensors and computers.Image courtesy of AgeLab

real-time predictive human Supervisory Control Models of team Collaboration

Complexsystemsaretypicallymanagedbydifficult-to-superviseteamsofhumancontrollers.Feedbackaboutinteractionsbetweenteammembers,aswellaswiththesystem,maynotbeobservable,andsuchcriticalcollaborationfactorsasteamknowledgeandsharedcognitionaredifficulttoassessinrealtime.

Thegoalofthisprojectistobuildmodelsofteambehaviorsablenotonlytorecognizethecurrentstateofateamsupervisingautomationinrealtime,butalsotopredictfuturestatesofthisteam.Specifically,theteammodelsarebasedupontheobservationofbehavioralpatternsatboththeindividualandcollectivelevels.Amaincontributionofthisprojectwillbetodeterminetherobustnessofthepredictionoffutureteambehaviorsbasedonobservingsocialpatternsofcollaboration.Thisprojectisthereforeattheintersectionbetweenartificialintelligenceandsocialsciences.giventheprevalenceofteaminteractionwithmanycomplexsystemssuchasairtrafficcontrol,disasterfirstresponse,andmilitarycommandandcontrol,thisresearchisrelevanttonumeroushigh-riskcriticalsystems.

boussemart,y.,&M.l.cummings,“behavioralrecognitionandPredictionofanoperatorsupervisingMultipleheterogeneousunmannedVehicles,”humansoperatingunmannedsystems`08,september3–4,2008,brest,france.

naSa’s control room of the international Space Station exemplifies how human beings are increasingly required to work with multiple layers of technology.Image courtesy of NASA

HUManS & TEcHnology

DESIgn & IMPlEMEnTaTIon

energy&

sustaina

bility

extend

ed

enterprises

uncertainty&Dynamics

networks&flows

Policy&standards

cr

ITIc

al

In

Fra

STr

UcT

Ur

ES

hea

lthcare

Delivery

HUManS & TEcHnology

DESIgn & IMPlEMEnTaTIon

HEa

lTH

ca

rE

DEl

IVEr

y

energy&

sustaina

bility

extend

ed

enterprises

critic

al

Infrastruc

tures

uncertainty&Dynamics

networks&flows

Policy&standards

uncertainty and dynamics globalizationhasopenedupawealthofopportunitiesforbusinessestodiversify,expand,andinventnewproductsandservices.Butglobalizationhasalsoincreasedtheexposureofcompaniestoawideworldofuncertainty—designteamsaregeographicallydispersed,longsupplychainsaresubjecttovolatility,multipleactorsintroducediverserequirementsandexpectations,andregulationschangeovertimeandfromplacetoplace.Inaddition,therateoftechnologicalinnovationmeansthatlong-livedproductshavetobedesignedtoaccommodateunknownfuturetechnologies.

ESDresearchzeroesinonfundamentalprinciplesthatcanbeappliedtomultipleindustriesandbusinessmodels.researchintouncertaintyanddynamicsattemptstoanswerquestionssuchas:

1.Whatarethekeysourcesofuncertaintyineachparticularengineeringsystemscontext?

2.Howcantheseuncertaintiesbemodeledandquantifiedsothattheycanbetakenintoaccountduringdesign,implementation,andmanagementofthesystems?

3.Howcanbothrobustandflexiblestrategiesbeusedtodesignsystemsinordertobothmitigatedownsiderisksandtakeadvantageofupsideopportunities?

4.Howcanpropertiessuchassafetyandresiliencebemaintainedassystemschangeovertime?

Thebasicapproachestotacklinguncertaintyincludebuildinginrobustnessandflexibility.Improvingplanningforuncertainty—tominimizeriskandmaximizeopportunities—holdspromiseforallfourofESD’skeyresearchdomains.

esd authors

uncertainty and dynamics

eSd risk management research looks both at catastrophic events, such as hurricane

Katrina (top), and uncertain fluctuations, such as those

demonstrated by the price of oil shown in the chart above.

Katrina image courtesy of US Coast Guard; chart adapted from

WTRG Economics

Crude Oil priCeS

$100

$80

$60

$40

$20

$0

2006

$/b

arrel

47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 01 03 05 07

us1sTPurchasePrIce(WellheaD)

WorlDPrIce

aVerageus$24.98

aVerageWorlD$27.00

MeDIanus&WorlD$19.04

Iran

ianrevolution

Iran

/Iraq

War

usPrice

con

trols

gulfWar

oPec10%

Quo

taIn

crea

seasian

eco

ncrisis seriesofoPeccuts

4.2Millionbarrels

PDVs

astrike

9/11

yomkippu

rWar

oile

mba

rgo

sue

zcrisis usPrice

con

trols

Iraq

War

asian

growth

Wea

kerDollar

MITE

NgINEErINgSySTE

MSD

IVISIoN

rE

SE

ar

cH

aPProaches

16 ::17

uncertainty in impacts of global Climate Change

oneofthemostsignificantenvironmentalchallengesofthe21stcenturywillbehowtoaddressthethreatofglobalclimatechange.reductionsingreenhousegasemissionsfromhumanactivitieswillrequirethedevelopmentofnewtechnologiesandenergysources,atpotentiallyhighcost.Thiseffortiscomplicatedbythewiderangeofuncertaintyinfutureclimateprojections.

AprimaryfocusoftheclimatechangeresearchatMITistocharacterizetheuncertaintyinfutureclimateimpacts.UsingMIT’sIntegratedglobalSystemModel,ESDresearchershaveperformedarigorousassessmentofthemostcriticaluncertainassumptionsinthemodel.Usingdatawhereavailableandtechniquestoelicitexpertjudgment,theresearchershaveconstructedprobabilitydensityfunctionsfortheuncertainmodelparameters,andhaveusedMonteCarlosimulationtechniquesforuncertaintypropagation.Probabilitydistributionsofcriticalmodeloutcomes,suchasthefuturesurfacetemperatureoftheearth,canthenbecomparedbetweendifferentgreenhousegasconcentrationstabilizationpaths.

Theresultsofthisworkprovideinformationonhowtherisksofextremeclimateimpactsarereducedbylimitedgreenhousegasemissions.Theseprobabilisticresultsareusedbynumerousgovernmentagencies,includingtheEnvironmentalProtectionAgency,theDepartmentofEnergy,andtheCongressionalBudgetoffice,aswellaspartiestointernationalclimatenegotiations,tounderstandthelevelofmitigationeffortneededtoachieveclimateobjectiveswithagivenlevelofconfidence.

Webster,M.D.,c.forest,j.reilly,M.babiker,D.kicklighter,M.Mayer,r.Prinn,M.sarofim,a.sokolov,P.stone,andc.Wang,“uncertaintyanalysisofclimatechangeandPolicyresponse,”Climatic Change,61(3),295–320,2003.

congressionalbudgetoffice(2005),“uncertaintyinanalyzingclimatechange:PolicyImplications,”january2005.

new approaches to accident Modeling and System Safety

Currentanalyticriskapproachesarebasedlargelyontheassumptionthataccidentsandseriouslossesarisefromalinearchainofdirectlyrelatedsystemcomponentfailures,humanerrors,orenergy-relatedevents.Thesetraditionalcausalitymodelsdonotadequatelyaccountformultipleindirect,non-linear,andfeedbackrelationshipsamongevents.Theyalsodonotexplainaccidentsthatdonotinvolvecomponent“failures”butwhichinsteadarecausedbydysfunctionalcomponentinteractions.Eachcomponentfunctionsindividuallywithinastandardoracceptableperformancerangeorinthecontextofanappropriateobjective,andyettogetherthecomponentinteractionsleadtoaloss.

ESDresearchersaredevelopingnew,powerfulaccidentcausalitymodelsandriskmanagementtechniquesthatcanhandlethecomplexityoftoday’stechnicalandsocialsystems.Usingsystemsandcontroltheoryasthemathematicalfoundationsandacausalitymodel(calledSTAMP)thatexpandstraditionalmodels,theresearchersareconstructingcomputationalmodelsofthestatic(structural)anddynamicaspectsofcomplex,socio-technicalsystemstoprovideinformationaboutpotentialrisks.

ThisnewapproachtoriskanalysisandmanagementhasbeensuccessfullydemonstratedontechnicalsystemssuchasbuildingsafetyintothedesignofnewNASAspacecraftandassessingthepotentialforaninadvertentlaunchinthenewUSmissiledefensesystem.Atthesocialsystemlevel,itisbeingappliedtosuchdiverseapplicationsashealthcare,spaceshuttleoperations,pharmaceuticals,foodsafety,andcorporatefraud.Itispotentiallyapplicabletoanysafety-critical,socio-technicalinfrastructure.

leveson,n.,“anewaccidentModelforengineeringsafersystems,”Safety Science,42(4),april2004.

1.0

0.8

0.6

0.4

0.2

0.0

deCadal average SurfaCe teMperature Change(2090–2100)–(2010–2000)

ProbabIlITyDensITy

0 2 4 6 8 10

DecaDalaVeragesurfaceTeMPeraTurechange˚c

ccsP750sTabIlIZaTIon

ccsP550sTabIlIZaTIon

noPolIcy

naSa eMplOyee gap fOr COMpleting the Shuttle replaCeMentunlesscongressrelaxeshiringconstraints

extend

ed

enterprises

networks&flows

UncErTaInTy & DynaMIcS

PolIcy & STanDarDS

humans&Technology

hea

lthcare

Delivery

critic

al

Infrastruc

tures

EnEr

gy

&

SUST

aIn

ab

IlIT

y

Design&Implementation

energy&

sustaina

bility

extend

ed

enterprises

networks&flows

cr

ITIc

al

In

Fra

STr

UcT

Ur

ES

HEa

lTH

ca

rE

DEl

IVEr

y

UncErTaInTy & DynaMIcS

DESIgn & IMPlEMEnTaTIon

PolIcy & STanDarDS

humans&Technology

4,000

2,950

1,900

850

-200

0

37.5 75

112.5

150

+

+

hIrIn

ggaP[e

MPlo

yees]

TIMe(MonThs)

effects of hiring constraints on safety of naSa systems are one of the many social and political factors considered in the new framework for systems safety for naSa’s Space exploration Mission directorate.nationalacademiesofscienceandengineering(2006),IssuesaffectingthefutureoftheusspacescienceandengineeringWorkforce:Interimreport,ThenationalacademiesPress,Washington,Dc

probability distributions of temperature change over the 21st century under no climate policy, stabilization of CO2 at 750ppm, and stabilization at 550ppm. the probability of exceeding 4˚C warming under these policies are 80%, 60%, and 5%, respectively. from M.Webster,c.forest,h.jacoby,s.Paltsev,r.Prinn,j.reilly,M.sarofim,a.schlosser,a.sokolov,P.stone.“long-termgreenhousegasstabilizationandtherisksofdangerousimpacts.”WorkingPaper,2008.

TransfersfroMshuTTle

lIMITsonhIrIng

CCSp:clIMaTechangescIencePrograMsynThesIsanDassessMenTProDucT2.1a

before eSd associate professor daniel frey began his research, the one-factor-at-a-time (Ofat) method of testing designs was

considered deficient. for example, n. logothetis and henry p. Wynn, authors of Quality Through Design (Oxford university press,

1995), proclaimed the ‘final demise of the simple one-factor-at-a-time method.’ but frey was able to definitively prove the utility

of the method. as Karl t. ulrich and Steven d. eppinger later remarked in Product Design and Development (Mcgraw hill, 2007),

‘an adaptive one-factor-at-a-time approach has been shown to yield better performance optimization.’

design and implementation

Largeengineeringsystems,suchasthosesupportingcommunications,transportation,andelectricitygenerationanddistribution,accountformuchoftheworld’seconomy.Consideringthateachonehadtobedesignedforperformance,economy,flexibility,andresourcesustainability,onecouldarguethatsystemdesignisthesinglemostimportantactivitydefiningmoderncivilization.

Systemdesignisacomplexanddiverseactivityinvolvingcoordinationofmanyprofessionalsandcorporatefunctions,includingresearchanddevelopment,engineering,finance,manufacturing,marketing,anddistributionandlogistics.Designresearchinengineeringsystemsexplicitlytakesintoaccountwithinthe

designthesefunctionalneedsaswellastheneedtoplanforfutureuncertainties.Aholisticdesignfurtherincorporatesimplementationandenterpriseadoptionchallenges,withoutwhichdesignsarejustatheoreticalexercise.

ESDresearchersworktoimprovethevariousprocessesassociatedwithdesignandimplementation,includingrequirementsdevelopment,productarchitectureanddesign,programandprojectmanagement,andnewreliability/robustness/testingmethods.ESDresearchersalsoexploretheprocessofimplementingvariousdesignsandthechangemanagementprocessitself,aspartofaseriesofprojectsdealingwiththechallengesofenterprisearchitecture.

esd authors

design and implementation

adaptive Ofat is used by Cobasys engineers to improve the performance, reliability, robustness, and cost effectiveness of their energy storage systems. Image courtesy of Cobasys

b

b

b

b

a

a

a

a

c

c

c

c

E

F

D

runaresolutionIIIdesignonnoisefactors

changeonefactor

again,runaresolutionIIIonnoisefactors.Ifthereisanimprovement,retainthechange.

repeattheprocess.Iftheresponsegetsworse,gobacktothepreviousstate.

stopafterchangingeverycontrolfactoronce.

the viability Of the One-faCtOr-at-a-tiMe (Ofat) experiMental deSign MethOd

MITE

NgINEErINgSySTE

MSD

IVISIoN

rE

SE

ar

cH

aPProaches

18 ::19

Strategic Materials decisions: Systems insights to improve recyclability

Theaverageper-capitaconsumptionofmaterialsintheUnitedStatesexceedsastaggering50kgeachday.WhiletheaverageconsumptionoftherestoftheworldlagssignificantlybehindthatoftheUnitedStates,itisgrowingattwicetherate.Asinotherareas,thechallengeistoaccommodatethisgrowthwhilepreservingresourcesustainability.

Materialschoicesaffecteveryaspectofthelifecycleofeveryproduct,frommaterialsproductiontomanufacturetouse,end-of-life,andmaterialsrecovery.Theenvironmentaleffectsofthesechoicesarenotonlytheenergyconsumptionandemissionsfromproductmanufacture,butalsotheenvironmentalconsequencesoftheusestowhichtheseproductsareput.

Productandmaterialsrecyclingcanlimittheenvironmentalimpactsofmanufacturingprocesses,butitsimplementationhasbeenlargelyopportunistic,ratherthangroundedinanappreciationoftheinteractionsamongmaterialsscience,productiontechnology,materialsmarkets,andproductlifecycles.Usingsimulationandstochasticoptimizationmethods,ESDresearchershavedevelopedrecyclingstrategiesthatincluderedesignofmaterials,products,recyclerprocesses,recoveryinfrastructure,andpolicy.Thisworkhasshownthatreframingproductionanalysesaroundthesebroaderinteractionsyieldstoolsthatcanidentifyundervaluedrawmaterials,refinebatch-mixingdecisions,characterizerecycling-friendlyalloydesign,andguidestrategicalloychoices.Additionally,theteamdiscoveredthatprobability-basedmodelscanidentifyoperationalimprovementsacrossmanyformsofproduction.

Thisworkiscurrentlyextendedtomodelhowrecyclingsystempolicyandarchitectureinfluencerecoveryeconomicsandeffectiveness;thepotentialfortechnologicalsolutionstomitigatethedeteriorationofsecondaryresources;andtheroleofrecyclingtomanagevolatilityandscarcityinthelargermaterialssystem.

gaustad,g.,P.li,andr.kirchain,“ModelingMethodsforManagingrawMaterialcompositionaluncertaintyinalloyProduction,”Resources,Conservation, and Recycling,52(2),180–207,2007.

real Options in System design

Althoughdesignersoftenpromotetheideaofflexibility,explicitconsiderationofflexibilityinsystemdesignrepresentsaconsiderabledeparturefromcurrentengineeringpractice.Therationaleforflexibilityindesignisthat,duetouncertainty,thereisvalueinhaving“theright,butnottheobligation,”inotherwords,anoption,toreacttofuturedevelopments.

Thisresearchfocusesonthedevelopmentofvaluableflexibilityindesigns.Conceptuallyandprofessionally,thisworkliesmidwaybetweenstandardengineering(whichdoesnotconsiderdesignflexibilityinanydetail)andfinancialrealoptionsanalysis(whichdoesnotlookatdesign).ESD’sresearchteamhasdevelopeda“screeningmodel”approachtothecoreproblemofidentifyingthesystemelementsthatshouldbeflexibleinordertoincreasevalue.Screeningmodelsaremid-fidelitymodelsthatrunmuchfasterthanstandarddetaileddesignmodels.Theycanbeusedtoexaminetheperformanceofmanydesignsacrossgreatrangesofscenarios,thuspinpointingsystemarchitecturesthatarethemostattractiveprospectsfordetaileddesign.

Properinclusionofflexibilityinsystemdesigncanincreasetheexpectedvalueofprojectsbyover25%.ESDresearchersworkcloselywithindustriesrangingfromaerospaceandsatellitecommunications,toautomotiveandenergy,tohealthcare,construction,andrealestatetoidentifyopportunitiesforflexibledesigns.

Wang,T.andr.deneufville,“IdentificationofrealoptionsinProjects,”16thannualIncoseInternationalsymposium,orlando,july2006(PrizeforbestPaperatIncoseInternationalsymposium).

the MaterialS CyCle1

2

3

4

appliCatiOnS Of the integrated SCreening MOdel tO Oil and gaS field develOpMent

Deterministicinputs:•50%ooIP•bespokefacilitiesdesign•fixedoil/gasmarketprice

bespokeDesignoil/gasprice

oil/gasprice

oil/gasprice

ru:reserVoIruncerTaInTyMu:MarkeTuncerTaInTyOOip:orIgInaloIlInPlaceStOOip:sTockTankorIgInaloIlInPlace

+

+

+

+

+

+

TraDITIonal PracTIcEsinglenumberfornPVasadecisionmakingcriterion

nEw ParaDIgMValue-at-risk-and-gaincurve(Varg)•expectednPV•Maximalgain•Maximalloss•InitialcaPeX•Valueofflexibility

baseline nPV

nPV distributionrU + MU

nPV distribution +rU + MU + flexibility

staged facility

nPV distribution +rU + MU + flexibility

staged facility + tie-back options

flexiblestagedfacilities+intelligent

decisionrules

flexiblefacilities+intelligentdecisionrules+tie-back

flexibility

reservoir:sTooIP

reservoir:sTooIP

reservoir:sTooIP

>

>

>

>>

>

evaluation of the value of flexibility in the design of upstream oil and gas exploration facilities begins with establishing a deterministic baseline design (1), followed by evaluation of

the design under uncertainty (2), response under uncertainty with facility-level flexibility (3) and response with increasingly

sophisticated flexibility strategies such as the tie-in of new fields over time (4). Courtesy of Professor Richard de Neufville

the complete set of strategies to improve

material recovery only emerge when considering

the system as a whole. Figure courtesy of Professor

Randolph Kirchain

networks&flows

UncErTaInTy & DynaMIcS

humans&Technology

hea

lthcare

Delivery

DESIgn & IMPlEMEnTaTIon

Policy&standards

critic

al

Infrastruc

tures

EnEr

gy

&

SUST

aIn

ab

IlIT

y

ExTE

nD

ED

EnTE

rP

rIS

ES

extend

ed

enterprises

networks&flows

UncErTaInTy & DynaMIcS

humans&Technology

hea

lthcare

Delivery

energy&

sustaina

bility

cr

ITIc

al

In

Fra

STr

UcT

Ur

ES

DESIgn & IMPlEMEnTaTIon

Policy&standards

ProDUcTIon

rEclaMaTIon

ProDUcTS

ScraP

Pro

duct

los

ses

reclamation losses

Primary

Manufacturing Scrap

networks and flows Networksandflowscharacterizeallengineeringsystems:

•Technically—aspowergenerationplantslinktotransformers,transmissionlines,andconsumers

•Socially—ascontractualrelationships,governmentpolicies,andculturalneedsaffecttheflowofpeople,goods,andinformation

•Managerially—aslinksconnectdesigners,suppliers,manufacturingplants,warehouses,distributioncenters,andretailshops

Networkmodelinghasbeenusedbothforsystemsthatresemblephysicalnetworksandasapowerfulmodelingtooltorepresentmanyothersystemsinvolvingrelationshipsbetweenentities.Forexample,decisionsovertimeandspacecanberepresentedbyagraphstructure,ascanschedulesandassignments.

ESDresearchintonetworksandflowsappliesmoderngraphandnetworktheorytocomplexsystems,butdoessoinawaythatallowsarepresentationofthedynamicsanduncertaintiesthataremostrelevanttoengineeringsystems.

esd authors

networks and flows

the intermodal station in the vast logistics park in Zaragoza, Spain, is shown under construction in 2007.

the rail, air, and road network in the park underlie the complex network of

companies, processes, and flows serving as a hub for southwestern europe.

Image courtesy of the MIT-Zaragoza Program

MITE

NgINEErINgSySTE

MSD

IVISIoN

rE

SE

ar

cH

aPProaches

20 ::21

Wal-Mart transportation portfolio Management

Wal-Mart,theworld’slargestretailer,isalsooneofthelargestprivatefleetowners,withmorethan8,000driversoperatingmorethan60,000piecesofequipment.Inadditiontousingitsownequipment,thecompanyisamajorpurchaseroffor-hiretruckingservices—withbothdedicatedfleetsandindividuallanecontracts.oneofthechallengesthatWal-Martfacesisdetermining,atastrategiclevel,whenandwheretousethesedifferenttypesoftransportationresources.Eachtypeofresource(privatefleet,dedicatedfleet,andfor-hirecarrier)hasadifferentcoststructureandriskprofile.Additionally,thenumberofloadsoneachlanewithinthefreightnetworkisvariableaswellasuncertain.

TheMITCenterforTransportationandLogisticsisworkingwithWal-Marttoaddressthischallengebymodelingitstransportationrequirementsasanexceptionallylarge-scalestochasticnetworkanddevelopingevaluationalgorithmsbasedonamulti-dimensionalstochasticlinearprogramutilizingcolumngeneration.Themodelmakesrecommendationsonfleetassignmentbasedonbothdirectcostsandcoveragerisks.Becauseeachlaneispartofthenetwork,neitherthecostsnortherisksareindependent—themodelmusttakebothofthesenetworkeffectsintoaccount.

caplice,c.andy.sheffi,“combinatorialauctionsforTruckloadTransportation,”incramton,P.etal(ed.)Combinatorial Auctions,MITPress,2006.

Change propagation analysis in Complex technical Systems

Understandinghowandwhychangespropagateduringengineeringdesigniscriticalbecausemostproductsandsystemsemergefrompredecessorsandnotthroughcleansheetdesign.Thisresearchdevelopsandapplieschangepropagationanalysismethodsandextendedpriorreasoningthroughexaminationoflargedatasetsfromindustry.onesuchdatasetatraytheonIntegratedDefenseSystemsincluded41,500changerequests,spanningeightyearsduringthedesignofacomplexsensorsystem.

Theresearchusedgraphtheorytodefinehowspecificnetworkrelationshipsofconnected“parent,”“children,”and“sibling”changesareresolvedovertimeandmappedtovarioussubsystemareas.

Theresearchalsodevelopedanormalizedchangepropagationindex,showingtherelativestrengthofsubsystemsorcomponentsontheabsorber-multiplierspectrumbetween-1and+1.Multiplierssendoutmorechangesthantheyreceiveandaregoodcandidatesformorefocusedchangemanagementandembeddingofflexibility.Patternsemergefromsuchindustrialdataandofferclearimplicationsfortechnicalchangemanagementapproachesinsystemdesign.

Theinsightsfromthisresearchhavehadanimpactonprogramandchangemanagementatraytheon,Xerox,andBPandhaveledtotheformationofaresearchconsortiumof20industrialfirmsassponsoredbytheCambridge-MITInstitute.

giffinM.,o.deWeck,g.bounova,r.keller,c.eckert,andj.clarkson,“changePropagationanalysisincomplexTechnicalsystems,”asMe2007DesignengineeringTechnicalconferences,DeTc2007-34652,lasVegas,nV,september4–7,2007(inpressforASME Journal of Mechanical Design).

propagation network of 2,600 connected changes in a Sensor System at raytheon idS Courtesy of Professor Olivier de Weck

Wal-Mart uses sophisticated mathematical algorithms to contract for and operate the vast

transportation network (right) that supports its operations. Optimal capacity allocation

(above)is based on the company’s sensitivity to the risks of having either too many trucks

contracted or too few available to carry the loads. the relative magnitude of these two

distinct risks determines how much of each type of transportation asset to allocate.

The graph is based on the work of CTL researcher Francisco Jauffred. Image courtesy of Wal-Mart

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

fleet aSSignMent aS a funCtiOn Of riSK On an interMittent traffiC lanelane:V93252>DcP~P(3.6)

0 1 2 3 4 5 6 7 8 9 10

ProbabIlITy

loaDsPerWeek

Prob

cuMu

excess sensitive

short sensitive

risk neutral

humans&Technology

hea

lthcare

Delivery

Policy&standards

ExTE

nD

ED

EnTE

rP

rIS

ES

energy&

sustaina

bility

nETworkS & FlowS

critic

al

Infrastruc

tures

Design&Implementation

humans&Technology

hea

lthcare

Delivery

DESIgn & IMPlEMEnTaTIon

Policy&standards

ExTE

nD

ED

EnTE

rP

rIS

ES

energy&

sustaina

bility

cr

ITIc

al

In

Fra

STr

UcT

Ur

ES

uncertainty&Dynamics

nETworkS & FlowS

UncErTaInTy & DynaMIcS

policy and Standards Manymodernengineeringchallengesrequiresolvingproblemssubjecttopolitical,legal,andregulatoryconstraints.TheincreasedrelianceofmodernsocietiesonengineeringsystemsrequiresESDresearcherstoconsidermanysuchconstraintstobedesignvariables.ratherthantreatingregulationsandpoliciesasgiven,ESDresearchersinvestigatehowtheycanbechangedaspartofthedesignprocess.Understandingthepolicy-settingprocessisthuscriticaltotranslatinginsightsgainedfrommodelingandanalysisintocomprehensivesolutions—onesthatincludepolicymaking,engagediverseconstituencies,andincorporateimplementation.

Forexample,whiletheoriginaldevelopmentoftheInternetstandardswasperceivedasatechnicalproblem,today’schallengesinvolveindustrialeconomicsofthetelecommunicationsindustry,intellectualpropertylaw,privacy,andsecurity.

Technicalstandardsandprotocolsarefundamentaldeterminantsofthescopeofthetechnicalsystems,economicmarkets,andpolicydomainsthatareobjectsofstudyinESD.Interoperabilitystandardsandprotocolsallowcomponentsofasystemtoworktogether,andstandardizedmeasuresofperformanceallowforoutsourcingoffabricationandassemblyofthecomponentsofcomplexsystems.

ESDresearchersarestudyingvariouspolicy-settingmechanismsandareinvolvedinsettingpolicywithintheirresearchareas.Forexample,theProgramonEmergingTechnologiesexploreshowprotocolsandstandard-settingcaninfluenceboththetechnicalandindustrialtrajectoriesofemergingtechnologies.TheCenterforEnergyandEnvironmentalPolicyresearch

integratesclimatesciencewitheconomicmodelingtoassesstheeffectivenessofpolicyinstrumentsneededinthefaceofgreenhousegasemissions.AndtheMaterialsSystemsLaboratoryseekstocoupleproductdesignandmanufacturingchoiceswithenvironmentalandeconomicconsequencestoguidematerialsandprocessresearchtowardmoresustainableproductdevelopment.

the standardized bar code speeds transactions and simplifies inventory tracking.

Many eSd students, mostly in the technology and policy program, have interned at federal and state government agencies. ©istockphoto.com/Dieterspears

esd authors

policy and standards

MITE

NgINEErINgSySTE

MSD

IVISIoN

rE

SE

ar

cH

aPProaches

22 ::23

CO2 geological Storage Options

Amulti-disciplinaryteamwithexpertiseinsystemsanalysis,economics,sequestration,law,andpoliticalsciencelookedatthechallengeofregulatingcarbondioxideandstorage.Theresearchcombinedlegalanalysisofpotentialtortliabilityfromseismicitythatmightbeinducedbycarboninjectionintogeologicalformationsandfromcontractualliabilityfromcarbondioxideleakagefromstructures,withatechnicalreviewandassessmentofsequestrationoptions.ThetechnicalanalysisconcentratedonthestorageofCo2indeepsalineformationsandoilandgasfields,whichareconsideredtobethemostlikelynear-termgeologicalstorageoptions.DeepsalineformationsandoilandgasfieldsarebelievedtoofferthelargestcapacityforgeologicalstorageandinmanycasesareincloseproximitytolargesourcesofCo2.

Thelegalanalysisofliabilityreliedonconventionallegalresearchmethodstoidentifyrelevantstatutesandcasesandassesstheirimplicationsforcontractualandtortliability.

TheworkwaspresentedtostaffmembersoftheUSSenateCommitteeonEnergyandNaturalresourceswhowerewritinglegislationtoregulatesequestrationrisks.TheteamwasalsocommissionedtowriteabriefingpaperonliabilityissuesfortheInternationalriskgovernanceCouncil.

non-pharmaceutical interventions for flu preparedness and response

SArSandavianfluhaveraisedawarenessoftheriskofpandemicflu,andbillionsofdollarsarenowbeingdevotedtoinfluenzaresearch.However,littleattentionhasfocusedonsimplebehavioralchangesthatcanreducetheincidenceofinfection.Thisresearchmergesprobabilisticmodelbuildingwithsocialscienceandmanagementprinciples,toshowthatsimple,non-pharmaceuticalinterventions(NPIs)couldsignificantlyreducethedeathtollofanepidemic.

Todepictthesocialcontactbehaviorofaheterogeneouspopulationsusceptibletoinfection,theresearchersdevelopedanon-homogeneousprobabilisticmixingmodel.Theypartitionedthepopulationintosubgroups,basedonfrequencyofcontactsandinfectionpropensities,andthendevelopedadifferenceequationmodeltodepicttheevolutionofdisease.Thismodelshowedthatearlyexponentialgrowthofthediseaseamongthosewithfrequenthumancontactmaynotbeindicativeofthegeneralpopulation’ssusceptibility,andsocialdistancingmaybeeffectiveincombatingflu.

Underreasonableassumptions,themodelpredictsthatearlyandintenseuseofNPIscanreduce—byasmuchas20to40percent—fluinfectionanddeathrates.Thisresearchledtoatwo-dayworkshoponpandemicfluforrepresentativesfrom12states,theCentersforDiseaseControlandPrevention,theUSDepartmentofHomelandSecurity,andothers.Inrecognitionofthiswork,ProfessorrichardC.LarsonhasbeeninvitedtobecomeamemberoftheBoardonHealthSciencesPolicyoftheInstituteofMedicineoftheNationalAcademies.

larson,r.c.,“simpleModelsofInfluenzaProgressionWithinaheterogeneousPopulation,”Operations Research,55(3),399–412,May–june2007.

nigmatulina,k.r.andr.c.larson,“livingwithInfluenza:ImpactsofgovernmentImposedandVoluntarilyselectedInterventions,”toappearinEuropean Journal of Operational Research,2008.

the effeCt Of travel reStriCtiOnS

CO2 StOrage liability prOpOSal

sealeVel

1kM

1

23a

3b4

ProDuceDoIlorgas

InjecTeDco2

sToreDco2

OvervieW Of geOlOgiCal StOrage OptiOnS1 Depletedoilandgasreservoirs2 useofco2inenhancedoilandgasrecovery3 Deepsalineformations–(a)offshore(b)onshore4 useofco2inenhancedcoalbedmethanerecovery

the most promising CO2 storage options are in deep saline formations and oil and gas fields. the research combined technical storage systems analysis with market considerations, tort and contractual liability issues, and regulatory systems analysis.

figure from: Intergovernmental Panel on Climate Change, IPCC Special Report on Carbon Dioxide Capture and Storage, Summary for Policy Makers and Technical Summary, IPCC, (2005)

critic

al

Infrastruc

tures

Design&Implementation

extend

ed

enterprises

UncErTaInTy & DynaMIcS

PolIcy & STanDarDS

networks&flows

EnEr

gy

&

SUST

aIn

ab

IlIT

y

hea

lthcare

Delivery

humans&Technology

energy&

sustaina

bility

critic

al

Infrastruc

tures

Design&Implementation

extend

ed

enterprises

HEa

lTH

ca

rE

DEl

IVEr

y

HUManS & TEcHnology

UncErTaInTy & DynaMIcS

PolIcy & STanDarDS

networks&flows

10,000

8,000

6,000

4,000

2,000

0

neWIn

fecTe

Ds

0 10 20 30 40 50

Days

5 15 25 35 45

hIghacTIVITy

MIDDleacTIVITy

loWacTIVITy

ToTalacTIVITy

defigueiredo,M.,h.herzog,P.joskow,k.oye,andD.reiner,“regulatingcarbonDioxidecaptureandstorage:legal,regulatoryandorganizationalIssues,”Internationalriskgovernancecouncil,january2007.

infection spread within a community that reacts to previous day’s news only by proportionally scaling back the average number of contacts for all its members. Courtesy of Professor Richard Larson

“esD’seducationalprogramsaretheembodimentofMIT’smens et manusphilosophy,academicallyrigorousbutalsowell-groundedinpracticethroughesD’suniquesetofpartnershipswithindustryandgovernment.”

Steven r. lerman,Deanforgraduateeducation,MIT

MITE

NgINEErINgSySTE

MSD

IVISIoN

ED

Uc

aT

Ion

24 ::25

1Inadditiontothefourmaster’sprogramsshowninthetable,ESDoffersamaster’sprogramforstudentswhowishtopursueanindependentadvanceddegreeinengineeringsystems.TheESDSMisalsoanoptionfortheengineeringdegreeawardedtograduatesoftheLeadersforManufacturingProgram.

ESD offers a doctoral degree and five1 master’s programs. all programs share a common, holistic approach to engineering systems. ESD prepares engineers to lead in the real world, where clean answers are anomalies and challenging technical problems rarely have purely technical solutions.

Forthatreason,thedivisionisstronglytiedtoorganizationsinindustryandgovernment.ThevastmajorityofESDstudentsinthemaster’sprogramsworkonrealproblemsinindustry,whilethethesisresearchofthePhDstudentstypicallyinvolvesmethodologicaldevelopments.

AllESDprogramsfocusonleadership,preparingstudentstobeagentsofchangeinacademia,industry,andgovernment.ThePhDprogramisfocusedonacademicandresearchleadership,whilethemaster’sprogramsarefocusedonindustryandgovernmentleadership.Whatdistinguisheseachofthemaster’sprogramsisitsfocuswithinthelifecycle—whetherstudentsdealprimarilywithdesign,manufacture,operations,orpolicyissues—althoughinallcasestheseboundariesareporous.AllESDstudentsareexpectedtoattaindeepcompetenciesoutsidetheirareasofconcentration,andinparticularareexpectedtomaintainanddeepentheirtechnicalexcellence.

ESD by the numbers (2008)441 graduate students51 faculty members117 ESD courses plus 8 under development

pro

gram

dat

e fo

unde

d

Stud

ents

en

rolle

d

pro

gram

leng

th

(mon

ths)

Sele

ctiv

ity

(%)1

yiel

d (%

)2

1975

1988

1996

1998

2002

100

95

150

36

60

24+

24

13–24

9

36–78

363

29

565

23

26

80

82

90

78

74

TPP

lFM

SDM4

Mlog

PhD

1ratioofstudentsacceptedtoapplied2ratioofmatriculatedstudentstoaccepted3excludinginternaldualdegreeapplicants4sDMselectivityandyieldpercentagesexcludecertificateprogramstudents5Pre-selectionmadebypartnercompaniespriortoapplication

Imag

e co

urte

sy o

f Ale

x B

udni

tz

eSd phd program ESD’s doctoral students are on the leading edge of the evolution of engineering systems approaches—well-grounded engineers committed to thinking imaginatively about ways to broaden engineering’s scope to solve complex problems. ESD is dedicated to providing the tools they need to lead the way—in academia and in industry.

Doctoral students in ESD face an ambitious undertaking. They must acquire a broad view of fundamental engineering systems thinking and deep knowledge of one or more domains of interest. In addition, they are required to develop thorough competence in certain established methodologies (such as operations research, economics, management concepts and methods, and social science methods). And, of course, each student’s dissertation is expected to make a seminal scholarly contribution to the field

of engineering systems. This means uncovering principles and articulating the properties underlying such systems, thereby adding to the developing knowledge of engineering systems approaches.

MIT’s engineering systems PhD is the program of choice in our field. An average of 15 candidates a year are enrolled in the program, which takes about five years to complete. Peers include Carnegie Mellon University (Engineering and Public Policy Department), Delft University of Technology (Technology, Policy, and Management Faculty), and Stanford University (Management, Science, and Engineering Department).

phd Student plaCeMent(2004–2008)

InDUSTry 34%

acaDEMIa 36%

goVErnMEnT (Inc. MIlITary) 17%

oTHEr 13%

clockwisefromthetop: eSd phd ‘06 Konstantinos

Kalligeros; eSd phd ‘06 ralph hall and prof. Joe Sussman;

prof. annalisa Weigel and eSd phd ‘06 heidi davidz

MITE

NgINEErINgSySTE

MSD

IVISIoN

ED

Uc

aT

Ion

DocTo

ralD

egreeanDProje

cTs

26 ::27

technology infusion analysis under uncertainty

Mostnewtechnologiesonlydelivervalueoncetheyareinfusedintoaparentsystem.Whiletheliteratureoninnovationisabundant,norigorousmethodologieshavebeenavailabletoevaluatetherisksandopportunitiesofnewtechnologieswithinawidercompetitiveandregulatorycontext.

Dr.Smalingdevelopedatechnologyinfusionassessmentmethodologytoquantifythepotentialperformancebenefitsofnewtechnologiesusingmulti-objectiveParetoanalysis.Thecostsofinfusingnewtechnologiesaredeterminedbycalculatingthearchitecturalinvasivenessofeachtechnologyconceptrelativetoabaselinesystem.Thedegreeofinvasivenessofdifferentsystemarchitecturesisrelatedtotheamountofdesignchangerequiredtoaccommodatethenewtechnology.Thiscanbequantifiedwithacomponent-basedchangeDesignStructureMatrix,

∆DSM.risksandopportunitiesaremeasuredbyweighingthefuturebenefitsandcostsofanewtechnologyagainstuncertainexogenousvariablesandscenariossuchasgainsthatmaybemadebycompetingtechnologiesandpotentialfutureregulatoryactions.Thetechnologyinfusionmethodologywasdemonstratedforahydrogen-enhancedcombustionengine,wheretheeffectsofintegratingaplasmafuelreformerintoavehiclewerequantifiedintermsoffueleconomy,Noxemissions,andvehicleadd-oncosts.

ThemethodologyforcarryingouttechnologyinfusionanalysiswassubsequentlyadoptedandrefinedatXeroxCorporationtoassessnewtechnologiesfordigitalprintingsystems.ThisworkreceivedtheBestPaperinSystemsEngineeringAward2007fromtheInternationalCouncilonSystemsEngineering.

smaling,r.ando.deWeck,“assessingrisksandopportunitiesofTechnologyInfusioninsystemDesign,”Systems Engineering,10(1),1–25,2007(awardforbestPaperinsystemsengineeringfromIncose).

design for location: Offshore Manufacturing and technology Competitiveness

Prof.Fuchs’sresearchcombinesqualitativefieldresearchwithengineering-baseddecisiontoolstoprovideinsightintotheglobaldriversoftechnologicalchange.AtMIT,shestudiedtheimpactofmanufacturinglocationontechnologydevelopmentincentivesandtherebythetechnologytrajectoryoffirms.Shelookedattwocasesofemergingtechnologies:advancedcompositesinautomobilesandintegratedcomponentsinoptoelectronics.Inbothcases,herresultsshowthatwhenUSfirmsshiftproductionfromtheUnitedStatestosuchcountriesasChina,themostadvancedtechnologiesdevelopedintheUnitedStatesnolongerpay.Productioncharacteristicsaredifferentabroad,andearliertechnologiescanbemorecost-effectiveincountrieslikeChina.Amongotherissues,thisleavesthemostadvancedtechnologiesabandoned,and,atleastinthecaseoftheoptoelectronicsindustry,createsabarriertoreturningproductiontotheUnitedStates.

WithherresearchgroupatCarnegieMellon,Prof.Fuchscontinuestostudytechnologyandglobalcompetitiveness,including(1)theroleoftheUSgovernmentinseedingandencouragingnewtechnologytrajectories,(2)theconsequencesofoffshoreoutsourcingforknowledgeflowsandproduction-floorlearningwithinfirms,and(3)theresiliencyoftheUSinnovationecosystemtoexternalshocks,includingacriticalsetoffirmsmovingmanufacturingoffshore.

fuchs,e.,e.bruce,r.,ram,andr.kirchain,“Process-basedcostModelingofPhotonicsManufacture:Thecost-competitivenessofMonolithicIntegrationofa1550nmDfblaserandanelectro-absorptiveModulatoronanInPPlatform,”Journal of Lightwave Technology,24(8),3175–3186,2006.

fuchs,e.,f.field,r.roth,andr.kirchain,“strategicMaterialsselectionintheautomotivebody:economicopportunitiesforPolymercompositeDesign,”Composite Science and Technology,68(9),1989–2002,2008.

Erica Fuchs, PhD 2006assistantProfessor,DepartmentofengineeringandPublicPolicy,carnegieMellonuniversity

rudy Smaling, PhD 2005ChiefEngineer,HybridSystemsArchitecture,EatonCorporation

uS OptOeleCtrOniC deviCe ManufaCturing Capability

hea

lthcare

Delivery

humans&Technology

energy&

sustaina

bility

cr

ITIc

al

In

Fra

STr

UcT

Ur

ES

extend

ed

enterprises

UncErTaInTy & DynaMIcS

DESIgn & IMPlEMEnTaTIon

networks&flows

Policy&standards

critic

al

Infrastruc

tures

Design&Implementation

PolIcy & STanDarDS

hea

lthcare

Delivery

humans&Technology

ExTE

nD

ED

EnTE

rP

rIS

ES

energy&

sustaina

bility

nETworkS & FlowS

uncertainty&Dynamics

relatiOnShip betWeen teChnOlOgy develOpMent, teChnOlOgy infuSiOn, and the SOCietal iMpaCt Of teChnOlOgy

capitalInvestment(nre)

Vehicleadd-oncost($)

UncErTaInTy

economyenvironmentregulationscompetition

Improvedemissionsandfueleconomy

Vehiclefleet

technology Societal impact (super-systemlevel)

technology infusion(systemlevel)

engineIntegration

technology infusion(subsystemlevel)

UncErTaInTy

∆DsMmodel

UncErTaInTy

technology development(componentlevel)

UncErTaInTy

h2co1n2

energy

Plasmafuelreformer

air,fuel

caDModel

TestVehicle

usintegrateddevicemanufacturingyieldhastobe40%higherinordertocompensateforthecostadvantageofmanufacturingdiscretedevicesineastasia.

$1,200

$1,100

$1,000

$900

$800

$700

$600

$500

$400

0

unITProDucTIoncosT($/eMl)

annualProDucTIonVoluMe(‘000s)

10 20 30 40 50

baSe CaSe yield*

DIscreTeDeVIcebasecase 3.9%

MonolIThIcbasecase 2.3%

*yieldreferstocummulativeyeildoflaser

DiscreteDevicebasecase

Monolithicbasecase

Monolithicyield

DiscreteDeviceyield

2%

3%

3%

4.5%

technology and policy program TheTechnologyandPolicyProgram(TPP)strivestodevelopleaderswhocancreate,refine,andimplementresponsiblepoliciesthatareinformednotonlybyanunderstandingoftechnologyanditsinstruments,butalsobythebroadsocialcontextsthatbothshapeandareshapedbytechnology.TPPseekstoequipstudentstobeeffectiveleadersinboththepublicandtheprivatesectors.

Studentspursueatwo-yearcourseofstudythatincludesclassesinlaw,publicpolicy,economics,andintroductorypolicymakingandleadership.TheyalsoconductfundedresearchprojectsacrossallfiveofMIT’sschools.roughlyone-halfofTPPstudentsgethands-onpolicyexperiencethroughtheTPPSummerInternshipProgram,whichhelpstoplacestudentsinpolicy-makingpositionsingovernments,industry,andnongovernmentalorganizations.

TheTPPthesisisamajorresearchwork.Studentsareexpectedtoplaceaproblemwithinitstechnicalandsocialcontext,synthesizethetechnicalandpolicyquestionsthatarisefromtheproblem,framethesequestionsforassessmentandevaluation,conducttheanalysisneededtogaininsightintothesekeyquestions,andprovideleadershiponwhatcanandoughttobedone.

TPP’salmost1,000alumniincludeuniversityprofessors,deansandchancellors,CEos,CFos,CTos,officialswithgovernmentministries,agenciesandNgos—andfiverhodesScholars.

WhatTPPdidwasopenmyeyestohowyoucouldengageproblemsinasociallyrelevantway,whilebackingupyourapproachwiththerigorofanalyticalthinking.bryan Moser,sMTPP’89ceo,globalProjectDesign

recent thesis research:

Forhisthesis,Driving Segments analysis for Energy and Environmental Impacts of worsening Traffic,TPP’07WenFengusedsensitivityanalysistoinvestigatetheeffectsofalteringvehiclechoice,fuelconsumption,andemissions.

Inhisthesis, Introducing the concept of Sustainable Transportation to the US DoT through the reauthorization of TEa-21,TPP’03ralphHalldemonstratedtheinstitutionalcomplexityhinderingtheachievementofsustainabletransportationintheUnitedStates.

boston’s Central artery/tunnel project (left) involved significant technological feats, complex project management, and significant political and policy considerations. Many tpp students have worked on urban transportation planning projects, emphasizing both the technology and the policy aspects. Over the years, technology and policy program students have held internships in federal and state government, private industry, consulting firms, and numerous international organizations.

http://esd.mit.edu/tpp

MITE

NgINEErINgSySTE

MSD

IVISIoN

ED

Uc

aT

Ion

MasTe

rsPrograMs

28 ::29

System design and Management program TheSystemDesignandManagement(SDM)Programoffersamaster’sdegreejointlyawardedbytheMITSchoolofEngineeringandtheMITSloanSchoolofManagement.Builtonafoundationofcorecoursesinsystemarchitecture,systemsengineering,andsystemandprojectmanagement,SDMfocusesonimprovingthedesignofproductsandsystemsfrombothatechnicalandmanagementperspective.

Studentslearntorespondtouserneeds,allocatefunctionality,decomposesystems,anddefineinterfaces.Theyalsolearntomanagetaskstoensurethebestuseofresources,bothhumanandfinancial,andtomeetcost,performance,andscheduletargets.

recent thesis research:

SDM’06Soringrama’sthesiswork,a Survey of Thin-Film Solar Photovoltaic Industry & Technologies,helpedhisteamwinhonorsinthe2007MIT100Kentrepreneurialcompetitionwithasolar-poweredmicrogeneratingsystemassembledfromcommonautomotiveparts.

SDM’06studentLuisMasedadevelopedamodeltohelphospitaladministratorsframeinvestmentdecisionsforhisthesis,real options analysis of Flexibility in a Hospital Emergency Department Expansion Project, a Systems approach.

Iworkinanindustrythatisgrapplingdailywithlargerandmorecomplexproblems.Theabilitytostepbackandconsiderthebigpictureandallofthedifferentinteractions—withknowledgeofboththetechnicalandmanagerialconcerns—ispriceless.Monica l. giffin,sDM’06radarsystemsengineer,raytheonSdM students participate

in a design challenge competition. team members work together to creatively tackle a technical problem within a short time span.Image courtesy of Alex Budnitz http://esd.mit.edu/sdm

a system dynamics diagram of the rework cycle in a typical complex project

Figure courtesy of Senior Lecturer James Lyneis

Sorin grama, SdM ‘06, and a group of Mit students and local volunteers in front of a solar thermal system in lesotho, africa. the prototype system was built in 2007 as part of a World bank-sponsored initiative.

+Experience

Dilution +Too Big to Manage

+Burnout

-Add People

-Work More

-Work Faster or

“Slack Off”

+Haste Makes Waste

experiencecongestion &

communication difficulties

fatigue

workforce

overtime

effort applied

quality

effort needed

time remaining

deadline

hiring

known work remaining

rEWorKDISCoVEry

ProgressreWork

generaTIon

work intensityproductivity

orIgINALWorKToDo

rEWorKToDo

UNDISCoVErEDWorK

WorKDoNE

leaders for Manufacturing program LeadersforManufacturing(LFM)studentsgettwodegrees:anMBAfromtheMITSloanSchoolofManagementandanSMfromESDoroneoftheotherMITengineeringdepartments.LFMfocusesonthebroaderdefinitionofmanufacturing,encompassingdeliveryandservice.Theprogramisfoundeduponthebeliefthatmanufacturingandoperationsexcellenceisthebasisfortheeconomicandsocialwell-beingofindividualsandcompaniesoperatinginglobalmarkets,andconsequentlyforsocietyasawhole.

LFMstudentsgainasolidbackgroundinengineering,operationsmanagement,informationtechnology,teamwork,changemanagement,andsystemsthinking.Adefiningfeatureoftheprogramisitsinternship.LFMstudentsspend6.5monthsonaninternshipatapartnercompanyandusetheexperienceasthebasisfortheirLFMtheses.

ThetailoredLFMleadershipcurriculumprovidedmewiththefoundationtobringtoBoeingpracticalsolutionstocomplex,real-worldproblems.LFM’sadvancededucationhasproven,overtime,toberobustandenduring.IcontinuetoleveragewhatIlearnedinmyworktoday. Patrick Shanahan,lfM’91,generalManagerofTheboeingcompany’s787Dreamlinerproject

recent thesis research:

LFM’07KenMerriamspentsixmonthsinterningwiththeonlineretailgiantAmazonforhisthesis,reducing Total Fulfillment costs at amazon E.U. through network Design optimization.HisworkenabledthecompanytominimizeitsU.K.transportationcostsandprovidedthebasisforoptimizingtheassignmentofordersandinventorytomultiplewarehouses.

WhileinterningatNovartis,LFM’07JohnHeineyutilizedaseriesofdeterministicandstochasticmodelstopredicttheimpactofmultipleoperationalchangesoncostandcycletimeinearly-stagedrugtesting.Histhesis,optimization of Preclinical Profiling operations in Drug Discovery,helpedthecompanyreducematerialsspendingby$500,000peryear,increasecapacity,reducecycletime,andimprovecustomervalue.

a team of first-year students in eSd’s leaders for Manufacturing program plans its product development strategies during a simulation as part of its lean product development Workshop. the workshop takes place during the program’s first summer.

http://esd.mit.edu/lfm

andrea Jones’s internship at honeywell aerospace in phoenix, arizona, is an example

of the breadth of an lfM internship project. Jones, lfM ‘06, recognized that through

enterprise-level optimization of supply chain, assembly, and test practices, honeywell could improve its on-time delivery of quality engines

to customers. She conducted a lean enterprise Self assessment tool (leSat) survey to

highlight opportunities to propel honeywell to a culture of high performance.

MITE

NgINEErINgSySTE

MSD

IVISIoN

ED

Uc

aT

Ion

MasTe

rsPrograMs

30 ::31

Master of engineering in logistics program Thebusinessoflogistics—designingandcoordinatingtheflowofproducts,information,money,andideasthroughthesupplychain—isanenormousindustry.TheUSlogisticsbillisnowmorethan$1trillion—abiggershareofthegDPthanthatofSocialSecurity,healthcare,ordefense.

TheMasterofEngineeringinLogistics(MLog)Programwascreatedtoproduceanewgenerationofsupplychainmanagementprofessionalsabletorevolutionizethismassiveindustry.Theprogramfocusesonusingengineeringprinciplestosolveglobalsupplychainchallenges,providingstudentswithproficiencyinproblem-solvingapproaches,informationtechnologysystems,andchangemanagementleadership.

recent thesis research: MLog’07JoshuaMerrillcreatedacross-enterprisenetworkplanningmodelcapturingtheriskinvolvedinuncertaintyinbothsupplyanddemandforhisthesis,risk in Premium Fruit and Vegetable Supply chains.

MLog’08AllisonBennettandyiZhuanChin’sthesis,100% container Scanning: Security Policy Implications for global Supply chains, quantifiedtheimpactofincreasedsecurityproceduresforincomingfreightcontainersonUS-basedcompanies.

MyMLogeducationhasgivenmetoolsthatallowforadeeperandmoremeaningfulsearchforbusinesssolutionstodrivethesupplychainorganizationforward.randy Fike,Mlog’05WorldwidesupplychainstrategyManager,lexmark

Students in the MlOg class of 2009 play the

“beer game” (above) demonstrating the

“bullwhip” effect in supply chain—the amplification

of orders as one gets “upstream” and away from

the consumer. Image courtesy of L. Barry

Hetherington

the graph (right)shows an instance of this amplification

in the automotive machine tool industry.

http://esd.mit.edu/mlog

Major greg holt (MlOg 2005) wrote home on august 1, 2008 that among his many other current duties he conducts “logistics analysis of traffic patterns to restore a healthy flow of goods between factories and markets,” and “is using the lessons of eSd.260 in iraq.” (greg holt served as a Special forces officer in two combat tours in afghanistan and iraq from 2002 to 2004. he re-joined the army after finishing his MlOg degree to serve a 3rd combat tour in fallujah, iraq.)

%changeyearoVe

ryear

Supply Chain vOlatility aMplifiCatiOn

80

60

40

20

0

-20

-40

-60

-80 %changeIngDP

%changeInVehIcleProDucTIon

%changeInMachIneToolsorDers

1961

1963

1965

1967

1969

1971

1973

1975

1977

1979

1981

1983

1985

1987

1989

1991

anderson,e.,c.fine,andg.Parker,“upstreamVolatilityinthesupplychain:TheMachineToolIndustryasacasestudy,”Production and Operations Management,9(3),239-261,fall2000.

“TheengineeringsystemsDivisionforgespartnershipswithindustries,governments,andacademicinstitutionsthroughouttheworld,developingcommunitiesofresearchersandeducatorsfocusedonsystemschallengesofglobalimportance.”

Subra Suresh,Deanoftheschoolofengineering,MIT

MITE

NgINEErINgSySTE

MSD

IVISIoN

glo

ba

l r

Ea

cH

32 ::33

caMbrIDge,usa

ESDHeadquartersatMIT

12

6

39

12

457

8

1011

12

6

39

12

457

8

1011 lIsbon,

PorTugal

MITPortugal

+5hrs

12

6

39

12

457

8

1011 ZaragoZa,

sPaIn

MIT-ZaragozaInternationalLogisticsProgram

+6hrs

12

6

39

12

457

8

1011 abuDhabI,

unITeDarabeMIraTes

MasdarInitiative

+8hrs

Many of the ideas being explored and the methods being developed within the Engineering Systems Division are designed to be put to use in systems that span the globe.

Expandingthereachofengineeringsystemsbyworkingwithindustry,government,andinternationalorganizationsiscentraltothemissionoftheEngineeringSystemsDivision.

Large-scaleproblemsrequirelarge-scaleexperiments,andESDisutilizinglarge-scaleprojectsthatemploywholecommunitiesofacademics,industryexperts,andgovernmentpartnerstointegrateresearchwitheducation.ratherthanconfiningresearchtotheclassicallaboratorywithintheuniversity,manyESDresearchers’laboratoryistherealworld,andtheirresearchisperformedintheveryenvironmentsthattheirideasandsolutionsaredesignedtoinfluence.

12

6

39

12

457

8

1011 bogoTÁ,

coloMbIa

TheCenterforLatin-AmericanLogistics

-1hr

12

6

39

12

457

8

1011 shanghaI,

chIna

LFMChina

+12hrs

global Supply Chain and logistics excellence network

the lOgyCa campus contains several demonstrations of using advanced information technologies in logistics application, including several simulated store formats, a hospital and a warehouse. pictured: an rfid-enabled simulated supermarket where alternative software solutions can be tested. Courtesy of LOGyCA

TheglobalSupplyChainandLogisticsExcellence(SCALE)NetworkisaninternationalallianceofthreeleadingresearchandeducationcentersfoundedandorganizedbytheMITCenterforTransportationandLogistics.Membersarededicatedtosustainableglobaleconomicgrowththroughthedevelopmentofsupplychainandlogisticsknowledge,technology,andprocesses—andtotheirdisseminationthougheducationandtraining.

Member centers:

The MIT center for Transportation & logisticsinCambridge,MA.Widelyrecognizedasaninternationalleaderintransportation,logistics,andsupplychainmanagementresearchandeducation,thecentermanagestheSupplyChainExchange,aconsortiumofmorethan50partnercompanies.ThecenteralsohelpscoordinatetheextensivetransportationandlogisticsresearchandeducationalofferingsconductedthroughoutMIT.

The zaragoza logistics center (zlc) is home of the MIT-zaragoza International logistics PrograminZaragoza,Spain.Thisresearchandeducationpartnership,launchedin2003,bringsacademia,industry,andgovernmenttogethertoexperimentwithnewlogisticsprocesses,concepts,andtechnologies.ItisintheprocessofmovingintothecenterofPLAZA,thelargestlogisticsparkinEurope,hometomorethan300logisticsanddistributioninstallations,usingthesecompaniesasalivinglaboratory.In2006,theZLCwasdesignatedbytheSpanishgovernmentasitsnationalCenterofExcellenceinLogistics.

The center for latin-american logisticsInnovationinBogotá,Colombia.Foundedin2008,thiscenter,whichishousedinLogyCA,isthefocalpointofanetworkofLatinAmericanuniversitiesengagedinsupplychainmanagementeducationandresearch.Currentprojectscenteroncriticalinfrastructure,urbantransportation,andoperationalriskmanagement—balancingaglobalperspectivewithLatin-Americanneeds.Lessthansixmonthsafteritsfounding,theCLIwasdesignatedbytheColombiangovernmentasitsLogisticsCenterofExcellence.

The$36millionSCALEprograminvolvesdozensofEuropeanandLatin-Americanuniversities,morethan15supportingcompaniesinSpainandsixinColombia,andmorethan20publicagenciesandNgos.TheZaragozaprograminvolvesmorethan20facultymemberslocally,whiledozensoffacultymembersacrossLatinAmericaareinvolvedintheColombiaprogram.

Faculty,researchers,students,andaffiliatedcompaniesfromallthreecenterspooltheirexpertiseandshareinlearningthroughjointprojects,studentexchanges,facultyvisitsandmulti-continentcorporateevents.Togetherthecenterscollaborateon

thedevelopmentoftoolsandprocessesthathelpretailers,manufacturers,suppliers,andcarriersthriveinanincreasinglycomplexandcompetitivebusinessenvironment—andinasustainablefashion.

The center for latin-american logistics Innovation

The MIT center for Transportation & logistics

Degrees offered•MIT-CLISupplementalMasterCertificateinInternationalLogisticsandSupplyChainManagement

•MIT-CLISupplementalPhDCertificateinInternationalLogisticsandSupplyChainManagement

MITE

NgINEErINgSySTE

MSD

IVISIoN

glo

ba

l r

Ea

cH

scalen

eTW

ork

34 ::35

ScalE Projects: culture of riskThiseffortexploreshowtheconceptsof“risk,”aswellasbusinesscontinuityplanningandriskmanagementdifferacrosstheglobe.onemajorquestionofthisresearchiswhetherthe“riskmanagement”cultureofamulti-nationalcompanydominatesthatofthelocalculturewhereafacilityislocated.Theprojectconsistsofresearchteamsinfourcontinents(NorthAmerica,LatinAmerica,Europe,andAsia)interviewingcorporationsanddevelopingmodelstounderstandhowriskismeasured,monitored,andmanaged.

Health care Delivery in Emerging MarketsThissetofprojects,basedoutoftheZaragozaLogisticsCenterinSpain,isdeterminingthebestwayfordrugstobedistributedwithinemergingmarkets.Thekeyissueistounderstandhowthesupplychainneedstobedesigned(includingthesetofproperincentives)inordertomaximizethenumberofpatientsreached.Aseriesofcontrolledexperimentstestingdifferentincentiveschemesandsupplychaindesignsarebeingruninghana,Zambia,andUganda.

critical InfrastructuresInfrastructuredevelopmentsinemergingeconomiesdonotnecessarilyneedtofollowthesamepathasinWesternnations.CellphoneadoptionwithinAfricaisthequintessentialexampleofnewtechnologyleapfroggingoldertechnologiesinemergingmarkets.Thisprojectexamineshowinnovationinlogisticsandtransportationinfrastructurediffersacrossvariousgeographiesandconditions.researchteamsintheUS,SouthAmerica,andEuropeareexamininghowthedevelopmentandlocationoftransportationlinks,logisticsparks,andrelatedI/Tinfrastructurecanshapelocaleconomicdevelopment.

the Zaragoza logistics Center will be situated in the plaZa logistics park (farleft) in Zaragoza, embodying the

“university within the laboratory” concept.

Zaragoza university (left).

MlOg students (below)visit the barcelona port as part of the annual student exchange with the Zaragoza logistics Center.

The MIT-zaragoza International logistics ProgramDegrees offered

•MIT-ZaragozaMasterofLogistics&SupplyChainManagement(ZLog)

•MIT-ZaragozaPhDinLogisticsandSupplyChainManagement

•MasterdeLogistica(MdL)

TheMITPortugalProgramisa$40millioninternationalcollaborationinwhichMITandgovernment,academia,andindustryinPortugalworktogethertodevelopeducationandresearchprogramsrelatedtoengineeringsystems.Itaimstodemonstratethatastrategicinvestmentinscience,technology,andhighereducationcanhaveapositive,lastingimpactonanation’seconomybyaddressingkeysocietalissuesthrougheducationandresearchintheemergingfieldofengineeringsystems.Theprograminvolvesmorethan50MITfacultymembersand180facultyandresearchersinsevenPortugueseuniversities,andhasalreadyattractedmorethan20supportingcompanies.

Mit portugal

Degrees offered

PhDprogramsin:•BioengineeringSystems•EngineeringDesignandAdvancedManufacturing—LeadersforTechnicalIndustries

•SustainableEnergySystems•TransportationSystems

Master’s/AdvancedPostgraduateprogramsin:

•ComplexTransportInfrastructureSystems(TransportationSystems)

•SustainableEnergySystems•TechnologyManagementEnterprise(EngineeringDesignandAdvancedManufacturing)

The program’s four initial focus areas all employ engineering systems approaches:

bioengineering SystemsUnderstandingthekeyperformancedriversofthebiotechnology/bioengineeringsectoriscriticaltoPortugal,whichhastargetedthissectorasaneconomicdevelopmentpriority.Inadditiontopromotingtechnologicalinnovation,MITPortugalresearchersaredevelopingmeasurementtoolstoassessinnovationinbioengineeringandtodeterminehowtechnologicaladvancestranslateintocompetitiveadvantage.

Engineering Design and advanced Manufacturingresearchersaredevelopingmethodologiesthatsupportdecisionmakingindynamicsupplynetworksinordertoincreaseflexibilityandachievehighlevelsofglobalnetworkefficiency.Companiesintheautomotiveindustryhavebeenusedaspilotcasestudies,andspecificlogisticandoperationsmanagementproblemshavebeenselectedtodemonstratethepotentialoftheapproachesinpractice.

Sustainable Energy SystemsMITandparticipatingPortugueseuniversitiesaredevelopinganewgenerationofenergyprofessionalsfocusedontheengineeringsystemsaspectsofenergysystemsdesign.Collaborativeresearchinvolvingindustryandgovernmentsisgroupedintothreeareas:energyplanning(includingeconomics),sustainablebuiltenvironment,andsmartenergynetworks.

Transportation SystemsMITisworkingtogetherwithPortugueseuniversitiestodevelopacadreoftransportationresearchersandprofessionalsinPortugalwhoaretrainedatthesystemlevelinthedesignandmanagementofatechnology-intensive,intermodaltransportationsystem.Theapproachcombinestraditionalengineeringcourseswithinsightsintomanagementandfinance,aswellaspolicyandregulation.

©iS

tock

phot

o.co

m/J

osé

Luis

Gut

iérr

ez

The Engineering Systems anchor ProgramconsistsofasetofprojectsandeducationalinitiativesthatcreateslinkagesandsynergiesbetweenthefourtracksoftheMITPortugalProgram.

EN

gIN

EE

rIN

gSySTE

MSA

NC

Ho

rP

ro

gr

AM

MITE

NgINEErINgSySTE

MSD

IVISIoN

glo

ba

l r

Ea

cH

MITP

orTu

gal

36 ::37

Cou

rtes

y of

PhD

stu

dent

Iren

e Fe

rrei

ra

TheMITPortugalProgramwillpromoteanewresearchandeducationagendaonengineeringsystems,involvingconsortiaofPortugueseuniversitiesandgivingemphasistolarge-scalesystemsthatnotonlyhavecriticaltechnologicalcomponents,butalsohavesignificantenterpriseandsocio-technical-levelinteractions,inawaythatwillpromotenewengineeringresearchinEurope.Manuel Heitorsecretaryofstateforscience,Technology,andhighereducationgovernmentofPortugal(2006)

MIT-Portugal

Determinants and measurements of innovation in bioengineering:Across-nationalstudyofsuccessfulandunsuccessfuleffortstocreateaninnovationscorecard.Theresearchdevelopedaweb-basedtooltoserveasrepositoryofthedatacollectedduringthecourseoftheproject.Thistoolwillalsoallowdatatoberetrievedanddisplayedaccordingtothemetricsdeveloped.

Lightweight materials in automotive body component:ThreePortugueseuniversities,MIT,INTELI,andindustrialaffiliatesteameduptodevelopanevaluationmethodologyforalternativematerialsinengineeringapplicationsthatincorporatesperformance,cost,andenvironmentalimpactperspectives.

Remote islands face unique challenges in meeting growing energy needswhileminimizingenvironmentalimpactasenergycostsskyrocket.Withthecooperationoflocalenergycompanies,government,andresidents,MITPortugalresearchersareworkingtodevelopandimplementanenergystrategyontheremotePortugueseislandsoftheAzoresthatseekstomeetamajorityoftheislands’energyneedswithlocalresources.researchonrobust,cost-effectiveandimplementableenergystrategiesfortheAzoreswillserveasamodelforotherregions.

CityMotion:Usingrealtimedatafeeds,thisprojectaimstoimprovethepublictransportationsystemperformanceinmajorPortuguesecities.Thedatafeedsarebasedoncellphoneusage,gPSdata,roadsiderFIDreaders,andavarietyofsensors.Apilotapplicationwillprovideuserswithtimelydatatoplantripsthroughthecityusingmultiplemodesofpublictransportation.

Imag

e co

urte

sy o

f MIT

Por

tuga

iSto

ckph

oto.

com

/ Rui

Val

e So

usa

The Engineering Systems anchor ProgramconsistsofasetofprojectsandeducationalinitiativesthatcreateslinkagesandsynergiesbetweenthefourtracksoftheMITPortugalProgram.

EN

gIN

EE

rIN

gSySTE

MSA

NC

Ho

rP

ro

gr

AM

Imag

e co

urte

sy o

f MIT

Por

tuga

iSto

ckph

oto.

com

/ Chr

istin

e B

alde

ras

“Theyearsbetweenthepresentand2020offerengineeringtheopportunitytostrengthenitsleadershiproleinsocietyandtodefineanengineeringcareerasoneofthemostinfluentialandvaluableinsocietyandonethatisattractiveforthebestandthebrightest.”

The Engineer of 2020:Visionsofengineeringinthenewcentury(nae,2004)

MITE

NgINEErINgSySTE

MSD

IVISIoN

ES

D 2020

38 ::39

The Engineering Systems Division has taken up the gauntlet—working to prepare engineers not only as technical experts but as effective leaders who can guide industry, government, and other organizations in the development and application of technologies to tackle society’s challenges.

Managingtheentryofmorethanabillionpeopleintothemiddleclasswhilemitigatingtheimpactonresourceavailabilityandtheenvironment;improvinghealthcareprovisioninallpartsoftheworld;providingaffordablegoodseverywhereontheplanet;andofferingmobilityandaccessibilityforhumanactivitiesarejustsomeofthechallengesfacingtheglobalcommunityinthe21stcentury.

Astheworldflattens,ESDisattheforefront,providingthetoolsandframingtheanalysesthatcanimprovemanyoftheengineeringsystemsthatelevatethehumancondition.

cESUn

Aspartofitsmission,ESDisworkingwithotheruniversitiestoadvancetheengineeringsystemsdiscipline.In2004,ESDfoundedtheCouncilofEngineeringSystemsUniversities(CESUN),whichnowhas50memberuniversitiesaroundtheworld.CESUNprovidesmechanismsforacademiccooperationonaninstitutionallevelaswellasforthejointfurtheranceofengineeringsystemsasadiscipline.www.cesun.org

book Series

InconjunctionwiththeMITPress,ESDhaslaunchedanengineeringsystemsbookseries.TheserieshasaneditorialboardchairedbyJoelMosesofMITandincludesricharddeNeufville(MIT),ManuelHector(IST,Lisbon),grangerMorgan(CMU),ElisabethPaté-Cornell(Stanford),andWilliamrouse(georgiaTech).

Thefirstbooksintheseriesarelikelytobe:

NancyLeveson System Safety

richarddeNeufvilleandStefanScholtesEngineering Design with real options

olivierdeWeckandEdwardCrawley Principles and Methods for System Design and Management

the Masdar institute of Science and technology was established in 2006, in partnership with Mit, as part of an ambitious project to build the world’s greenest city. abu dhabi’s Masdar City aims to be the world’s first zero-carbon, zero-waste, car-free city. this $42 million Mit project involves over 50 faculty members, and has already effected the hiring of 25 faculty members (eight of whom have phds from Mit) at the Masdar institute. Picture shows an architect’s rendering of a street in Masdar City. With permission from Foster + Partners.

columns

engineering Systems— the fundamentals of a developing field Engineeringsystemsdifferfundamentallyfrompurelyphysical,chemical,orbiologicalsystemsinthattheirunderlyingstructures,behaviors,andevolutionarypatternsarenotencodedinaDNA-likesubstancethatcanbesequenced,analyzed,andreplicatedinalaboratory.Difficult-to-quantifyhumanconductiswovenintotheveryfabricofengineeringsystems.Consequently,ESDusesanexpandedsetoftoolstounderstandandsimulatethebehaviorofsuchsystemsandultimatelypredicttheirperformance.

ThenatureofmanyESDprojectsissuchthatsmall-scalelaboratoryexperimentsarenotmeaningfulorhelpfultotheresearchers.Theseingénieurs sans labosworkcloselywithindustryandgovernmentusingtheworldastheirlaboratory;therearemorethan100companiesworkingcloselywiththevariousESDprograms.SuchastyleofresearchandeducationisoneofthehallmarksofESD.Engineeringsystemsapproachesrequire,inmanycases,methodsthatarebeyondthestate-of-the-artduetosizeandcomplexity.Inthesecases,domainknowledgeisusedtofacilitatethesolutionmethod—forexamplebyrestrictingthefeasibleregionthroughinnovative“cuts”orapplyingdomain-validproblemdecompositions.

WecannotyetarticulatetheKirchhoff’slawsorthesecondlawinthermodynamicsthatareapplicabletoallengineeringsystems.Wecan,however,makegeneralstatementsthatapplytomostsystems.Forexample,onecannotimproveonasetofoptimalsolutionsbyaddingconstraintstoaproblem’sfeasibleregion;and,byandlarge,statementsaboutaggregatesetsofrandomvariablesareatleastasaccurateasthesamestatementsmadeaboutdisaggregatesubsets.AndLittle’slawinqueuingtheorymaybeanexampleofauniversalsystemsprinciple.Beyondthis,systemsresearchershavemadesignificantprogressinarticulating“phenomena”or“effects”thatoccurincomplexengineeringsystems—suchasthebullwhipeffectinsupplychains,thecoalescenceofchangenetworksinhighlycoupledtechnicalsystems,thefeedbackloopsunderlyingcomplexsystemssafety,theprinciplesofrealoptions-orienteddesignforuncertainty,andtherecoverydynamicsofenterprisessubjectedtomajordisruptions.Anumberoftheseeffectshavebeenwell-describedandobservedinpractice,buttheironsetandmitigationarenotyetfullyunderstoodsincetheyareclearlyrootedinthesystem’sarchitectureasmuchasintheorganizationalcultureandincentivesofthevariousstakeholders.

goingforward,ourunderstandingofengineeringsystemswillcontinuetogrowaswediscoveranddescribeprinciplesandproperties—equippingengineerstoaddresssignificantglobalproblemsandbuildasustainablefuture.

MITE

NgINEErINgSySTE

MSD

IVISIoN

ES

D 2020

40 ::41

ProfessorEmeritusThomasJ.Allen,PhDProfessorgeorgeE.Apostolakis,PhDAssistantProfessorHamsaBalakrishnan,PhDProfessorCynthiaBarnhart,PhDSeniorLecturerChrisCaplice,PhDProfessorJohnStephenCarroll,PhDProfessorJoelP.Clark,ScDSeniorLecturerJosephF.Coughlin,PhDProfessorEdwardF.Crawley,ScDAssociateProfessorM.L.Cummings,PhDProfessorMichaelA.Cusumano,PhDProfessorricharddeNeufville,PhDAssociateProfessorolivierL.deWeck,PhDProfessorThomasW.Eagar,PhDProfessorStevenD.Eppinger,ScDSeniorLecturerFrankr.Field,III,PhDProfessorCharlesH.Fine,PhDSeniorLecturerStanNeilFinkelstein,MDAssociateProfessorDanielFrey,PhDProfessorStephenC.graves,PhDSeniorLecturerPatrickHaleProfessorrobertJ.HansmanJr.,PhDProfessorDavidE.Hardt,PhDProfessorDanielE.Hastings,PhDAssistantProfessorrandolphE.KirchainJr.,PhDProfessorThomasAntonKochan,PhDProfessorPaulA.Lagacé,PhDProfessorrichardCharlesLarson,PhDProfessorNancyg.Leveson,PhDProfessorSethLloyd,PhD

ProfessorStuartE.Madnick,PhDProfessorofthePracticeChristopherL.Magee,PhDProfessorDavidH.Marks,PhDProfessorDavidA.Mindell,PhDProfessorSanjoyK.Mitter,PhDProfessorFredMoavenzadeh,PhDProfessorErnestJ.Moniz,PhDInstituteProfessorJoelMoses,PhDProfessorDavaNewman,PhDProfessorofthePracticeDeborahJ.Nightingale,PhDAssociateProfessorKennethA.oye,PhDSeniorLecturerDonnaH.rhodes,PhDProfessorDanielroos,PhDSeniorLecturerDonaldB.rosenfield,PhDProfessorWarrenP.Seering,PhDProfessoryossiSheffi,PhDProfessorDavidSimchi-Levi,PhDProfessorJohnSterman,PhDProfessorJosephM.Sussman,PhDProfessorJamesM.Utterback,PhDProfessorEricA.vonHippel,PhDProfessorDavidWallace,PhDAssistantProfessorMortDavidWebster,PhDAssistantProfessorAnnalisaL.Weigel,PhDProfessorroyE.Welsch,PhDSeniorLecturerDanielE.Whitney,PhDInstituteProfessorSheilaE.Widnall,ScDAssociateProfessorJohnr.Williams,PhDAssistantProfessorMariayang,PhD

eSd faculty and teaching Staff

Social network of eSd faculty and teaching staff. each node represents a faculty member; two individuals are connected by a link if they served together on one or more of the 46 past or 62 present eSd doctoral committees (starting in 2004). note that the network is fully connected with an edge to node ratio of 3:1, suggesting a high level of faculty collaboration in the development of the field of engineering systems.

SchoolofEngineering

SloanSchoolofManagement

SchoolofHumanities,ArtsandSocialSciences,SchoolofScience

teaM eSd

2008TwodualjuniorfacultytenuredatESD

2004CouncilofEngineeringSystemsUniversitiesislaunched

2004ESDDoctoralProgramisestablished,incorporatingtheTMP

2000FirsttenureddualfacultyhiredbyESD

1998TheEngineeringSystemsDivisionisfounded

1998MasterofEngineeringinLogisticsProgramisfounded

1996MIT’sSystemDesignandManagementProgramisfounded

1993TheSchoolofEngineeringpublishes“EngineeringwithaBigE”

1991Technology,Management,andPolicyProgram(TMP)PhDisfounded

1989MITCommissiononIndustrialProductivitypublishes“MadeinAmerica”

1988TheLeadersforManufacturingProgramislaunched

1996TheEagarCommitteerecommendsthecreationofESD

1985CenterforTechnology,Policy,andIndustrialDevelopmentisformed

1975TechnologyandPolicyProgramisfounded

1973CenterforTransportationStudiesisfounded

1971AlfredH.KeilestablishestheCenterforPolicyAlternatives

1961JayForresterpublishesIndustrialDynamics

1954HenryM.Paynterestablishesoneofthefirstsystemscourses

1948NorbertWienerpublishesCybernetics

MassachusettsInstituteofTechnologyEngineering Systems Division

web:http://esd.mit.eduemail:[email protected]