· manikkavalli mohan, nagaboopathy mohan, and dillip kumar chand (supporting information) fig. s1...

11
Selfassembled gold nanofilms as simple recoverable and recyclable catalyst for nitroreduction Manikkavalli Mohan, Nagaboopathy Mohan, and Dillip Kumar Chand (Supporting information) Fig. S1 TEM image taken for the AuNPs prepared in MeOH water mixtures after 2 weeks of aging, and right side histogram shows the particle size distribution. Fig. S2 TEM image taken for the AuNPs prepared in EtOHwater mixtures after 2 weeks of aging, inset is their corresponding SAED pattern and right side histogram shows the particle size distribution Fig. S3 TEM image taken for the AuNPs prepared in iPrOH water mixtures after 2 weeks of aging, inset is their corresponding SAED pattern and right side histogram shows the particle size distribution. Fig. S4 TEM image taken for the AuNPs prepared in tBuOHwater mixtures after 2 weeks of aging, inset is their corresponding SAED pattern and right side shows the particle size distribution. Fig. S5 UVvis spectra of AuNPs before and residual AuNPs present in aqueous phase after selfassembly a) EtOHH 2 O b) tBuOHH 2 O, and FESEM image of AuNPs prepared in (1:1) (c) EtOHH 2 O and (d) tBuOHH 2 O after treatment with hexane for selfassembly process and transferring AuNPs at the interface to Si wafer by dip coating method Fig. S6 TEM image of AuNFs prepared by using 0.5, 1, 1.5, 2 mM AuNPs in MeOHwater. Fig. S7 FESEM and TEM image of AuNFs prepared by using 0.75 mM (above), 1.25 mM (middle) and 1.75 mM (below) of AuNPs in MeOHwater. Fig. S8 AFM image of AuNFs prepared by using 1 mM AuNPs in MeOHwater. (Vertical distances for the region of blue, red and green lines shown in AFM image are 17, 15, 13 nm respectively). Fig. S9 a) Normal XRD and b) Grazing incidence XRD of AuNFs prepared using 1mM AuNPs in waterMeOH. Fig. S10 Plot of ln A t /A o Vs time (min) Table S1 Rate constant for the catalytic reduction reaction of 4NP by Au nanofilms as catalyst (prepared from various concentration of Au 3+ ) Fig. S11 Monitoring the catalytic reduction of 2nitrophenol by UVvis spectra. Fig. S12 Monitoring the catalytic reduction of 3nitrophenol by UVvis spectra. Fig.S13 Monitoring the catalytic reduction of 2nitroaniline by UVvis spectra. Fig. S14 Monitoring the catalytic reduction of 4nitroaniline by UVvis spectra. Fig. S15 1 H NMR spectrum of 4aminophenol in DMSOd 6 Fig. S16 1 H NMR spectrum of 2aminophenol in DMSOd 6 Fig. S17 1 H NMR spectrum of pphenylenediamine in DMSOd 6 Fig. S18 1 H NMR spectrum of ophenylenediamine in CDCl 3 . Fig. S19 1 H NMR spectrum of 3aminophenol in CDCl 3 . Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Upload: others

Post on 25-Mar-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1:  · Manikkavalli Mohan, Nagaboopathy Mohan, and Dillip Kumar Chand (Supporting information) Fig. S1 TEM image taken for the AuNPs prepared in MeOH ‐water mixtures after 2 weeks

Self‐assembled gold nanofilms as simple recoverable and recyclable catalyst for nitro‐reduction 

Manikkavalli Mohan, Nagaboopathy Mohan, and Dillip Kumar Chand 

 

(Supporting information) 

Fig. S1 TEM image taken for the AuNPs prepared in MeOH ‐water mixtures after 2 weeks of aging, and right side 

histogram shows the particle size distribution.   

Fig. S2 TEM  image  taken  for  the AuNPs prepared  in EtOH‐water mixtures after 2 weeks of aging,  inset  is  their 

corresponding SAED pattern and right side histogram shows the particle size distribution 

Fig. S3 TEM  image taken for the AuNPs prepared  in  i‐PrOH  ‐water mixtures after 2 weeks of aging,  inset  is their 

corresponding SAED pattern and right side histogram shows the particle size distribution.   

Fig. S4 TEM  image taken for the AuNPs prepared  in t‐BuOH‐water mixtures after 2 weeks of aging,  inset  is their 

corresponding SAED pattern and right side shows the particle size distribution.   

Fig. S5 UV‐vis spectra of AuNPs before and residual AuNPs present in aqueous phase after self‐assembly a) EtOH‐ 

H2O  b)  t‐BuOH‐  H2O,  and  FE‐SEM  image  of  AuNPs  prepared  in  (1:1)  (c)  EtOH‐H2O  and  (d)  t‐BuOH‐H2O  after 

treatment with hexane for self‐assembly process and transferring AuNPs at the interface to Si wafer by dip coating 

method 

Fig. S6 TEM image of AuNFs prepared by using 0.5, 1, 1.5, 2 mM AuNPs in MeOH‐water. 

Fig. S7 FE‐SEM and TEM  image of AuNFs prepared by using 0.75 mM  (above), 1.25 mM  (middle) and 1.75 mM 

(below) of AuNPs in MeOH‐water. 

Fig. S8 AFM image of AuNFs prepared by using 1 mM AuNPs in MeOH‐water. (Vertical distances for the region of 

blue, red and green lines shown in AFM image are 17, 15, 13 nm respectively).  

Fig. S9 a) Normal XRD and b) Grazing incidence XRD of AuNFs prepared using 1mM AuNPs in water‐ MeOH.  

Fig. S10 Plot of ln At/Ao Vs time (min)  

Table S1 Rate  constant  for  the  catalytic  reduction  reaction of 4‐NP by Au nanofilms as  catalyst  (prepared  from 

various concentration of Au3+)    

Fig. S11  Monitoring the catalytic reduction of 2‐nitrophenol by UV‐vis spectra. 

Fig. S12 Monitoring the catalytic reduction of 3‐nitrophenol by UV‐vis spectra. 

Fig.S13 Monitoring the catalytic reduction of 2‐nitroaniline by UV‐vis spectra. 

Fig. S14  Monitoring the catalytic reduction of 4‐nitroaniline by UV‐vis spectra. 

Fig. S15 1H NMR spectrum of 4‐aminophenol in DMSO‐d6 

Fig. S16 1H NMR spectrum of 2‐aminophenol in DMSO‐d6 

Fig. S17 1H NMR spectrum of p‐phenylenediamine in DMSO‐d6 

Fig. S18 1H NMR spectrum of o‐phenylenediamine in CDCl3. 

Fig. S19 1H NMR spectrum of 3‐aminophenol in CDCl3. 

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.This journal is © The Royal Society of Chemistry 2015

Page 2:  · Manikkavalli Mohan, Nagaboopathy Mohan, and Dillip Kumar Chand (Supporting information) Fig. S1 TEM image taken for the AuNPs prepared in MeOH ‐water mixtures after 2 weeks

  

0 5 10 15 200

2

4

6

8

10

12

14

16

18

Frequen

cy count 

Particle size (nm)  

Fig. S1 TEM image taken for the AuNPs prepared in MeOH ‐water mixtures after 2 weeks of aging, and right side histogram shows the particle size distribution.   

50 nm50 nm

10 1/nm10 1/nm

EtOH‐H2O

2 4 6 8 10 12 140

10

20

30

40

Freq

uen

cy Count

Particle SIze (nm)  

Fig. S2 TEM  image  taken  for  the AuNPs prepared  in EtOH‐water mixtures after 2 weeks of aging,  inset  is  their corresponding SAED pattern and right side histogram shows the particle size distribution.   

20 nm20 nm

10 1/nm10 1/nm

i‐PrOH‐H2O

0 4 8 12 16 20 240

10

20

30

40

50

60

Freq

uen

cy Count

Particle size (nm)  

Fig. S3 TEM  image taken for the AuNPs prepared  in  i‐PrOH  ‐water mixtures after 2 weeks of aging,  inset  is their corresponding SAED pattern and right side histogram shows the particle size distribution.   

Page 3:  · Manikkavalli Mohan, Nagaboopathy Mohan, and Dillip Kumar Chand (Supporting information) Fig. S1 TEM image taken for the AuNPs prepared in MeOH ‐water mixtures after 2 weeks

20 nm20 nm

t‐BuOH‐H2O

10 1/nm10 1/nm

0 5 10 15 200

10

20

30

40

50

60

70

80

Freq

uen

cy count

Particle size (nm)  

Fig. S4 TEM  image taken for the AuNPs prepared  in t‐BuOH‐water mixtures after 2 weeks of aging,  inset  is their corresponding SAED pattern and right side shows the particle size distribution.   

a)

400 600 8000

1

2

3

Absorbance

Wavelength (nm)

 EtOH‐H2O

 After self‐assembly

 b)

400 600 8000

1

2

3

Absorbance

Wavelength (nm)

 t‐BuOH‐H2O

 After self‐assembly

 

c)  d)   

Fig. S5 UV‐vis spectra of AuNPs before and residual AuNPs present in aqueous phase after self‐assembly a) EtOH‐ H2O  b)  t‐BuOH‐  H2O,  and  FE‐SEM  image  of  AuNPs  prepared  in  (1:1)  (c)  EtOH‐H2O  and  (d)  t‐BuOH‐H2O  after treatment with hexane for self‐assembly process and transferring AuNPs at the interface to Si wafer by dip coating method 

 

300 nm  200 nm

Page 4:  · Manikkavalli Mohan, Nagaboopathy Mohan, and Dillip Kumar Chand (Supporting information) Fig. S1 TEM image taken for the AuNPs prepared in MeOH ‐water mixtures after 2 weeks

50 nm50 nm

0.95nm

0.91nm

0.99nm

0.52nm0.98nm

100 nm100 nm 

Fig. S6 TEM image of AuNFs prepared by using 0.5, 1, 1.5, 2 mM AuNPs in MeOH‐water. 

 

 

 

 

 

 

 

Page 5:  · Manikkavalli Mohan, Nagaboopathy Mohan, and Dillip Kumar Chand (Supporting information) Fig. S1 TEM image taken for the AuNPs prepared in MeOH ‐water mixtures after 2 weeks

 

 

 

 

    

Fig. S7 FE‐SEM and TEM  image of AuNFs prepared by using 0.75 mM  (above), 1.25 mM  (middle) and 1.75 mM 

(below) of AuNPs in MeOH‐water. 

20 nm 

200 nm 

100 nm 

Page 6:  · Manikkavalli Mohan, Nagaboopathy Mohan, and Dillip Kumar Chand (Supporting information) Fig. S1 TEM image taken for the AuNPs prepared in MeOH ‐water mixtures after 2 weeks

 

 

Fig. S8 AFM image of AuNFs prepared by using 1 mM AuNPs in MeOH‐water. (Vertical distances for the region of blue, red and green lines shown in AFM image are 17, 15, 13 nm respectively).    

a)

20 30 40 50 60 70 80 90

0

30

60

90

120

150

180

Intensity (a. u.)

2 (degree)

normal XRD AuNFs (1mM)Si wafer

Au (111)

b) 

20 30 40 50 60 70 80 90

0

10

20

30

40

50

(222)

(311)(220)

(200)

Intensity (a. u.)

2 (degree)

Grazing incidence XRD AuNFs (1mM)

(111)

 

Fig. S9 a) Normal XRD and b) Grazing incidence XRD of AuNFs prepared using 1mM AuNPs in water‐MeOH.    

 

Crystalline nature of the AuNFs was probed using powder XRD  in a Riagaku powder machine.  Intensity of Au 

peaks under normal  theta‐2theta mode was  found  to be  in  the range of background noise due  to  the  thickness 

(few ten nanometers). Hence, the orientations present in AuNF crystals were identified by using GIXRD mode. The 

GIXRD pattern of 1mM AuNF  is  shown  in Fig.S9 b. The peaks at 38°, 44°, 64°, 77° and 81°were  indexed  to  the 

planes (111),  (200),  (220),  (311)  and  (222)  of  fcc Au  lattice.  Same  characteristics was  observed  for  rest  of  the 

samples as well (not shown here). 

Page 7:  · Manikkavalli Mohan, Nagaboopathy Mohan, and Dillip Kumar Chand (Supporting information) Fig. S1 TEM image taken for the AuNPs prepared in MeOH ‐water mixtures after 2 weeks

0 5 10 15 20 25 30‐2.0

‐1.5

‐1.0

‐0.5

0.0

ln At/Ao

Time (min)

 0.5 mM Au‐cat‐4NP

 0.75 mM Au‐cat‐4NP

 1 mM Au‐cat‐4NP

 1.25 mM Au‐cat‐4NP

 1.5 mM Au‐cat‐4NP

 1.75 mM Au‐cat‐4NP

 2 mM Au‐cat‐4NP

 

Fig. S10 Plot of ln At/Ao Vs time (min)  

Table S1 Rate  constant  for  the  catalytic  reduction  reaction of 4‐NP by Au nanofilms as  catalyst  (prepared  from 

various concentration of Au3+)    

1 mL of AuNPs at 

concentration  (mM) 

Rate constant, 

k (s‐1) 

0.5 9.96x10‐4

0.75 1.00x10‐3

1 6.47x10‐4

1.25 7.7x10‐4

1.5 6.49x10‐4

1.75 7.38x10‐4

2 6.85x10‐4

 

 

 

 

 

 

Page 8:  · Manikkavalli Mohan, Nagaboopathy Mohan, and Dillip Kumar Chand (Supporting information) Fig. S1 TEM image taken for the AuNPs prepared in MeOH ‐water mixtures after 2 weeks

300 400 500

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Absorbance (a. u)

Wavelength (nm)

 Blank o‐NP

 1min

 3min

 5min

 7min

 10min

 12min

 15min

 17min

 20min

 22min

 

 

Fig. S11 Monitoring the catalytic reduction of 2‐nitrophenol by UV‐vis spectra. 

200 300 400 500

0

1

2

3

Absorbance

Wavelength (nm)

 m‐NP

 m‐NP 1 min

 3 min

 5 min

 7 min

 10 min

 13 min

 15 min

 20 min

 

Fig. S12 Monitoring the catalytic reduction of 3‐nitrophenol by UV‐vis spectra. 

300 400 5000.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Absorban

ce

Wavelength (nm)

 12min

 14min

 17min

 20min

 22min

 24min

 26min

 28min

 30min

 34min

 38min

 Blank o‐NA

 1min

 3min

 5min

 7min

 9min

 10min

 

Fig.S13 Monitoring the catalytic reduction of 2‐nitroaniline by UV‐vis spectra. 

Page 9:  · Manikkavalli Mohan, Nagaboopathy Mohan, and Dillip Kumar Chand (Supporting information) Fig. S1 TEM image taken for the AuNPs prepared in MeOH ‐water mixtures after 2 weeks

300 400 500

1

2

3

4  15min

 17min

 20min

 22min

 25min

 27min

Absorbance

Wavelength (nm)

 p‐Nitroaniline

 1min

 3min

 5min

 7min

 10min

 12min

 

Fig. S14  Monitoring the catalytic reduction of 4‐nitroaniline by UV‐vis spectra. 

 

 

Fig. S15 1H NMR spectrum of 4‐aminophenol in DMSO‐d6 

Page 10:  · Manikkavalli Mohan, Nagaboopathy Mohan, and Dillip Kumar Chand (Supporting information) Fig. S1 TEM image taken for the AuNPs prepared in MeOH ‐water mixtures after 2 weeks

 

Fig. S16 1H NMR spectrum of 2‐aminophenol in DMSO‐d6 

 

Fig. S17 1H NMR spectrum of p‐phenylenediamine in DMSO‐d6 

Page 11:  · Manikkavalli Mohan, Nagaboopathy Mohan, and Dillip Kumar Chand (Supporting information) Fig. S1 TEM image taken for the AuNPs prepared in MeOH ‐water mixtures after 2 weeks

 

Fig. S18 1H NMR spectrum of o‐phenylenediamine in CDCl3. 

 

Fig. S19 1H NMR spectrum of 3‐aminophenol in CDCl3.