manufacturing process control - mit opencourseware€¦ · manufacturing 2.830j/6.780j/esd.63j 18...

33
MIT OpenCourseWare ____________ http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: ________________ http://ocw.mit.edu/terms.

Upload: others

Post on 10-May-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

MIT OpenCourseWare ____________http://ocw.mit.edu

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303)Spring 2008

For information about citing these materials or our Terms of Use, visit: ________________http://ocw.mit.edu/terms.

Page 2: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 1Manufacturing

Control of Manufacturing Processes

Subject 2.830/6.780/ESD.63Spring 2008Lecture #16

Process Robustness

April 10, 2008

Page 3: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 2Manufacturing

Outline• Last Time

– Optimization Basics– Empirical Response Surface Methods

• Steepest Ascent - Hill Climbing Approach

• Today– Process Robustness

• Minimizing Sensitivity• Maximizing Process Capability

– Variation Modeling• Noise Inputs as Random Factors

– Taguchi Approach• Inner - Outer Arrays

Page 4: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 3Manufacturing

What to Optimize?

• Process Goals– Cost (Minimize)– Quality (Maximize Cpk or Minimize E(L))– Rate (Maximize)– Flexibility (N/A for now)

Page 5: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 4Manufacturing

Simple Problem: Minimum Cost

• Must Hit Target

• Multiple Input Factors– Contours of constant output– Match to Target– Assume constant output variance

• Choose Operating Point to – Minimize Cost (e.g. material usage; tool wear, etc)– Minimize Cycle Time

x = T

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-4 -3 -2 -1 0 1 2 3 4μ

T USLLSL

Page 6: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 5Manufacturing

Linear Model with Constraint

-1-0.2

0.6-10

-5

0

5

10

15

Y

X1 X2-1-1+1

+1

0

Line of mean =5.0

Need SecondCriterion to selectunique x1 and x2

• cost• rate

ˆ y =1+7x1 +2x2 +5x1x2

Target

Page 7: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 6Manufacturing

Quality: Minimum Variation

• Minimize Sensitivity to Δα– Process Robustness

• Maximize Cpk

• Minimize expected quality loss: E{L(x))}

ΔY =∂Y∂α

Δα +∂Y∂u

Δu

Page 8: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 7Manufacturing

Cpk = min(USL − μ )

3σ,(LSL − μ )

3σ⎛ ⎝

⎞ ⎠

Cpk = min(USL − ˆ y )

3ˆ s ,(LSL − ˆ y )

3ˆ s ⎛ ⎝

⎞ ⎠

• Single variable that combines y and s• Could be discontinuous

η j = min(USL −

Measure using estimates of response of y and s:

y j)3s j

,(LSL − y j)

3sj

⎝ ⎜ ⎞

⎠ ⎟

Or create a new response variable from the raw data

Maximizing Cpk

Page 9: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 8Manufacturing

Variance Dependence on Operating Point

• We often assume that σ2 is constant throughout the operating space– Implicit in simple ANOVA, most regression fits– Process optimization might also assume this

• E.g. Cpk, E(L), sensitivity to α independent of u

• Reality: process variation may be different at different operating points!– Imperfect control of u implies δY/δu can vary, if

model/dependence is nonlinear– Presence or sensitivity to noise may depend on u

Page 10: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 9Manufacturing

• We can define the response variable as η=σjand solve for η=Xβ+ε

Process Output Variance

Within Test

Within Test

Input and Levels Response Replicates mean std.dev.

Test x 1 x 2 ηi1 ηi2 ηi3 ybar i s i

1 - - η11 … … y bar 1 s1

2 + - … … … y bar 2 s2

3 - + … … η33y bar 3 s3

4 + + η43 y bar 4 s4

New Response Variable

Page 11: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 10Manufacturing

• Solve for η=Xβ+ε using the same X matrix as with y.

• This will yield a “variance response surface”

• Linear model: minimum at the boundary

Process Output Variance

Page 12: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 11Manufacturing

Combining Mean and Variance:

• Find the line (or general function) defining minimum error from the y response surface

• Find the minimum variance using those constrained x1 and x2 values

Page 13: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 12Manufacturing

ˆ y = β0 + β1x1 + β2x2 + β12 x1x2

y* = β0 + β1 x1 + β2 x2 + β12 x1 x2 = targetsolve for x1

x1 = (y* − β0 − β1x2 )β1 + β12x2

x2

y surface

(line on surface)

ˆ s = β'0 + β '

1x1 + β '2x2 + β'

12x1x2 s surface

Combining Mean and Variance: Direct Method

Page 14: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 13Manufacturing

x1 =(y* − β0 − β1x2 )

β1 + β12 x2

x2

ˆ s = 1 + β '1x1 + β '

2 x2 + β '12 x1x2 s surface

Substitute for x1 in the s equation and find minimum

ˆ s = f (x2 ) it will be non − linear in general

∂ ˆ s ∂x2

= 0 solve for x2

Combining Mean and Variance: Direct Method

Page 15: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 14Manufacturing

define a new response variable:

and find min(η)

NOTE: Since the response variable is quadratic in y and s, the new estimation model should be quadratic as well

Minimizing E(L)

η j = ksy j2 + k(y j − y*) 2

E{L(x)} = kσ x2 + k(μx − x*)2

Page 16: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 15Manufacturing

Problems?

• With Variance Varying?• What Caused Non-Constant Variance?• Can We Assess “Robustness”?

Page 17: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 16Manufacturing

Use of the Variation Model

ΔY =∂Y∂α

Δα +∂Y∂u

Δu

Disturbance Sensitivity

How would we minimize ?∂Y∂α

Recall:

input

“noise”

∂Y∂α

∂Y∂α

= f (u,α)

Page 18: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 17Manufacturing

Robustness to Noise Factors –Inner and Outer Factors

• Find Control Factors that Minimize Effect of Noise

• Taguchi Approach: Varying Noise Factors at Each Level of Control Factors

A

BInner

Outer N1

N20

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-4 -3 -2 -1 0 1 2 3 4

Each corner gives a measure of ∂Y∂α

kn = # noise factorskc = # control factors

Page 19: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 18Manufacturing

Robustness to Noise Factors

Inner

Array

Outer Array

Crossed Array Design

N1 -1 1 -1 1

N2 -1 -1 1 1

A B Average Variance

-1 -1 Yij Yij Yij Yij Ybar1 s21

1 -1 Yij Yij Yij Yij Ybar2 s22

-1 1 Yij Yij Yij Yij Ybar3 s23

1 1 Yij Yij Yij Yij Ybar4 s24

Taguchi S/N = −10 logyi

2

Si2

S/NSN1SN2SN3SN4

-1-0.9

-0.8-0.7

-0.6-0.5

-0.4-0.3

-0.2-0.1

00.1

0.20.3

0.40.5

0.60.7

0.80.9

1 0 20.6

-10

-5

0

5

10

15

20

Y

X1 X2-1+1

0

Number of Tests?

Variance caused by Outer array variations

Page 20: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 19Manufacturing

Taguchi – Signal-to-Noise Ratios

• Nominal the best:

• Larger the better:

• Smaller the better:

Page 21: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 20Manufacturing

Crossed Array Method

• Number of tests– Control Factor tests * Noise Factor tests– Linear model leads to linear response

surface for S/N– True Optimum requires Quadratic test on

inner array• # Tests = 3kc 2kn unless interaction ignored• 3kc requirement can be reduced with use of

central composite or related designs

Page 22: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 21Manufacturing

Robustness Using Noise Response

ΔY =∂Y∂α

Δα +∂Y∂u

Δu

u: • control factors

α: • some can be manipulated if desired (Noise Factors)

• some cannot (Pure error)

y = β0 + β1x1 + β2x2 + β12x1x2 + γ 1z1 +δ11x1z1 +δ21x2z1

xi are control factors, zj are noise factors

Treat control and noise as factors for experiments:

Page 23: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 22Manufacturing

Noise Response Surface Approach

y = β0 + β1x1 + β2x2 + β12x1x2 + γ 1z1 + δ11x1z1 + δ21x2z1 + ε

Full factorial in x1 and x2 (Control Factors)

Interaction terms for z1 (Noise Factors)

• Why are they vital?

Assume z1 : N(0,σ z )ε : N(0,σ )

Page 24: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 23Manufacturing

Noise Response Models

y = β0 + β1x1 + β2 x2 + β12 x1x2 + γ 1z1 + δ11x1z1 + δ 21x2z1 + ε

Assume z1 : N(0,σ z )ε : N(0,σ )

E(y) = β0 + β1x1 + β2x2 + β12x1x2

Mean of Response:

V (y) = (γ 1 + δ11x1 + δ 21x2 )2 σ z2 + σ 2

Variance of Response:

Now variance is a function of control factors

Page 25: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 24Manufacturing

Variance Models

V (y) = (γ 1 + δ11x1 + δ 21x2 )2 σ z2 + σ 2

V (x1, x2 ) = (γ 12 + 2γ 1δ12x1 + 2γ 1δ21x2 +

δ122x1

2 + δ212x2

2 + 2δ12δ21x1 x2 )σ z2

Quadratic in x1, x2

Page 26: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 25Manufacturing

Example: Robust Bending

• Control Factors– Depth of Punch x1

– Width of Die x2

• Noise Factors– Yield Point of Material z1

– Thickness of Material z2

Page 27: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 26Manufacturing

Example: Robust Bending

y = β0 + β1x1 + β2x2 + β12x1x2 + γ 1z1 + δ11x1z1 + δ21x2z1 + ε

yp w sigma Meanx1 x2 z Angle-1 -1 -1 38.11 -1 -1 45.9-1 1 -1 24.11 1 -1 33.2-1 -1 1 37.81 -1 1 45.3-1 1 1 23.71 1 1 32.6

y = 35.1+ 4.2x1 − 6.7x2 + 0.34x1x2

− .24z1 − .06x1z1 + −0.013x2z1 + ε

β0 35.09β1 4.16β2 -6.69γ1 -0.24

β12 0.34δ11 -0.06δ21 -0.01

β123 0.01

Page 28: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 27Manufacturing

Example: Robust Bending

E(y) = 35.1+ 4.2x1 − 6.7x2 + 0.34x1x2

x1x2

Page 29: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 28Manufacturing

Example: Robust Bending

V (y) = (−.24 + −.06x1 + −.01x2 )2 σ z2 + σ 2 (σ z

2 = 0.1)

Variance Surface

x1x2

Page 30: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 29Manufacturing

Example: Robust Bending

E(L) = (T − E(y))2 + V(y)

x1x2

Page 31: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 30Manufacturing

Response Model Method• Define Control and Noise Factors• Perform Appropriate Linear Experiment• If possible scale noise factor changes to ±1σz

– (Assumes we know noise factor statistics)• Define Response Surface for V• Optimize V, Subject to desired E(y)• Number of Tests?

– Full factorial with center point: (2kc+1)(2kn)– Quadratic in control: 3kc 2kn

– RSM, full factorial with center point: (2kc+kn + 1)– RSM, central composite: 2kc+kn+2(kc+kn)+1

• Taguchi orthogonal arrays: fractional factorials ignoring noise factor interactions

Page 32: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 31Manufacturing

Comparison

Control Noise Crossed Crossed ResponseFactors Factors Array Lin. Array (quad) Surface

2 1 8 18 62 2 16 36 133 3 64 216 604 3 128 648 124

• Crossed array with S/N does not adjust mean

• Size of Experiments is Large vs. RSM

• Forces use of Fractional Factorial DOE

– Assumes little or no Interaction

Page 33: Manufacturing Process Control - MIT OpenCourseWare€¦ · Manufacturing 2.830J/6.780J/ESD.63J 18 Robustness to Noise Factors Inner Array Outer Array Crossed Array Design N1 -1 1

2.830J/6.780J/ESD.63J 32Manufacturing

Conclusions: Process Optimization

• Cost, Rate, Quality• Quality:

– Min E(L)– Max Cpk

– Max S/N• All depend on variation equation:

ΔY =∂Y∂α

Δα +∂Y∂u

Δu∂Y∂α

= f (u,α)