many body lecture 3 (1)

Upload: decerto252

Post on 07-Jul-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Many Body Lecture 3 (1)

    1/35

    Many-body Green’s Functions

    • Propagating electron or hole interacts with other e -/h +• Interactions modify renormali!e " electron or hole energies• Interactions produce finite lifetimes for electrons/holes #uasi-particles "• $pectral function consists of #uasi-particle pea%s plus &bac%ground’• 'uasi-particles well defined close to Fermi energy

    • M(GF defined by

    { }

    o

    oHHo )t','(ψ̂t),(ψ̂)t','t,,G(

    Ψ

    ΨΨ= +

    state)ground*eisenberge+acto,er a,eragedoperator fieldof functionncorrelatioi e

    rrrr T i

  • 8/18/2019 Many Body Lecture 3 (1)

    2/35

    Many-body Green’s Functions

    • $pace-time interpretation of Green’s function• x,y" are space-time coordinates for the endpoints of the Green’s function• Green’s function drawn as a solid) directed line from y to x • .on-interacting Green’s function G o represented by a single line• Interacting Green’s Function G represented by a double or thic% single line

    time

    dd particle 0emo,e particle

    t 1 t’t’

    time

    0emo,e particle dd particle

    t’ 1 tt

    x

    y

    y

    )t'(t)t',(ψ̂t),(ψ̂ oHHo −ΨΨ + θ yx

    t)(t't),(ψ̂)t',(ψ̂ oHHo −ΨΨ +

    θ xy

    x

    G o x)y"x)ty)t’

    G x)y"x)ty)t’

  • 8/18/2019 Many Body Lecture 3 (1)

    3/35

    Many-body Green’s Functions

    • 2ehmann 0epresentation F 34 M 534" physical significance of G

    { }

    oo

    onn

    n

    oSnnSo-o-n

    oSnnSo

    oHnnHooHHo

    oHHooHHo

    nn

    n

    o

    oHHo

    tiEtĤitiE-tĤi-

    )t'tEi(E-

    t'Ĥi-t'ĤitĤi-tĤi

    ee ee

    )'(ψ̂)(ψ̂)(e

    )e'(ψ̂e)e(ψ̂e

    )t','(ψ̂t),(ψ̂)t','(ψ̂t),(ψ̂

    t)(t't),(ψ̂)t','(ψ̂-)t'(t)t','(ψ̂t),(ψ̂)t','t,,G(

    )t','(ψ̂t),(ψ̂)t','t,,G(

    Ψ=ΨΨ=Ψ

    ΨΨΨΨ=

    ΨΨΨΨ=

    ΨΨΨΨ=ΨΨ

    −ΨΨ−ΨΨ==ΨΨ

    ΨΨ

    ΨΨ=

    ++

    ++

    +

    +

    ++

    ++

    +

    rr

    rr

    rrrr

    rrrrrr

    1

    rrrr

    θ θ i

    T i

    formalismnumber occupationinoperator unit

    number particleany)state)*eisenberge+act

    state)ground*eisenberge+act

  • 8/18/2019 Many Body Lecture 3 (1)

    4/35

    Many-body Green’s Functions

    • 2ehmann 0epresentation physical significance of G"

    { }

    onebyinnumber particlereduces ooS

    oSoSSS

    on

    oSnnSo

    on

    oSnnSo

    -o-noSnnSo

    -o-noSnnSo

    oHHo

    ψ̂

    ψ̂)1 N(ψ̂n̂ )(ψ̂)(ψ̂dn̂

    δ)EE(εψ̂ψ̂

    δ)EE(εψ̂ψ̂

    e)t','t,,)G(t'-d(t),',G(

    t)(t')(e)(ψ̂)'(ψ̂

    -)t'(t)(e)'(ψ̂)(ψ̂)t','t,,G(

    )t','(ψ̂t),(ψ̂)t','t,,G(

    )t'(t

    )t'tEi(E

    )t'tEi(E-

    ΨΨΨ−=Ψ=

    −−+ ΨΨΨΨ++−− ΨΨΨΨ=

    =

    −ΨΨΨΨ−

    −ΨΨΨΨ=

    ΨΨ=

    +

    ++

    ∞+

    ∞−

    +

    +

    +

    ∫ −++

    rrr

    rrrr

    rr

    rrrr

    rrrr

    ii

    ii

    i

    T i

    iε ε

    θ

    θ

  • 8/18/2019 Many Body Lecture 3 (1)

    5/35

    Many-body Green’s Functions

    • 2ehmann 0epresentation physical significance of G"

    µ

    µ

    +−−−=−−

    −−+−−−=−−

    −ΨΨ=ΨΨΨΨ

    ++−+=−+

    −+++−+=−++ΨΨ=ΨΨΨΨ

    +

    ++

    )1 N(E)1 N(E) N(E)1 N(E

    ) N(E)1 N(E)1 N(E)1 N(E) N(E)1 N(E

    ψ̂ψ̂ψ̂

    )1 N(E)1 N(E) N(E)1 N(E

    ) N(E)1 N(E)1 N(E)1 N(E) N(E)1 N(E

    ψ̂ψ̂ψ̂

    onon

    ooonon

    2

    nSooSnnSo

    onon

    ooonon

    2

    oSnoSnnSo

    statesparticle6.and.connects

    statesparticle6.and.connects

  • 8/18/2019 Many Body Lecture 3 (1)

    6/35

    Many-body Green’s Functions

    • 2ehmann 0epresentation physical significance of G"• Poles occur at e act .+6 and .-6 particle energies• Ionisation potentials and electron affinities of the . particle system• Plus e citation energies of .+6 and .-6 particle systems

    • 7onnection to single-particle Green’s function

    Fbelowstatesfor asstatesunoccupiedtolimited$um

    unoccupied

    stategroundg"interactin-nonparticle-singletheis

    ε

    δ θ

    θ

    θ

    ε

    00ĉ

    n0ĉĉ0 )t'(t)e'(ψ)(ψ

    )t'(t0)(t'ĉ(t)ĉ0)'(ψ)(ψ

    )t'(t0)t','(ψ̂t),(ψ̂0)t','t,,(G

    0

    n

    mnnmn*

    n

    unocc

    nn

    nm*n

    nm,m

    HHo

    )t'-(t-

    =

    ∈=−=

    −=

    −=

    +

    +

    +

    ++

    ∑i

    i

    rr

    rr

    rrrr

  • 8/18/2019 Many Body Lecture 3 (1)

    7/35

    Many-body Green’s Functions

    • Gell-Mann and 2ow 8heorem F 96) :5"• ; pectation ,alue of *eisenberg operator o,er e act ground state

    e pressed in terms of e,olution operators and the operator in #uestion ininteraction picture and ground state of non-interacting system

    oIo

    oIIIo

    oo

    oHo

    )-,(Û

    )(t,-Û(t)Ôt),(Û(t)Ô

    φ φ

    φ φ

    ∞+∞∞+∞=ΨΨ

    ΨΨ

    { }oo

    oHHo )t','(ψ̂t),(ψ̂

    )t','t,,G( ΨΨΨΨ

    =

    + rr

    rr

    T

    i

    FunctionsGreen

  • 8/18/2019 Many Body Lecture 3 (1)

    8/35

    Many-body Green’s Functions

    • Perturbati,e ; pansion of Green’s Function F :5"

    • ; pansion of the numerator and denominator carried out separately• ;ach is e,aluated using >ic%’s 8heorem• ?enominator is a factor of the numerator • @nly certain classes of connected " contractions of the numerator sur,i,e• @,erall sign of contraction determined by number of neighbour permutations• n A B term is Cust G o x)y"• x ) y are compound space and time coordinates i e x D ) y) !) t "

    ( )( ) [ ]

    ( ) ( ) [ ]o- -

    nI2I1I-

    on210n

    n

    oIo

    o- -

    nI2I1I-

    on210n

    n

    oIo

    )(tĤ)!!!(tĤ)(tĤdt!!!dtdtn"

    ,Û

    )(ψ̂)(ψ̂)(tĤ)!!!(tĤ)(tĤdt!!!dtdtn",Û

    1),G(

    φ φ φ φ

    φ φ φ φ

    ∫ ∫ ∫ ∑

    ∫ ∫ ∫ ∑∞+

    ∞+

    ∞+

    =

    +∞

    +∞

    ++∞

    =

    −=−∞∞+

    −−∞∞+

    =

    T i

    T i

    i yxyx

  • 8/18/2019 Many Body Lecture 3 (1)

    9/35

    Many-body Green’s Functions

    • Fetter and >alec%a notation for field operators F ::"

    ( )( )( )( ) +−

    −+−

    +++++

    +++++

    ++

    ≤=>=≤=

    +>=+≡+=

    +≡+=

    #̂ #̂- tt ),(G

    tt 0)(ψ̂)(ψ̂

    tt 0

    $̂$̂ tt ),(G)(ψ̂)(ψ̂

    #̂$̂)(ψ̂)(ψ̂)(ψ̂

    #̂$̂)(ψ̂)(ψ̂)(ψ̂

    %&o

    %&)()(

    %&

    %&o)()(

    (-))(

    (-))(

    yx

    yx

    yxyx

    xxx

    xxx

    i

    i

    ( )( )( ) ( )

    0ψ̂ψ̂ 0ψ̂ψ̂ 0 #̂ #̂$̂ #̂ #̂$̂$̂$̂

    #̂ #̂$̂ #̂ #̂$̂$̂$̂

    #̂$̂ #̂$̂

    ψ̂ψ̂ψ̂ψ̂ψ̂ψ̂ (-))()()(

    ======

    +++=++≡++=

    ++++++

    ++++

    ++

    +++−+++++

    similarly

  • 8/18/2019 Many Body Lecture 3 (1)

    10/35

    Many-body Green’s Functions

    •.on!ero contractions in numerator of M(GF

    -6"5 i"5, r )r ’"Go r ’)r " G o r )r ’" Go x)y"

    -6"E i"5, r )r ’"Go r )r " G o r ’)r ’" Go x)y"

    -6"= i"5, r )r ’"Go x)r " G o r ’)r ’" Go r )y"

    -6"E i"5, r )r ’"Go r ’)r " G o x)r ’" Go r )y"

    -6"9 i"5, r )r ’"Go x)r " G o r )r ’" Go r ’)y"

    -6"3 i

    "5

    , r )r ’"Go r )r " G o x)r ’" Go r ’)y"( ) )(ψ̂)(ψ̂)(ψ̂)'(ψ̂)'(ψ̂)(ψ̂

    ( ) )(ψ̂)(ψ̂)(ψ̂)'(ψ̂)'(ψ̂)(ψ̂

    ( ) )(ψ̂)(ψ̂)(ψ̂)'(ψ̂)'(ψ̂)(ψ̂

    ( ) )(ψ̂)(ψ̂)(ψ̂)'(ψ̂)'(ψ̂)(ψ̂

    (2) )(ψ̂)(ψ̂)(ψ̂)'(ψ̂)'(ψ̂)(ψ̂

    (1) )(ψ̂)(ψ̂)(ψ̂)'(ψ̂)'(ψ̂)(ψ̂

    yxrrrr

    yxrrrr

    yxrrrr

    yxrrrr

    yxrrrr

    yxrrrr

    +++

    +++

    +++

    +++

    +++

    +++

  • 8/18/2019 Many Body Lecture 3 (1)

    11/35

    Many-body Green’s Functions

    • .on!ero contractions- i"5, r )r ’"Go r ’)r " G o r )r ’" Go x)y" 6"

    + i"5, r )r ’"Go r )r " G o r ’)r ’" Go x)y" 4"

    - i"5, r )r ’"Go x)r " G o r ’)r ’" Go r )y" 5"

    + i"5, r )r ’"Go r ’)r " G o x)r ’" Go r )y" E"

    + i"5, r )r ’"Go x)r " G o r )r ’" Go r ’)y" ="

    - i"5, r )r ’"Go

    r )r " Go

    x)r ’" Go

    r ’)y" 9"

    y

    x

    r r ’

    y

    x

    r r ’

    x

    y

    r r ’

    y

    r r ’

    x

    y

    r ’ r

    x x

    y

    r ’ r

    6" 4"

    5" E"

    =" 9"

  • 8/18/2019 Many Body Lecture 3 (1)

    12/35

    • .on!ero contractions in denominator of M(GF• ?isconnected diagrams are common factor in numerator and denominator

    Many-body Green’s Functions

    (+) )(ψ̂)'(ψ̂)'(ψ̂)(ψ̂

    ( ) )(ψ̂)'(ψ̂)'(ψ̂)(ψ̂

    rrrr

    rrrr

    ++

    ++-6"5 i"4, r )r ’"Go r ’)r " G o r )r ’"

    -6"E i"4, r )r ’"Go r )r " G o r ’)r ’"

    r r ’3"

    r r ’:"

    ?enominator A 6 + + +

    .umerator A 6 + + + H + + + H

  • 8/18/2019 Many Body Lecture 3 (1)

    13/35

    • ; pansion in connected diagrams

    • $ome diagrams differ in interchange of dummy ,ariables

    • 8hese appear m ways so m term cancels• 8erms with simple closed loop contain time ordered product with e#ual times• 8hese arise from contraction of *amiltonian where adCoint operator is on left• 8erms interpreted as

    Many-body Green’s Functions

    ∑ ∫ ∫ ∞

    =

    ∞−

    ∞−

    +−=0m connected

    om111om1 )(ψ̂)(ψ̂)(tĤ !!!)(tĤ.dt!!!dtm")(

    ),G( φ φ yxyx T i

    i

    iG x) y" A + + +

    { }

    densitychargeginteractin-non )(/)(ψ̂)(ψ̂

    )t',(ψ̂t),(ψ̂),(G

    ooo

    ooim

    'o

    xxx

    xxxx

    −=−=

    =

    +

    ++→

    φ φ

    φ φ δ T i t t

  • 8/18/2019 Many Body Lecture 3 (1)

    14/35

    • 0ules for generating Feynman diagrams in real space and time F J3"

    • a" ?raw all topologically distinct connected diagrams with m interaction lines and4m+6 directed Green’s functions Fermion lines run continuously from y to or closeon themsel,es Fermion loops "

    • b" 2abel each ,erte with a space-time point x A r )t"• c" ;ach line represents a Green’s function ) G o x)y") running from y to x• d" ;ach wa,y line represents an unretarded 7oulomb interaction• e" Integrate internal ,ariables o,er all space and time• f" @,erall sign determined as -6" F where F is the number of Fermion loops

    • g" ssign a factor i"

    m

    to each mth

    order term• h" Green’s functions with e#ual time arguments should be interpreted as G r )r ’)t)t+"where t + is infinitesimally ahead of t

    • ; ercise K Find the 6B second order diagrams using these rules

    Many-body Green’s Functions

  • 8/18/2019 Many Body Lecture 3 (1)

    15/35

    • Feynman diagrams in reciprocal space

    • For periodic systems it is con,enient to wor% in momentum space• 7hoose a translationally in,ariant system homogeneous electron gas "• Green’s function depends on x-y) not x)y• G x)y" and the 7oulomb potential) L) are written as Fourier transforms• E-momentum is conser,ed at ,ertices

    Many-body Green’s Functions

    ( )

    t-!! ddd

    )e',()'-d()(

    )eG(

    2

    d),G(

    )'!(

    )!(

    ω ω

    π

    xk xk k k

    rrrrq

    k k

    yx

    rrq

    yxk

    ≡≡=

    =

    ∫ ∫

    i-

    i

    Fourier 8ransforms

    ( ) ( *21*21 2eeed!!!

    qqqxxqxqxq −−=+∫ δ π -i-ii

    E-momentum 7onser,ation

    q 6

    q 4 q 5

  • 8/18/2019 Many Body Lecture 3 (1)

    16/35

    • 0ules for generating Feynman diagrams in reciprocal space

    • a" ?raw all topologically distinct connected diagrams with m interactionlines and 4m+6 directed Green’s functions Fermion lines run continuouslyfrom y to or close on themsel,es Fermion loops "

    • b" ssign a direction to each interaction• c" ssign a directed E-momentum to each line• d"7onser,e E-momentum at each ,erte• e" ;ach interaction corresponds to a factor , q "

    • f"Integrate o,er the m internal E-momenta• g" ffi a factor i"m/ 4π"Em -6"F• h" closed loop or a line that is lin%ed by a single interaction is assigned a

    factor e iεδ G o k)ε"

    Many-body Green’s Functions

  • 8/18/2019 Many Body Lecture 3 (1)

    17/35

    [ ]

    [ ])(ψ̂)(ψ̂

    1)(ψ̂)(ψ̂ddĤ

    )(ψ̂)(ψ̂1)(ψ̂dĤ,ψ̂ψ̂t

    )(ψ̂)(ˆ)(ψ̂dĤ

    )(ψ̂)(ˆ Ĥ,ψ̂ψ̂t

    1H2H21

    2H1H21H

    H2H2

    2H2HHH

    1H11H1H

    HHHH

    2

    1rr

    rrrrrr

    rrrr

    rr

    rrrr

    rr

    −=

    −==∂∂

    =

    ==∂∂

    ++

    +

    +

    ∫ ∫ ∫

    for

    for

    i

    i

    ;#uation of Motion for the Green’s Function

    • ;#uation of Motion for Field @perators from 2ecture 4"

    { }oo

    oHHo )t','(ψ̂t),(ψ̂)t','t,,G(

    ΨΨΨΨ

    =+ rr

    rrT

    i

  • 8/18/2019 Many Body Lecture 3 (1)

    18/35

    ;#uation of Motion for the Green’s Function

    • ;#uation of Motion for Field @perators

    [ ] [ ]

    t),(ψˆ

    t),(ψˆ1

    t),(ψˆ

    dt),(ψˆ

    t),(ˆ

    t

    t),(ψ̂t),(ψ̂1

    t),(ψ̂dt),(ψ̂t),(ˆ

    tĤe)(ψ̂)(ψ̂

    1)(ψ̂d

    tĤe

    tĤe)(ψ̂)(

    ˆ

    tĤe

    tĤeĤ,ψ̂tĤet),(Ĥt),,(ψ̂t),(ψ̂t

    H2H2

    2H2H

    H2H2

    2H2H

    22

    22

    SSHHH

    rrrrrrrr

    rrrr

    rrrr

    rrrrrrrr

    rrr

    −=−∂∂

    −+=

    −−

    ++

    −+=

    −+==∂∂

    +

    +

    +

    ∫ ∫

    i

    iiii

    iii

  • 8/18/2019 Many Body Lecture 3 (1)

    19/35

    ;#uation of Motion for the Green’s Function

    • ?ifferentiate G wrt first time argument{ }

    [ ][ ] )t'-(t)-()t'-(t)t',(ψ̂t),,(ψ̂

    )t'-(t)t',(ψ̂t),,(ψ̂

    (t'-t)t

    t),(ψ̂)t',(ψ̂-)t'-(t)t',(ψ̂t

    t),(ψ̂

    )t'-(tt),(ψ̂)t',(ψ̂--)t'-(t)t',(ψ̂t),(ψ̂

    (t'-t)t

    t),(ψ̂)t',(ψ̂-)t'-(t)t',(ψ̂

    tt),(ψ̂

    (t'-t)t),(ψ̂t

    )t',(ψ̂-)t'-(t)t',(ψ̂t),(ψ̂t

    )t',t,,G(t

    )t',(ψ̂t),,(ψ̂)t',t,,G(

    oooHHo

    oHHo

    oH

    HHH

    o

    oHHHHo

    oH

    HHH

    o

    oHHHHo

    oHHo

    δ δ δ

    δ

    θ θ

    δ δ

    θ θ

    θ θ

    yxyx

    yx

    xyyx

    xyyx

    xyy

    x

    xyyxyx

    yxyx

    ΨΨ=ΨΨ

    ΨΨ

    +Ψ∂∂∂∂Ψ=

    ΨΨ+

    +Ψ∂∂

    ∂∂Ψ=

    Ψ∂∂

    ∂∂Ψ=∂

    ΨΨ=

    ++

    ++

    ++

    ++

    ++

    ++

    +

    i

    T i

  • 8/18/2019 Many Body Lecture 3 (1)

    20/35

    ;#uation of Motion for the Green’s Function

    • ?ifferentiate G wrt first time argument

    [ ]

    [ ]

    )t'-(t)-(

    )t',(ψ̂t),(ψ̂t),(ψ̂t),(ψ̂1

    d)t',t,,G(ˆt

    )t'-(t)-(

    )t',(ψ̂t),(ψ̂t),(ψ̂t),(ψ̂1

    d),G(ˆ

    )t'-(t)-(

    (t'-t)t),(ψ̂t),(ψ̂t),(ψ̂)t',(ψ̂-1

    d

    )t'-(t)t',(ψ̂t),(ψ̂t),(ψ̂t),(ψ̂1

    d

    (t'-t)t),(ψ̂)t',(ψ̂-)t'-(t)t',(ψ̂t),(ψ̂ˆ)t',t,,G(t

    oHH1H1Ho1

    1

    oHH1H1Ho1

    1

    oH1H1HHo1

    1

    oHH1H1Ho1

    1

    oHHHHo

    δ δ

    δ δ

    δ δ

    θ

    θ

    θ θ

    yx

    yxrrrx

    ryx

    yx

    yxrrrrryx

    yx

    xrryrx

    r

    yxrrrx

    r

    xyyxyx

    =

    ΨΨ−+

    −∂∂

    +ΨΨ−−−=

    +

    ΨΨ−−

    +ΨΨ−−

    +ΨΨ−=∂∂

    ++

    ++

    ++

    ++

    ++

    T ii

    T iii

    i

    i

    ii

  • 8/18/2019 Many Body Lecture 3 (1)

    21/35

    ;#uation of Motion for the Green’s Function

    • ;,aluate theT

    product using >ic%’s 8heorem

    • 2owest order terms

    • ?iagram J" is the *artree-Foc% e change potential G o r 6)y"• ?iagram 6B" is the *artree potential G o x)y"• ?iagram J" is con,entionally the first term in the self-energy• ?iagram 6B" is included in * o in condensed matter physics

    [ ]connectedoHH1H1Ho

    11 )t',(ψ̂t),(ψ̂t),(ψ̂t),(ψ̂

    1d ΨΨ−

    ++∫ yxrrrxr T

    )t',(ψ̂t),(ψ̂t),(ψ̂t),(ψ̂ HH1H1H yxrr ++

    )t',(ψ̂t),(ψ̂t),(ψ̂t),(ψ̂ HH1H1H yxrr ++

    i"4, x)r 6"Go x)r 6" G o r 6)y"

    i"4, x)r 6"Go r 6)r 6" G o x)y"

    x

    y

    r 6

    6B"

    J"y

    r 6

    x

  • 8/18/2019 Many Body Lecture 3 (1)

    22/35

    ;#uation of Motion for the Green’s Function

    • @ne of the ne t order terms in theT

    product

    • 8he full e pansion of the T product can be written e actly as

    i"5, 1)2" , x)r 1"Go 1)x" G o r 1)2" G o 2)r 1" G o 1)y"

    )(ψ̂)(ψ̂)(ψ̂)(ψ̂)(ψ̂)(ψ̂)(ψ̂)(ψ̂-1

    -1

    ddd HH1H1HHHHH1

    1 yxrr1221rx21r21 ++++∫

    66"

    G o 1)y"y

    1

    x

    Σ x)1"2

    r 6

    diagramsproper iteratingbygeneratedarelatter 8he diagrams

    andintodiagramsorder higher di,idesndistinctio8his

    lineGsingleacuttingbytwointocutbecannotdiagramsni#ueuni#ueareothersandrepeatedarediagramssomeordershigher t

    diagram"thisin ,ariabledummyais

    energy-self theis

    o

    improper

    proper

    1x

    yxxxx

    '

    ),'()G',('d o ΣΣ∫

  • 8/18/2019 Many Body Lecture 3 (1)

    23/35

    ;#uation of Motion for the Green’s Function

    • 8he proper self-energy ΣN F 6B=) M 6:6"• 8he self-energy has two arguments and hence two &e ternal ends’• ll other arguments are integrated out• Proper self-energy terms cannot be cut in two by cutting a single G o• First order proper self-energy terms ΣN 6"

    • *artree-Foc% e change term *artree 7oulomb" term

    ; ercise K Find all proper self-energy terms at second order ΣN 4"

    r 6

    x

    x’ 6B"J"x’

    x

  • 8/18/2019 Many Body Lecture 3 (1)

    24/35

    ;#uation of Motion for the Green’s Function

    • ;#uation of Motion for G and the $elf ;nergy[ ]

    potentialncorrelatio-exchangetheis

    heresuppresseddependencetime

    indirectputtoisphysicsmatter condensedin7on,ention

    direct

    e+changedirect

    )',(

    ,,

    )-(),'(G)',('d),G(3ˆt

    )',(3)',()',(

    Ĥ )(

    )',(3),(G)'('1d)',)((

    )()(

    ),'(G)',('d)(ψ̂)(ψ̂)(ψ̂)(ψ̂1

    d

    1

    oH

    H

    o)1(

    H11o1

    1)1(

    )1()1()1(

    ooHH1H1Ho1

    1

    xx

    ryx

    yxyxxxxyx

    xxxxxx

    xxrrxxrx

    rxx

    yxxxxyxrrrx

    r

    =∑+

    −−∂∂

    −∑→∑∑

    =−−=∑

    ∑+∑=∑

    ∑=ΨΨ−

    ∫ ∫ ++

    δ

    δ

    ii

    iT i

  • 8/18/2019 Many Body Lecture 3 (1)

    25/35

    ;#uation of Motion for the Green’s Function

    • ?yson’s ;#uation and the $elf ;nergy

    ),''(G)'','()',(G''d'd),(G),G(

    3Ĥ Ĥ

    )-(),(G3ˆt

    )-(),'(G)',('d),G(3ˆt

    ooo

    Ho

    oH

    oH

    ;#uations?yson<

    "incl systemginteractin-nonfor Gfor Motionof ;#uation

    systemginteractinfor Gfor Motionof ;#uation

    o

    yxxxxxxxyxyx

    yxyx

    yxyxxxxyx

    ∫ ∫

    ∑+=

    =

    = −−∂∂

    =∑+

    −−∂∂

    δ

    δ

    i

    ii

  • 8/18/2019 Many Body Lecture 3 (1)

    26/35

    ;#uation of Motion for the Green’s Function

    • Integral ;#uation for the $elf ;nergy

    e#uations?yson

  • 8/18/2019 Many Body Lecture 3 (1)

    27/35

    •?yson’s ;#uation F 6B9"

    • In general) Σ∗ is energy-dependent and non-*ermitian• (oth first order terms in Σ are energy-independent• 'uantum 7hemistry K first order self energy terms included in Ho• 7ondensed matter physics K only &direct’ first order term is in Ho• $ingle-particle band gap in solids strongly dependent on &e change’ term

    ;#uation of Motion for the Green’s Function

    ∫ ∫ ∫ ∫

    Σ+=

    Σ+=

    ),''()G'','()',(G''d'd),(G),G(

    ),'')G('','()',(G''d'd),(G),G(

    ooo

    *oo

    yxxxxxxxyxyx

    yxxxxxxxyxyx

    G x)y" A A + + +

    Σ x’)x’’"A + +

  • 8/18/2019 Many Body Lecture 3 (1)

    28/35

    • @ne of the 6B second order diagrams for the self energy• 8he first energy dependent term in the self-energy• ;,aluate for homogeneous electron gas M 63B"

    ;,aluation of the $ingle 2oop (ubble

    ( )

    ( )

    ( ) oooo2

    o

    ooo

    o

    oo

    2o

    GGGG

    GG

    ),(

    ),(G),(G2d

    2

    d(-1)!2!&

    &))3((),(G2d

    2d

    iiii

    i

    i

    ii

    ii

    =−=−

    −=−=

    ++

    −−−=

    ∫ ∫ ∫ ∫

    π

    π α π

    β α β π β

    π

    α ω π α

    π

    8heorems>ic%<

    q

    q

    qqk q

    α+β) ℓ+qβ) ℓ

    α+β) ℓ+qβ) ℓω−α) k-q

    α) q

    α) q

  • 8/18/2019 Many Body Lecture 3 (1)

    29/35

    •Polarisation bubble K fre#uency integral o,er β

    • Integrand has poles at β A ε ℓ - iδ and β A -α + ε ℓ+q + iδ • 8he polarisation bubble depends on q and α • 8here are four possibilities for ℓ and q

    ;,aluation of the $ingle 2oop (ubble

    δ ε α β β α

    δ ε β β

    β α β π β

    i

    ii

    i

    ii

    ii

    ±−+=++±−=

    ++

    +

    q

    q

    q

    ),(G ),(G

    ),(G),(G2d

    oo

    oo

    44

    44

    44

    44

    k qk

    k qk

    k qk

    k qk

    >+<+> y

    δ ε α β i++−= +qδ ε β i−=

    44 k qk

  • 8/18/2019 Many Body Lecture 3 (1)

    30/35

    • Integral may be e,aluated in either half of comple plane

    ;,aluation of the $ingle 2oop (ubble

    y

    δ ε α β i++−= +qδ ε β i−=

    44 k qk

    ( )0

    1

    ee2ed

    2d

    2

    im

    =∝∝

    =+=

    ∫ ∫

    ∫ ∑∫ ∫

    ∞→

    ∞−

    r r

    i

    r

    ir

    i

    ii

    i

    r φ φ

    φ

    π π β

    π planehalf upper incirclesemi

    -planehalf pper cloc%wise nti residues

    ( )( )

    [ ]( ) #$

    1

    #5$51

    6(5)

    −=→

    −−=

    a!atf !"residue

    ( )( )

    ( )δ ε ε α δ ε δ ε α

    δ ε α β δ ε α β δ ε β

    i

    i

    ii

    i

    ii

    i

    i

    i

    +−+−=

    −−++−=

    ++−=−−++−

    ++

    ++

    qq

    qq

    22

    atpolefor residue

  • 8/18/2019 Many Body Lecture 3 (1)

    31/35

    • From 0esidue 8heorem

    • ; ercise K @btain this result by closing the contour in the lower half plane

    ;,aluation of the $ingle 2oop (ubble

    δ ε ε α

    δ ε ε α π π

    β α β π β

    i

    i

    i

    iii

    −+−=

    +−+−−=++

    +

    +∫

    q

    q

    q

    122

    ),(G),(G2d

    oo

  • 8/18/2019 Many Body Lecture 3 (1)

    32/35

    • Polarisation bubble K continued

    • For

    • (oth poles in same half plane• 7lose contour in other half plane to obtain !ero in each case

    • ; ercise K For

    • $how that

    • nd that

    ;,aluation of the $ingle 2oop (ubble

    44 k qk >+

    δ ε ε α β α β π β

    i

    i

    ii ++−−

    =++ +∫ qq ),(G),(G2d

    oo

    ( ) ( ) δ ε ε α π δ ε ε α π α π

    i

    i

    i

    ii

    −+−−

    ++−=−

    ++∫ ∫

    qq

    q2

    2

    d2

    2

    d),(o

    44 k qk + Boiπ

    ),(G),(G2d

    oo β α β π β ++∫ q ii

    44 k qk >+<

  • 8/18/2019 Many Body Lecture 3 (1)

    33/35

    ( ) ( )

    ( ) ( )

    ( ) ( )

    ( ) ( )

    planehalf lower inpolesbothotherwisebemust

    andatpoles

    4

    2

    7o

    27

    8o

    7o

    2

    oo2

    o

    εεε

    εε2

    ε)3(

    2d

    2

    d

    2

    d

    ),(ε

    )3(2d

    2

    d

    ),(),())3((ε

    2d

    2d

    ),(G),(G2d

    2

    d))3((),(G

    2d

    2

    d-2

    k qk

    qq

    qqq

    qqqq

    qqqk q

    qqk qk

    qqk qk

    qk qk

    qk qk

    >−−−=±−=

    ++−±−−=

    −±−−=Σ

    +−−±−−=

    ++−−−=Σ

    +−−

    +−−

    −−

    −−

    ∫ ∫ ∫

    ∫ ∫

    ∫ ∫

    ∫ ∫ ∫ ∫

    δ α δ ω α

    δ α δ α ω π α

    π π

    α π δ α ω π

    α π

    α π α π δ α ω π

    α π

    β α β π β

    π α ω

    π α

    π

    ii

    i

    i

    i

    i

    ii

    i

    iiii

    i

    iiii

    • $elf ;nergy

    ;,aluation of the $ingle 2oop (ubble

    44 k qk >+<

    β) ℓω−α) k-q

    α) q

    α) q

    α+β) ℓ+q

  • 8/18/2019 Many Body Lecture 3 (1)

    34/35

    ( ) ( )

    ( ) ( )

    dependent,ector wa,eandenergyisenergy$elf

    atresidue

    δ ω π π

    δ ω π π

    δ ω

    δ ω α δ α δ α ω

    iii

    iii

    i

    ii

    i

    i

    i

    −−−+−=Σ−

    +−−+−=Σ−

    >>+<+−−+

    −=

    +−→++−+−−

    −−

    −+

    −+

    −+−

    ∫ ∫

    ∫ ∫

    qk q

    qk q

    qk q

    qk qqk

    qq

    qq

    k q-k k qk

    εεε1)3(

    2d

    2d2

    εεε1

    )3(2

    d

    2

    d2

    ,,εεε

    2

    εεε

    28

    27

    444

    • $elf ;nergy K continued

    ;,aluation of the $ingle 2oop (ubble

    444 , , k qk k qk >−>+<

    444 , , k qk k qk

  • 8/18/2019 Many Body Lecture 3 (1)

    35/35