mapping of the porcine alpha-fetoprotein (afp) gene to swine chromosome 8

18
BRIEF NOTES Linkage mapping of the ovine single-stranded DNA-binding protein 1 (SSBP1) using microsatellite marker OARCDT7 C. Diez-Tasco ´n*, K. G. Dodds and A. M. Crawford* *AgResearch Molecular Biology Unit, Department of Biochemistry, University of Otago, PO Box 56, Dunedin, New Zealand. AgResearch Invermay Agricultural Centre, Private Bag 50034, Mosgiel, New Zealand Accepted 20 August 2002 Source description: The single-stranded DNA-binding protein 1 (SSBP1) is a transcription factor involved in the regulation of the thyroid stimulating hormone receptor (TSHR). It belongs to a family of SSBPs that interact with RNA and with the pro- moter of retroviruses, and have an important role in RNA processing. The SSBP1 maps to human chromosome 7 (HSA7). Polymerase chain reaction (PCR) primers flanking the third and fourth introns of the ovine SSBP1 gene were designed using the targeted intronic polymorphic sequence identification (TIPS) procedure 1 . The PCR products were tested for similarity with non-redundant (nr) sequences in GenBank (http://www.ncbi. nlm.nih.gov/) using the BLASTN algorithm 2 . The coding sequences flanking the introns were unequivocally aligned to their homologous sequences in the human SSBP1 gene (GenBank accession number NM_003143). The ovine SSBP1 sequence was deposited with the GenBank nucleotide sequence database under accession number AY115486. A repeated se- quence (T) 6, identified within the third intron at position 469 in AY115486, showed variation in different individuals. This microsatellite was designated as OARCDT7. We designed PCR primers flanking OARCDT7 and used it to map SSBP1 in sheep. Primer sequences: OARCDT7 – Forward primer: 5¢- GAGCTTA ATGCTTGTTTTGTGG-3¢ OARCDT7 – Reverse primer: 5¢- CAGGAAACAAGTGTGAGG- AGC-3¢ Analysis Mendelian inheritance: The OARCDT7 was amplified by PCR and analysed by denaturing polyacrylamide gel electro- phoresis. Two alleles were identified and their codominant segregation was verified in the AgResearch International Mapping Flock (IMF), comprising nine three-generation families with a total of 127 animals 3 . Chromosomal location: The OARCDT7 was mapped against the markers on the latest version of the sheep framework map 4 . Multipoint linkage analysis of the IMF pedigrees using CRI- MAP 5 localized OARCDT7 in the distal part of ovine chromo- some 4, between markers BM2023 and CSRD219, with its most likely position at BM2023. Two-point likelihood of odds (LOD) scores and recombination fractions for these loci are shown in Table 1. References 1 McEwan J.C. et al. (2001) Proc Assoc Advm Anim Breed Genet 14, 103–6. 2 Altschul S.F. et al. (1997) Nucleic Acids Res 25, 3389–402. 3 Crawford A.M. et al. (1995) Genetics 140, 703–24. 4 Maddox J.F. et al. (2001) Genome Res 11, 1275–89. 5 Lander E. & Green P. (1987) PNAS 87, 9843–7. Correspondence: C. Diez-Tasco ´ n ([email protected]) Ovine T-cell receptor c genes contain polymorphic microsatellites C. Diez-Tasco ´n*, J. F. Maddox , K. G. Dodds and A. M. Crawford* *AgResearch Molecular Biology Unit, Department of Biochemistry, University of Otago, PO Box 56, Dunedin, New Zealand. Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Victoria 3010, Australia. AgResearch Invermay Agricultural Centre, Private Bag 50034, Mosgiel, New Zealand Accepted 20 August 2002 Source description: In mammals, two types of T cells can be distinguished by the surface expression of either an ab or cd T-cell receptor 1 . The ability of cd T cells to recognize non- peptidic molecules supports the notion that they are associated with innate immunity 2 . In striking contrast to humans and mice, the lymphoid systems of artiodactyls contain a large number of cd T cells 3 . However, the biological significance of these differences between species remains unknown. The ovine T-cell receptor c chains are encoded by five con- stant genes 4 . Two of them (TCRGC1 and TCRGC2) have been shown to map separately in two different regions of chromo- some 4 (OAR4) by in situ hybridization 5 . However, no poly- merase chain reaction (PCR)-based molecular marker has been developed for these genes until now. In an attempt to find markers for the ovine T-cell receptor c genes we searched the GenBank database and identified one microsatellite sequence in the TCRGC1 and two in the TCRGC4 genes (GenBank (http:// www.ncbi.nlm.nih.gov/) accession numbers AF047015 and AF241308, respectively). We designed PCR primers flanking these microsatellites and verified that they were polymorphic in sheep. A linkage map for TCRGC1 and TCRGC4 is reported, showing that these loci map to different areas on OAR4. In contrast, the human T-cell receptor c genes are clustered in the Table 1 Pairwise linkage data for OARCDT7 with markers on sheep chromosome 4. Locus 1 Locus 2 Recombination fraction Z max 1 OARCDT7 CSSM40 0.00 11.14 OARCDT7 BM2023 0.00 18.96 OARCDT7 CSRD219 0.04 15.01 1 maximum lod score. ȑ 2002 International Society for Animal Genetics, Animal Genetics, 33, 468–485

Upload: j-g-kim

Post on 06-Jul-2016

216 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Mapping of the porcine alpha-fetoprotein (AFP) gene to swine chromosome 8

BRIEF NOTES

Linkage mapping of the ovine single-strandedDNA-binding protein 1 (SSBP1) usingmicrosatellite marker OARCDT7

C. Diez-Tascon*, K. G. Dodds† and A. M. Crawford*

*AgResearch Molecular Biology Unit, Department of Biochemistry,

University of Otago, PO Box 56, Dunedin, New Zealand.†AgResearch Invermay Agricultural Centre, Private Bag 50034,

Mosgiel, New Zealand

Accepted 20 August 2002

Source ⁄ description: The single-stranded DNA-binding protein 1

(SSBP1) is a transcription factor involved in the regulation of

the thyroid stimulating hormone receptor (TSHR). It belongs to

a family of SSBPs that interact with RNA and with the pro-

moter of retroviruses, and have an important role in RNA

processing. The SSBP1 maps to human chromosome 7 (HSA7).

Polymerase chain reaction (PCR) primers flanking the third and

fourth introns of the ovine SSBP1 gene were designed using the

targeted intronic polymorphic sequence identification (TIPS)

procedure1. The PCR products were tested for similarity with

non-redundant (nr) sequences in GenBank (http://www.ncbi.

nlm.nih.gov/) using the BLASTN algorithm2. The coding

sequences flanking the introns were unequivocally aligned

to their homologous sequences in the human SSBP1 gene

(GenBank accession number NM_003143). The ovine SSBP1

sequence was deposited with the GenBank nucleotide sequence

database under accession number AY115486. A repeated se-

quence (T)6, identified within the third intron at position 469 in

AY115486, showed variation in different individuals. This

microsatellite was designated as OARCDT7. We designed PCR

primers flanking OARCDT7 and used it to map SSBP1 in sheep.

Primer sequences: OARCDT7 – Forward primer: 5¢- GAGCTTA

ATGCTTGTTTTGTGG-3¢OARCDT7 – Reverse primer: 5¢- CAGGAAACAAGTGTGAGG-

AGC-3¢

Analysis ⁄ Mendelian inheritance: The OARCDT7 was amplified by

PCR and analysed by denaturing polyacrylamide gel electro-

phoresis. Two alleles were identified and their codominant

segregation was verified in the AgResearch International

Mapping Flock (IMF), comprising nine three-generation families

with a total of 127 animals3.

Chromosomal location: The OARCDT7 was mapped against the

markers on the latest version of the sheep framework map4.

Multipoint linkage analysis of the IMF pedigrees using CRI-

MAP5 localized OARCDT7 in the distal part of ovine chromo-

some 4, between markers BM2023 and CSRD219, with its

most likely position at BM2023. Two-point likelihood of odds

(LOD) scores and recombination fractions for these loci are

shown in Table 1.

References1 McEwan J.C. et al. (2001) Proc Assoc Advm Anim Breed Genet

14, 103–6.

2 Altschul S.F. et al. (1997) Nucleic Acids Res 25, 3389–402.

3 Crawford A.M. et al. (1995) Genetics 140, 703–24.

4 Maddox J.F. et al. (2001) Genome Res 11, 1275–89.

5 Lander E. & Green P. (1987) PNAS 87, 9843–7.

Correspondence: C. Diez-Tascon ([email protected])

Ovine T-cell receptor c genes containpolymorphic microsatellites

C. Diez-Tascon*, J. F. Maddox†, K. G. Dodds‡ andA. M. Crawford*

*AgResearch Molecular Biology Unit, Department of Biochemistry,

University of Otago, PO Box 56, Dunedin, New Zealand. †Centre

for Animal Biotechnology, School of Veterinary Science, University

of Melbourne, Victoria 3010, Australia. ‡AgResearch Invermay

Agricultural Centre, Private Bag 50034, Mosgiel, New Zealand

Accepted 20 August 2002

Source ⁄ description: In mammals, two types of T cells can be

distinguished by the surface expression of either an ab or cdT-cell receptor1. The ability of cd T cells to recognize non-

peptidic molecules supports the notion that they are associated

with innate immunity2. In striking contrast to humans and

mice, the lymphoid systems of artiodactyls contain a large

number of cd T cells3. However, the biological significance of

these differences between species remains unknown.

The ovine T-cell receptor c chains are encoded by five con-

stant genes4. Two of them (TCRGC1 and TCRGC2) have been

shown to map separately in two different regions of chromo-

some 4 (OAR4) by in situ hybridization5. However, no poly-

merase chain reaction (PCR)-based molecular marker has been

developed for these genes until now. In an attempt to find

markers for the ovine T-cell receptor c genes we searched the

GenBank database and identified one microsatellite sequence in

the TCRGC1 and two in the TCRGC4 genes (GenBank (http://

www.ncbi.nlm.nih.gov/) accession numbers AF047015 and

AF241308, respectively). We designed PCR primers flanking

these microsatellites and verified that they were polymorphic in

sheep. A linkage map for TCRGC1 and TCRGC4 is reported,

showing that these loci map to different areas on OAR4. In

contrast, the human T-cell receptor c genes are clustered in the

Table 1 Pairwise linkage data for OARCDT7 with markers on sheep

chromosome 4.

Locus 1 Locus 2

Recombination

fraction Zmax1

OARCDT7 CSSM40 0.00 11.14

OARCDT7 BM2023 0.00 18.96

OARCDT7 CSRD219 0.04 15.01

1maximum lod score.

� 2002 International Society for Animal Genetics, Animal Genetics, 33, 468–485

Page 2: Mapping of the porcine alpha-fetoprotein (AFP) gene to swine chromosome 8

chromosomal band 7p15–p14.

Primer sequences: TCRGC1 (TGC)8 at position 993 in AF047015

Forward primer: 5¢ -TTTCTCTTGGGCTACATGGG-3¢Reverse primer: 5¢ -TGGCACCCCACTCCAGTAC-3¢TCRGC4(a) (TA)5 A (TA)3 at position 691 in AF241308

Forward primer: 5¢ -ATTTCTGGATTTGTAGAGCTCG-3¢Reverse primer: 5¢ -TGACAGTGTGCATGTGTGTTT-3¢TCRGC4(b) (TA)27 at position 1297 in AF241308

Forward primer: 5¢ -AGAACAAATATCTGGAATGGTGA-

TGCT-3¢Reverse primer: 5¢ -TGCTATAGGATGACATGAAGGCAAAT-3¢

Analysis: The microsatellites were amplified by PCR and ana-

lysed by denaturing polyacrylamide gel electrophoresis.

Genomic DNA 16 ng was amplified in a 4-ll reaction volume

consisting of 67 mM Tris–HCl (pH 8.8), 16.6 mM (NH4)2SO4,

0.2 mg ⁄ ml gelatine, 0.45% Triton X-100, 1.5 mM MgCl2,

100 lM dNTPs, 2.7 pmol of both the forward and reverse

primers, 0.1 U Amplitaq DNA polymerase (Applied Biosystems,

Melbourne, Australia), 0.22 lg of TaqStart Antibody (Clontech,

Palo Alto, CA, USA) and 0.4 lCi a 33P d-ATP (GeneWorks,

Adelaide, Australia). Reactions were set up in a 96-well plate

and run on a DNA thermal cycler (PTC-100, MJ Research Inc,

Waltham, MA, USA), using the following conditions: 1 cycle of

denaturation at 95 �C (2 min, 50 s); 30 cycles of denaturation

at 95 �C (10 s), annealing at the temperature given in Table 1

(30 s), extension at 72 �C (30 s); and 1 cycle of extension

72 �C (2.5 min).

Polymorphism ⁄ Mendelian inheritance: The number of alleles and

the polymorphic information content of each microsatellite

were determined using a panel of unrelated sheep from 10

different breeds (Merino, Border Leicester, Suffolk, Romney,

Karakul, Finnish Landrace, Poll Dorset, Dorset, Texel and

Carpet Master) (Table 1). Codominant segregation of the alleles

was verified in the AgResearch International Mapping Flock

(IMF), comprising nine three-generation families with a total of

127 animals6.

Table 1 Number of alleles, polymorphic information content (PIC),

heterozygosity and annealing temperature for TCRGC1 and TCRGC4

microsatellites in sheep.

TCRGC1 TCRGC4(a) TCRGC4(b)

Annealing temperature (�C) 58 52 58

Number of alleles 5 4 17

Number of unrelated sheep 46 46 45

PIC 0.39 0.47 0.87

Heterozygosity 0.43 0.55 0.89

Table 2 Pairwise linkage data for TCRGC1 and TCRGC4 with markers

on ovine chromosome 4.

Locus 1 Locus 2

Recombination

fraction Zmax1

TCRGC1 OARCP26 0.06 12.66

TCRGC1 OARHH35 0.15 7.08

TCRGC4 EPCDV006 0.02 30.22

TCRGC4 RM67 0.06 17.75

1maximum lod score.

Figure 1 Linkage map position of TCRGC1 and TCRGC4 on sheep

chromosome 4. The vertical bar to the right of the chromosome

represents the LOD-3 support interval. The most likely position within

the interval is indicated with a horizontal line.

� 2002 International Society for Animal Genetics, Animal Genetics, 33, 468–485

Brief notes 469

Page 3: Mapping of the porcine alpha-fetoprotein (AFP) gene to swine chromosome 8

Chromosomal location: The TCRGC1 and TCRGC4 were mapped

against the markers on the latest version of the sheep

framework map7. In the case of TCRGC4, alleles for the two

microsatellites were combined to obtain the individual hapl-

otypes. Multipoint linkage analysis of the IMF pedigrees using

CRIMAP7 localized these loci to different regions on OAR4.

The most likely position for TCRGC1 was estimated to be be-

tween OarCP26 and OarHH35, whereas TCRGC4 mapped in a

relatively proximal location, between EPCDV006 and RM67.

Two-point likelihood of odds (LOD) scores and recombination

fractions for these loci are shown in Table 2 and the linkage

map of OAR4 in Fig. 1. The two genes are approximately

40 cM apart.

Acknowledgements: We thank Nina Kang for technical assist-

ance. This research was supported by AgResearch and a grant

from Australian Wool Innovation Pty Ltd.

References1 Philpot K.L. et al. (1992) Science 256, 1448–52.

2 Boismenu R. & Havran W.L. (1997) Curr Op Immunol 9,

57–63.

3 Hein W.R. & Mackay C. R. (1991) Immunol Today 12,

30–4.

4 Hein W.R. & Dudler L. (1993) EMBO J 12, 715–24.

5 Massari S. et al. (1998) Chromosome Res 6, 419–20.

6 Crawford A.M. et al. (1995) Genetics 140, 703–24.

7 Maddox J.F. et al. (2001) Genome Res 11, 1275–89.

8 Lander E. & Green P. (1987) PNAS 87, 9843–7.

Correspondence: C Diez-Tascon ([email protected])

Genomic structure of the porcine Interleukin 8gene and development of a microsatellitemarker within intron 1

S. Shimanuki*, E. Kobayashi† and T. Awata†

*Animal Genome Research Program Team, STAFF Institute,

Ippaizuka, 446–1, Kamiyokoba, Tsukuba, Ibaraki 305–0854, Japan.†Genome Research Department, National Institute of Agrobiolog-

ical Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305–8602, Japan.

Accepted: 21 August 2002

Source ⁄ description: Chemokines are a family of small pro-

inflammatory cytokines involved in chemotaxis and the acti-

vation of specific subsets of leucocytes. They play a key role in

mobilizing inflammatory cells in response to infections1. Inter-

leukin-8 (IL-8) belongs to the alpha chemokine family. Porcine

IL-8 complementary DNA (cDNA) has been sequenced2 and

assigned to the porcine chromosome 8 linkage map by

restriction fragment length polimorphism (RFLP) analysis3. We

have subsequently performed analyses of the genomic porcine

IL-8 gene. A primer set (IL8ex2F and IL8ex3R) was designed

from the porcine IL-8 cDNA sequence2 to amplify the genomic

IL-8 fragment and then used to screen a porcine BAC library4.

Restriction fragments from a clone containing the IL-8 gene

were subcloned. The resulting sequences were aligned and

compared with genomic sequences of the human and canine

IL-8 genes5,6.

Genomic structure: About 3.9 kb of genomic sequence for por-

cine IL-8 gene was determined (GenBank accession number

ABO57440). The coding region of the genomic IL-8 gene

sequence was completely identical with the corresponding

region of the previously reported porcine cDNA2. The structure

of the IL-8 gene consisted of four exons (exon 1: 147 bp, exon

2: 136 bp; exon 3: 84 bp and exon 4: 1120 bp), and three

introns (intron 1: 1022 bp; intron 2: 288 bp; and intron 3:

428 bp), with 410 and 272 bp of 5¢ and 3¢ flanking regions,

respectively. The GC- and TATA- box like sequences were found

116 bp upstream of the initiation codon (Fig. 1). The promoter

sequences, the exon–intron organization and size of exons and

introns were highly conserved among pig, human and canine.

A microsatellite with a (TA)18 repeat sequence was identified in

intron 1 of porcine IL-8, but not found in either the human or

canine sequences. A primer set (SJ108F and SJ108R) was

designed to amplify the microsatellite (SJ108) for subsequent

analyses.

PCR Primers: IL8ex2F: 5¢-TGCAGTTCTGGCAAGAGTAAGTGC-3¢IL8ex3R: 5¢-CAGGCAGACCTCTTTTCCATTGACAA-3¢Sj108F: 5¢-CAGTATTCATTTAAACAGTGTG-3¢Sj108R: 5¢-AGCTAAGATCCACCAATAAG-3¢

PCR conditions: Polymerase chain reaction (PCR) was carried

out in a 20-ll reaction mix containing 50 ng of genomic DNA,

2 pmol of each primer, 200 lM of each dNTP, 1.5 mM MgCl2,

and 0.5 U of AmpliTaq Gold DNA polymerase in PCR Gold

Buffer (Applied Biosystems, Branchburg, NJ, USA). The PCR

profile was 10 min at 95 �C, followed by 40 cycles of 30 s at

200 bp

5′ 3′

Exon1 Exon2 Exon3 Exon4

TATAGC

(1120 bp)(84 bp)(136 bp)(147 bp)

(1022 bp) (288 bp) (428 bp)

Intron1 Intron2 Intron3

* Figure 1 Genomic structure of porcine IL8

gene. �GC� and �TATA� indicate the GC- and

TATA- box like sequences, respectively. Num-

bers in brackets represent exon and intron sizes

in basepairs. A microsatellite was identified

within intron 1 (indicated by the asterisk).

� 2002 International Society for Animal Genetics, Animal Genetics, 33, 468–485

Brief notes470

Page 4: Mapping of the porcine alpha-fetoprotein (AFP) gene to swine chromosome 8

94 �C, 30 s at 55 �C, 30 s at 72 �C and final extension of

5 min at 72 �C.

Allele frequency: Allele frequencies of SJ108 were determined

for 53 unrelated pigs from five breeds. Polymorphisms con-

sisting of eight alleles between 164 and 182 bp were being

widely distributed in the breeds (Table 1).

Mendelian inheritance: Codominant Mendelian segregation of

SJ108 was observed in a Meishan · Gottingen miniature pig

experimental family7.

Chromosomal location: Using genotype data from the experi-

mental family the microsatellite marker, SJ108, within the IL8

gene was mapped on porcine chromosome 8 by linkage analysis

(Table 2). These results confirmed the previous mapping study3.

Acknowledgements: We thank T. Kawarazaki, T. Kuroki, T.

Shimizu, and K. Minato, M. Takei, M. Nii and A. Naito for

kindly providing the pig DNA samples. This work was suppor-

ted by grants from the Japan Racing Association (JRA).

References1 Clore G. et al. (1989) J Biol chem 15, 18907–11.

2 Goodman R. et al. (1992) Biochemistry 31, 10483–90.

3 Hu Z. et al. (1997) Mamm Genome 8, 246–9.

4 Suzuki K. et al. (2000) Animal Genetics 31, 8–12.

5 Mukaida N. et al. (1989) Journal of Immunology 143, 1366–

71.

6 Ishikawa J. et al. (1993) Gene 131, 305–6.

7 Mikawa S. et al. (1999) Animal Genetics 30, 407–17.

8 Manly K.F. (1993) Mamm Genome 4, 303–13.

Correspondence: Shin-ichi Shimanuki ([email protected])

Mapping of the porcine alpha-fetoprotein(AFP ) gene to swine chromosome 81,2,3

J. G. Kim, D. Nonneman, J. L. Valletand R. K. Christenson

US Department of Agriculture, Agricultural Research Service, US

Meat Animal Research Center, State Spur 18D, PO Box 166, Clay

Center, NE 68933-0166, USA

Accepted for publication 6 September 2002

Source ⁄ description of primers: A cDNA clone containing the full

coding region of the porcine alpha-fetoprotein (AFP) was iso-

lated (GenBank accession no. AF517770) from the �Meat

Animal Research Center (MARC) 2PIG� expressed sequence tag

primary library by iterative screening1 using a forward (AFP

F1) and a reverse (AFP R2) primer for polymerase chain

reaction (PCR) amplification. AFP F1 was designed from the

horse AFP sequence (GenBank accession no. U28947), and

AFP R2 corresponds to bases 841–822 of the porcine cDNA

sequence. After alignment of the sequence with the human AFP

gene sequence, primers to amplify across putative intron 10

were designed based on the porcine cDNA sequence. The for-

ward (AFP exon 10 F1) and reverse (AFP exon 11 R1) primers

correspond to bases 1246–1264 and 1442–1424 of the por-

cine AFP cDNA (GenBank accession no. AF517770). Based on

the human genomic sequence, this intron was expected to be

approximately 482 bp. Agarose gel electrophoresis and

sequencing of the PCR amplicons of porcine genomic DNA

indicated that the corresponding region of the pig gene was

565 bp. The PCR product was confirmed by sequencing

(GenBank accession no. AY120900).

PCR primer sequences and a flanking sequence for a single nucleotide

polymorphism:

AFP F1: CTAGCAACTATGAAAGTGGGTGGTATC

AFP R2: CTCTGCAGCATTCCTCGTGG

AFP exon 10 F1: CAGGAGAGCCAAGCACTGG

AFP exon 11 R1: GCCAACTGCCTGTCTTCAC

Flanking sequence: ATCATGTCTT(T ⁄ C)TGATGGCAAG

AFP probe primer: GAGCTGACATCATGTCTT

PCR conditions: Polymerase chain reactions were carried out

in a 25-ll volume containing 100 ng genomic DNA, 1.5 mM

MgCl2, 20 pmol of each primer, 100 lM dNTP, and 0.35 U

Table 1 Number of alleles of SJ108 within porcine IL8 gene in different

breeds.

Breeds

Number of

animals

Allele

sizes (bp)

No. of

alleles

Landrace 26 164–178 5

Large White 13 164–182 6

Duroc 5 164–176 5

Meishan 6 164–166 2

Wild pig 3 164–176 4

Table 2 The sex averaged linkage mapping of the SJ108 within porcine

IL8 gene using Map Manager ver. 2.68 and two-point analysis.

Locus 1 Locus 2

Recombination

fraction LOD score

SW29 KIT 0.114 21.5

KIT SJ108 0.217 8.2

SJ108 S0086 0.201 6.5

1Mention of trade names or commercial products in this article

is solely for the purpose of providing specific information and

does not imply recommendation or endorsement by the US

Department of Agriculture.

2Authors thank Dr Gary Rohrer for help in the mapping of the

AFP gene.

3This article is a material of the US Government, and can be

produced by the public at will.

� 2002 International Society for Animal Genetics, Animal Genetics, 33, 468–485

Brief notes 471

Page 5: Mapping of the porcine alpha-fetoprotein (AFP) gene to swine chromosome 8

Taq polymerase. Amplification was performed under the fol-

lowing PCR conditions; 2 min at 94 �C; 45 cycles of 30 s at

94 �C, annealing for 1 min at 65 �C, 1.5 min at 72 �C; and

a final extension of 5 min at 72 �C. The amplified genomic

DNA of eight parents (seven F1 sows and one white com-

posite boar) from the MARC swine reference population2

were bidirectionally sequenced and evaluated for polymor-

phisms3.

Polymorphism and chromosomal location: A C ⁄ T single nucleo-

tide polymorphism was detected in intron 10 (GenBank

accession no. AY120900), position 476 from the exon ⁄ intron

boundary. This polymorphism was heterozygous in six of the

seven F1 sows. An assay was designed to genotype this poly-

morphism using primer extension with the AFP probe primer

and analyte detection on a MALDI-TOF mass spectrometer4

(Sequenom Inc., San Diego, CA, USA). This marker generated

68 informative meioses in the MARC swine reference popula-

tion. The AFP gene was mapped to chromosome 8 position

60.4 cM, which is the same position as marker S0017 on the

current MARC swine chromosome 8 linkage map (http://

www.marc.usda.gov/) using CRI-MAP. The most significant

two-point linkage detected was with S0017 (LOD ¼ 18.36) at

0 recombination. The location of the porcine AFP gene is

within the 95% confidence interval of the uterine capacity

quantitative trait locus (QTL) on chromosome 85. The AFP

gene in human is located on chromosome 4q11-q13, which

shares homology with swine chromosome 8. AFP is the pre-

dominant protein in foetal plasma during early gestation (days

15–30) in the pig6, which may be important for foetal devel-

opment.

References1 Fahrenkrug S. C. et al. (2002) Mamm Genome 13, 475–8.

2 Rohrer G. A. et al. (1994) Genetics 136, 231–45.

3 Fahrenkrug S. C. et al. (2002) Anim Gen 33, 186–95.

4 Heaton M. P. et al. (2002) Mamm Genome 13, 272–81.

5 Rohrer G. A. et al. (1999) J Anim Sci 77, 1385–91.

6 Luft A. J. et al. (1984) J Reprod Fertil 70, 605–7.

Correspondence: R K Christenson ([email protected])

Linkage mapping of porcine DGAT1 to a regionof chromosome 4 that contains QTL for growthand fatness1,2,3

D. Nonneman and G. A. Rohrer

USDA, ARS, U.S. Meat Animal Research Center, Spur 18D, PO Box

166, Clay Center, Nebraska, 68933–0166, USA

Accepted 7 September 2002

Source ⁄ description: Diacylglycerol acyltransferase (DGAT1) is a

microsomal enzyme that catalyses the final and only committed

step in formation of triglycerides, which are the major form of

stored energy in eukaryotes1. DGAT1-deficient mice are viable,

lean, able to synthesize triglycerides, and resistant to diet-in-

duced obesity2. DGAT1-deficient females also have a complete

absence of milk production and a substitution in the bovine

DGAT1 gene has a major effect on milk yield and fat content3.

A full-length porcine DGAT1 complementary DNA (cDNA)

was identified from the MARC 2PIG normalized library4 and

sequenced (GenBank accession number AY093657). The

1935 bp cDNA contained 198 bp of 5¢-UTR, 1470 bp of coding

sequence and 261 bp of 3¢-UTR. Porcine DGAT1 cDNA has 83,

88 and 91% nucleotide identity in the coding region with

mouse, human and bovine cDNAs, respectively. Pig DGAT1

cDNA codes for a protein of 489 amino acids with 85, 86 and

92% identity to mouse, human and bovine proteins, respect-

ively.

The porcine DGAT1 gene was cloned by iterative polymerase

chain reaction (PCR) screening of a cosmid library5 using PCR

primers DGAT-F5 and DGAT-R8 (Table 1). Primers were

designed from porcine DGAT1 cDNA and used to sequence the

cosmid and amplify genomic DNA.

Gene organization: The genomic structure was identical to that

of the human and bovine genes with respect to intron size and

organization of the 17 exons6,3. A GT ⁄ poly(dG) repeat was

found immediately following (66 bp) the polyadenylation signal

and cleavage site. The complete DGAT1 gene was sequenced

except for about 700 bp of intron 1 (GenBank accession

number AY116586); however, enough flanking sequence was

obtained in order to amplify coding sequence of exons 1 and 2

from genomic DNA (Table 1).

PCR conditions: The PCR reactions were performed in 25 ll

using 100 ng of genomic DNA, 1XPCR buffer, 1.5 mM MgCl2,

1The nucleotide sequence data reported in this paper have been

submitted to GenBank and have been assigned the accession

numbers AY093657 and AY116586.

2Mention of trade names or commercial products is solely for the

purpose of providing information and does not imply recommen-

dation, endorsement or exclusion of other suitable products by the

U.S. Department of Agriculture.

3This article is the material of the US Government, and can be

produced by the public at will.

Brief notes472

� 2002 International Society for Animal Genetics, Animal Genetics, 33, 468–485

Page 6: Mapping of the porcine alpha-fetoprotein (AFP) gene to swine chromosome 8

0.200 mM dNTP, 0Æ8 lM each primer and 0.5 U Hotstar� Taq

(Qiagen Inc., Valencia, CA, USA). The PCR profile included

15 min at 94 �C; 35 cycles of 45 s at 94 �C, 45 s at 57 �C,

1–1.5 min at 72 �C; and a final 5 min extension at 72 �C in a

PTC-225 thermocycler (MJ Research Inc., Waterton, MA, USA).

Polymorphisms: Several single nucleotide polymorphisms (SNP)

were found in porcine DGAT1 using the MARC Swine Reference

Population, primarily in introns and non-coding regions

(Table 2). Silent SNPs were found in amino acids 173, 197,

245, 321 and 344. One SNP, an A or G polymorphism at

position 103 of intron 2 was used to map porcine DGAT1 in the

MARC swine mapping population. The A allele provided a

restriction site for AvaII and the PCR–restriction fragment

length polymorphism (RFLP) was amplified using primers

DGAT-Fi1 and DGAT-Ri2 primers (Table 1).

Chromosomal location ⁄ linkage: Linkage analysis placed DGAT1

on porcine chromosome 4, relative position 0 based on 85 in-

formative meioses. The most significant linkage detected was

with SW2404 (LOD ¼ 18.66, theta ¼ 0.0). Other genes

mapped on this arm of SSC4 include TG and MYC at 4p157,

EXT1 at 41 cM8 and DECR1 at 53 cM

9 with DGAT1 being the

most telomeric gene mapped.

Comments: Human DGAT1 maps to 8q24.3, and bi-directional

chromosome painting and comparative mapping10 have iden-

tified SSC4 to be syntenic with portions of human chromosomes

1 and 8. This chromosomal assignment is consistent with the

relative positions of TG, MYC and DECR1 on the comparative

map. Although DGAT1 does not map within the major quan-

titative trait loci (QTL) interval for backfat thickness or intra-

muscular fat in the pig, it does map within suggestive QTL

intervals for growth rate, intramuscular fat, and fatty acid

composition11–13.

Acknowledgements: The authors gratefully thank Sherry Kluver

for manuscript preparation and Bree Quigley for cloning and

sequencing.

References1 Bell R.M. & Coleman R.A. (1980) Ann Rev Biochemistry 49,

459–87.

2 Smith S.J. et al. (2000) Nature Genetics 25, 87–90.

3 Grisart B. et al. (2002) Genome Research 12, 222–31.

4 Fahrenkrug S.C. et al. (2002) Mammalian Genome 13, 475–8.

5 Heaton M.P. et al. (1997) Animal Biotechnology 8, 167–77.

6 Cases S. et al. (1998) Proceedings of National Academy of

Sciences of the USA 95, 13018–23.

7 Pinton P. et al. (2000) Mammalian Genome 11, 306–15.

8 Cepica S. et al. (2002) Animal Genetics 33, 81–2.

9 Davoli R. et al. (2002) Animal Genetics 33, 73–5.

10 Goureau A. et al. (1996) Genomics 36, 252–62.

11 Perez-Enciso M. et al. (2000) Journal of Animal Science 78,

2525–31.

12 de Koning D.J. et al. (1999) Genetics 152, 1679–90.

13 Paszek A.A. et al. (1999) Mammalian Genome 10, 117–22.

Correspondence: D. Nonneman ([email protected])

Table 1 Primers used to amplify and sequence DGAT1 from porcine genomic DNA.

Forward 5¢ fi 3¢ Reverse 5¢ fi 3¢ Exons Size (bp)

DGAT-F1 gctgcgagcgccgcgacgaccgag DGAT-Ri1 cacccttaagtctccccctaa 1 563

DGAT-Fi1 cctgctcaccagggtgcctg DGAT-Ri2 gtacatggtcccacagtgtcc 2 257

DGAT-Fi2 cccggctcttctgtcttgc DGAT-R7 ggatggagtagaccatcagagc 3–6 804

DGAT-F5 ttccaggagaagcgcctgg DGAT-R8 gttgtcggggtagctcacggtg 5–8 716

DGAT-F6 cacgtggccaacctggccacc DGAT-Ri8 cagccccaagcagggtcctcac 7–8 476

DGAT-Fi8 cccgctagccccgctctcccgctg DGAT-R13 ccagtcccggtagaactcccgg 9–12 694

DGAT-Fi10 gggctgaggctctgtcctcttc DGAT-R13 ccagtcccggtagaactcccgg 11–12 387

DGAT-F13 gtgcccaaccacctcatctggc DGAT-R16 ctgagccatcatgcccgtgaa 14–15 587

DGAT-F14 ggaactcggagtctgtcaccta DGAT-R17 cttccagagcaccagcacct 15–17 853

Intron or exon location of the primer is designated by the number, and intron location is identified by an �i� before the number in the primer name. The

exons targeted for sequencing and expected amplicon size is shown.

Table 2 Single nucleotide polymorphisms found in porcine DGAT1

gene from MARC swine reference parents.

Location Flanking sequence Number

intron 2 catctYggggc 19Y

intron 2 cgaggRccaca 103R

intron 5 cagcaRccagt 79R

exon 6 ATCCTSTGCTT 173 l*

intron 6 cgcggYctgag 78Y

intron 6 ctgagYatgcc 84Y

exon 7 ATGGTSTACGC 197 V*

exon 8 TACCCSGACAA 245S*

exon 12 ATCATMGAGCG 321I*

intron 12 gcggcMcgtgg 30 M

exon 13 TTCCAMTCCTG 344H*

intron 14 agcggYacggg 47Y

exon 17 cgctcYgggct 164Y

exon 17 ggtccYgagct 223Y

exon 17 tgctgMctcct 256 M

SNPs are numbered according to nucleotide position in intron and IUB

code for polymorphism. Silent polymorphisms in coding regions are

shown with an asterisk and numbered according to their amino acid

position and one-letter code. Coding sequence is in uppercase.

Brief notes 473

� 2002 International Society for Animal Genetics, Animal Genetics, 33, 468–485

Page 7: Mapping of the porcine alpha-fetoprotein (AFP) gene to swine chromosome 8

Linkage mapping of a single nucleotide poly-morphism (SNP) in the porcine QDPR gene tochromosome 81,2

J. G. Kim, D. Nonneman, J. L. Vallet, G. A. Rohrerand R. K. Christenson

US Department of Agriculture, Agricultural Research Service, US

Meat Animal Research Center, State Spur 18D, PO Box 166, Clay

Center, NE 68933-0166, USA

Accepted for publication 16 September 2002

Source ⁄ description of primers: Quinoid dihydropteridine reduc-

tase (QDPR) catalyzes the NADH-mediated reduction of

quinonoid dihydrobiopterin and is an essential component of

the pterin-dependent aromatic amino acid hydroxylating sys-

tems1. A cDNA clone containing the full coding region of the

porcine QDPR (GenBank accession no. AF526879) has been

isolated from the �Meat Animal Research Center (MARC) 2PIG�expressed sequence tag primary library2. Primers were designed

to amplify across the 3¢ untranslated region of the cDNA. The

forward (F3) and reverse (R1) primers correspond to bases

744–763 and 1118–1098 of the porcine QDPR cDNA. Agarose

gel electrophoresis and sequencing of the polymerase chain

reaction (PCR) amplicons of porcine genomic DNA indicated

that the size of this product was 375 bp as expected.

PCR Primer sequences and a flanking sequence for a single nucleotide

polymorphism: QDPR F3: CCACGCAGGGAAAGACAGAG

QDPR R1: CATCCCAGCAAATCTCTGACC

Sequence flanking polymorphism: ATGTGTCCCC(G ⁄ A)AT-

GGTGGCCG

PCR conditions: Polymerase chain reactions were carried out in

a 25-ll volume containing 100 ng genomic DNA, 1.5 mM

MgCl2, 20 pmol of each primer, 100 lM dNTP, and 0.35 U Taq

polymerase. Amplification was performed under the following

PCR conditions; 2 min at 94 �C; 45 cycles of 30 s at 94 �C,

annealing for 1 min at 61 �C, 1 min at 72 �C; and a final

extension of 5 min at 72 �C. The amplified genomic DNA of

eight parents (seven F1 sows and one white composite boar)

from a subset of the MARC swine reference population3 were

bidirectionally sequenced and evaluated for polymorphisms4.

Polymorphism and chromosomal location: An A ⁄ G single nuc-

leotide polymorphism was detected at nucleotide 1075 in

AF526879. This polymorphism was heterozygous in five of the

seven F1 sows and two boars from the MARC swine reference

population3. An assay was designed to genotype this poly-

morphism using primer extension with analyte detection on a

MALDI-TOF mass spectrometer (Sequenom Inc., San Diego, CA,

USA)5. This marker generated 153 informative meioses in the

MARC swine reference population. The QDPR gene was map-

ped to chromosome 8 position 25.7 cM, which is the same

position as marker PEPS6 on the current MARC swine chro-

mosome 8 linkage map (http://www.marc.usda.gov/) using

CRI-MAP. The most significant two-point linkage detected was

with PEPS (LOD ¼ 29.50) at 0 recombination. The QDPR

gene in human is located on chromosome 4p15.31, which

shares homology with swine chromosome 8.

References1 Lockyer J. et al. (1987) Proc Natl Acad Sci USA 84, 3329–33.

2 Fahrenkrug S.C. et al. (2002) Mamm Genome (in press).

3 Rohrer G.A. et al. (1994) Genetics 136, 231–45.

4 Fahrenkrug S.C. et al. (2002) Anim Genet 33, 186–95.

5 Heaton M.P. et al. (2002) Mamm Genome 13, 272–81.

6 Smith T.P. et al. (2001) Anim Genet 32, 66–72.

Correspondence: R K Christenson ([email protected])

Fishing in silico : searching for tilapia genesusing sequences of microsatellite DNA markers

A. Cnaani, M. Ron, G. Hulata and E. Seroussi

Institute of Animal Science, Agricultural Research Organization,

PO Box 6, Bet-Dagan 50250, Israel

Accepted for publication 17 September 2002

Description: Genetic linkage maps of some of the main cultured

fish species were constructed in recent years. Maps of tilapia1–3,

trout4 and catfish5 consist of hundreds of microsatellites and

amplification fragment length polymorphism DNA markers, but

only several genes.

Microsatellites DNA markers are short tandem repeats,

usually dinucleotide (CA)n, with unique flanking sequences,

providing primer binding sites for PCR amplification6. Micro-

satellites are highly abundant throughout the genome and

appear in coding and non-coding regions. Therefore, it is likely

that the flanking sequences can be part of a gene, which can be

identified by similarity searches against the GenBank sequence

database. This in silico data mining approach has already been

used to identify genes in mice7, cattle, pigs and chicken8. In this

study we utilized a similar approach to add nine anchored

genes to the current 14 genes in the tilapia3 map, and suggest

seven additional genes that can be anchored by mapping to

their matching microsatellites.

Methods: Microsatellites sequences were downloaded in FASTA

format from the GenBank database using the Entrez nucleotide

query webpage (http://www.ncbi.nlm.nih.gov/Entrez). The

search string used to retrieve the tilapia microsatellites was

1Mention of trade names or commercial products in this article

is solely for the purpose of providing specific information and

does not imply recommendation or endorsement by the US

Department of Agriculture.

2This article is the material of the US Government, and can be

produced by the public at will.

� 2002 International Society for Animal Genetics, Animal Genetics, 33, 468–485

Brief notes474

Page 8: Mapping of the porcine alpha-fetoprotein (AFP) gene to swine chromosome 8

Table 1 Genes found by Blastn and Blastx comparisons between tilapia microsatellites and the GenBank database.

Blast

search

Microsatellite

(accession no.)

Matched gene

(accession no.) Speciesa

Identity

(%)

Similarity

(%) E value

Tilapia

linkage

groupb

Homology to

human genome

(accession no.) HSA

Blastn UNH881

(G68303)

Immunoglobulin light chain variable

region (AB062648)

SQ, AR, AM,

SS, IP

84 ⁄ 90 (93) 2e-28 Human mRNA

(XM_033504)

2p11.2

UNH953

(G68314)

S164 protein

(AF109907)

HS, MM 88 ⁄ 104 (84) 4e-13 Human mRNA

(AF109907)

14q24.2

UNH961

(G68254)

Phosphofructo-1-kinase

(U01154)

OC, MM, HS 118 ⁄ 142 (83) 4e-16 LG213 PFKP (NM_002627) 10p15.1

UNH1006

(G68322)

Cytochrome P450

AF251272

OL, OA, MM 43 ⁄ 48 (89) 2e-05 CYP3A5

(NM_000777)

7q22.1

Blastx UNH102

(G12255)

Myosin heavy chain

(AF209114)

RN, HS, DR,

GG

20 ⁄ 42 (47) 28 ⁄ 42 (66) 7e-04 LG161 MYO9A

(NM_006901)

15q23

UNH110

(G12263)

GDNF family receptor alpha-1a

(AF329854)

DR 22 ⁄ 38 (57) 26 ⁄ 38 (67) 5e-05 AR182 GFRA1

(NM_005264)

10q25.3

UNH142

(G12294)

Myeloid ⁄ lymphoid or mixed-lineage

leukemia3 (NM_021230)

HS 31 ⁄ 37 (83)

14 ⁄ 31 (45)

34 ⁄ 37 (91)

21 ⁄ 31 (67)

4e-18 MLL3

(NM_021230)

7q36.2

UNH178

(G12330)

Acetylcholine receptor delta chain

precursor (X07069)

XL, GG, TC 20 ⁄ 25 (80) 23 ⁄ 25 (92) 4e-04 LG93 CHRND

(NM_000751)

2q37.1

UNH179

(G12331)

Tyrosine phosphatase receptor type q

(NM_022925)

RN 25 ⁄ 53 (47)

16 ⁄ 27 (59)

36 ⁄ 53 (67)

18 ⁄ 27 (66)

6e-08 LG71 Human mRNA

(XM_100850)

12q21.31

UNH208

(G12359)

Attractin

(NM_009730)

MM, RN, HS 35 ⁄ 40 (87) 39 ⁄ 40 (97) 1e-14 LG243 ATRN

(NM_012070)

20p13

UNH303

(G54841)

KIAA1694 protein

(AB051481)

HS 23 ⁄ 25 (92) 24 ⁄ 25 (96) 1e-06 Human mRNA

(AB051481)

16q24.1

UNH362

(G54844)

Transmembrane 4 superfamily member

(NM_012338)

HS 19 ⁄ 27 (70)

17 ⁄ 20 (85)

22 ⁄ 27 (81)

20 ⁄ 20 (100)

2e-13 LG103 NET-2

(NM_012338)

7q31.31

UNH735

(G63984)

Sodium bicarbonate cotransporter (NBC)

(AF069511)

RN, MM, HS 19 ⁄ 33 (57) 26 ⁄ 33 (78) 0.001 LG113 SLC4A7

(NM_003615)

3p24.1

UNH872

(G68301)

Sugar transporter

(D28562)

RN, MM, HS 18 ⁄ 31 (58) 21 ⁄ 31 (67) 0.007 SLC2A9

(NM_020041)

4p16.1

UNH952

(G68249)

Cytokine-like nuclear factor n-pac

(AF326966)

HS 52 ⁄ 63 (82) 57 ⁄ 63 (89) 5e-22 LG43 Human mRNA

(AF326966)

16p13.3

Tmo M27

(U63663)

Guanine nucleotide release ⁄ exchange

factor (AJ276774)

RN, MM, HS 25 ⁄ 26 (96) 25 ⁄ 26 (96) 2e-07 RASGRF1

(NM_002891)

15q25.1

aFor each gene the species with the highest similarity are written first. The names of species were abbreviated as follows:

AM Anarhichas minor, AR Acipenser ruthenus, DR Danio rerio, GG Gallus gallus, HS Homo sapiens, IP Ictalurus punctatus, MM Mus musculus, OA Ovis aries, OC Oryctolagus cuniculus, OL

Oryzias latipes, RN Rattus norvegicus, SQ Seriola quinqueradiata, SS Salmo salar, TC Torpedo californiensis, XL Xenopus laevisbThe names of the linkage groups are written as they appear in the published maps1,2,3.

�2002

Intern

ational

Society

for

Anim

alG

enetics,

Anim

al

Genetics,

33,

468–4

85

Brief

no

tes4

75

Page 9: Mapping of the porcine alpha-fetoprotein (AFP) gene to swine chromosome 8

(Oreochromis [organism] OR tilapia [organism]) AND (micro-

satellite [all fields] OR STS [all fields]). All repeats were masked

using RepeatMasker (http://ftp.genome.washington.edu/RM/

RepeatMasker.html). The masked sequences were queried

against the non-redundant (nr), expressed sequence tags (EST),

high throughput genomic sequences (HTGS) and genome sur-

vey sequence (GSS) databases of GenBank using Blastn and

Blastx searches. We used batched blast (http://zfish3.uoregon.

edu/blast_scripts/web_batch_blast.pl) for individual search of

each locus. The Blastn search was limited to at least 12 con-

secutive nucleotide alignment and minimum sum expect value

(E) of less than 0.0001 and the Blastx search was limited to at

least three consecutive amino acids alignment and E of less

than 0.01. Sequences meeting these criteria were reviewed in

order to eliminate matches resulting from vectors and primers

in unedited sequences. Any match of DNA or protein sequences

to human genes was followed by a Blat search of the human

sequence, against the sequence of the human genome draft

(http://genome.cse.ucsc.edu/index.html), to define the source

of similarity in the gene. The Fugu rubripes database (http://

fugu.hgmp.mrc.ac.uk/blast/) was consulted to confirm

sequence matches and compare the exon structure to obtain

further evidence for identification of a true gene. Matches for

uncharacterized proteins and hypothetical proteins were

excluded from the reported results.

Results and discussion: By comparing sequences of 312 tilapia

microsatellites to GenBank database, 16 known genes have

been localized (Table 1). Twelve genes have been found using

the Blastx and four by Blastn. Searching against the EST, GSS

and HTGS databases did not add known genes to those found in

the nr database. Eleven of the 16 sites were localized to the

same genes in two or more vertebrate species, thus supporting

the detection of the true genes.

In cases of uncertainty, where E-values were ‡0.001

(UNH735 and UNH872), the sequences were blasted against

the database of the Fugu genome project. The matching contigs

included similar genes to those found in GenBank. Blastn of

UNH735 against the Fugu database gave an E-value of 1e-04

with identity of 100% (25 ⁄ 25) and Blastx of UNH872 yielded

an E-value of 2e-08 with 100% identity (29 ⁄ 29). Further in-

dication that these matches were true was obtained from exact

compatibility of the exon–intron boundaries, which are con-

served among vertebrates9. Matched sequences, such as

UNH933, that corresponded to intronic sequence were

removed from this report. Sequences of coding regions are more

conserved than non-coding regions and thus are better pre-

dictors of genes in different species. Sequence similarity to an

intronic region might be due to identity in control region, a

pseudo gene or a false match.

This rapid in silico approach has added nine genes to the

tilapia linkage map, which contains only 14 genes. Seven more

genes matched unmapped microsatellies. The localized genes in

tilapia provide anchors for comparative mapping with other

vertebrates. In the future, with the increased effort of sequen-

cing the genomes of several animal species, more genes can be

mapped using this in silico method.

Acknowledgements: This study was supported by The Israeli

Science Foundation (Grant no. 418 ⁄ 99-1).

References1 Kocher T. D. et al. (1998) Genetics 148, 1225–1232.

2 Agresti J. J. et al. (2000) Aquaculture 185, 43–56.

3 Lee B.-Y. & Kocher T. D. (2002) Abstracts of the Plant and

Animal Genome X Conference, W626. p. 234. Scherago Intl.,

Inc., San Diego, CA.

4 Young W. P. et al. (1998) Genetics 148, 839–850.

5 Waldbieser G. C. et al. (2001) Genetics 158, 727–734.

6 Tautz D. (1989) Nucleic Acids Res 17, 6463–6471.

7 Herron B. J. et al. (1998) Mamm Genome 9, 1072–1074.

8 Farber C. R. & Medrano J. F. Anim Genet (in press).

9 Davidson H. et al. (2000) Genome Res 10, 1194–1203.

Correspondence: E Seroussi ([email protected])

Linkage mapping of TYR to dogchromosome 21

B. H. Schmidtz and S. M. Schmutz

Department of Animal and Poultry Science, University

of Saskatchewan, Saskatoon, S7N 5A8 Canada

Accepted for publication 21 September 2002

Source ⁄ description: Tyrosinase is an important gene in

the melanin pathway1 and is expressed in pigmented skin.

Primers, which amplify exon 1 of the tyrosinase gene (TYR),

were designed based on human sequence (GenBank M63235)

for use in several species. The amplified dog fragment

(AF473807) had a SNP (G ⁄ A) at nucleotide 175 from the

start of the coding sequence, based on alignment to the DNA

sequence for dog TYR exon 1 submitted by Tang to GenBank

(U42219), or 118 bp of the incomplete exon 1 sequence we

submitted. The SNP was responsible for a conservative amino

acid change (valine to isoleucine). Homozygotes of both alleles

were present in a set of Large Munsterlander dog families.

These dogs are black and white spotted, with or without small

spots called ticking and ⁄ or roan. No sequence differences were

detected in the ticked and non-ticked dogs which had more

white patches.

Primer sequences:

Forward: ATGCTCCTGGCTGTTTTGTACTGCCTG

Reverse: CTGCCAAGAGGAGAAGAATGATGC

Polymerase chain reaction (PCR) conditions: The PCR reaction of

15 ll contained 1 ll of DNA template (50–100 ng), 1.5 ll of

PCR buffer (Invitrogen, Burlington, ON, Canada), 0.6 ll of

50 mM MgCl2, 0.3 ll of 10 mM dNTP, 0.1 ll Taq polymerase

(5 U ⁄ ll, Gibco), 1 ll of each primer (10 pM ⁄ ll) and 9.5 ll

ddH2O. The reaction began with a 4-min step at 94 �C,

� 2002 International Society for Animal Genetics, Animal Genetics, 33, 468–485

Brief notes476

Page 10: Mapping of the porcine alpha-fetoprotein (AFP) gene to swine chromosome 8

followed by 30 cycles of 30 s at 94 �C, 35 s at 56 �C, and

45 s at 72 �C, and finishing with a 4 min step at 72 �C.

Samples were digested with 1 ll of Rsa1 (10 U ⁄ ll) for 3 h at

37 �C.

Polymorphism: Polymerase chain reaction amplified a 819 bp

fragment. Digestion with Rsa1 yielded either a four-band pat-

tern (19, 68, 289 and 442 bp) for allele A, or a five-band

pattern (19, 68, 157, 286 and 289) for allele G. Heterozygotes

had the 19, 68, 156, 286, 289 and 442 bp bands. Bands were

resolved on a 2% gel, as the 156 and 442 bp bands were

enough to determine the allelic identity. Therefore, resolution

between the constant 289 bp band and the 286 band of the G

allele was not necessary.

Mendelian inheritance: Codominant inheritance was observed

within the three families tested for the SNP.

Chromosomal location: Chromosome painting studies2,3 indica-

ted that canine chromosome 21 was homologous with human

chromosome 11q21, where TYR has been mapped4. Microsat-

ellite FH2312 from syntenic group 25 and ZuBeCa21 from

DogMap linkage group 43 or CFA21 were genotyped on the

three families that segregated for the TYR polymorphism.

Microsatellite FH2312 was heterozygous in all three families.

No recombinant offspring was noted between the TYR SNP and

FH2312. A LOD score of 3.3 at 0 cM was found. FH2312 maps

at 0 cM on the Fred Hutchinson Cancer Research Center

(FHCRC) Dog Genome Project map of syntenic group 25, which

was recently assigned to CFA216. We also found evidence of

linkage between TYR and ZuBeCa21 of CFA21 on DogMap7

although the statistical support was weak (LOD ¼ 1.48,

0 cM).

Comment: A portion of this exon 1 tyrosinase sequence was

used in a phylogenetic study of placental mammals8.

Acknowledgements: We thank Tom Berryere for technical

advice. We are grateful to the dog breeders who submitted DNA

samples from their litters and our colleagues in the DogMap

group for sharing marker data.

References1 Kwon B.S. et al. (1987) Proc Nat Acad Sci USA 84, 7473–7.

2 Yang F. et al. (1999) Genomics 62, 189–202.

3 Breen M. et al. (1999) Genomics 62, 145–55.

4 Fletcher J.M. et al. (1993) Am J Hum Genet 52, 478–90.

5 Mellersh C.S. et al. (2000) Mamm Genome 11, 120–30.

6 Lingaas F. et al. (2001) J Anim Br Genet 118, 3–19.

7 Breen M. et al. (2001) Genome Res 11, 1784–95.

8 Murphy M.J. et al. (2001) Nature 409, 614–8.

Correspondence: S M Schmutz ([email protected])

Radiation hybrid mapping of 273 previouslyunreported porcine microsatellites

E. Krause, L. Morrison, K. M. Reed andL. J. Alexander

Department of Veterinary PathoBiology, College of Veterinary

Medicine, University of Minnesota, St Paul, MN 55108, USA

Accepted for publication 25 September 2002

Source ⁄ description: A phage library was constructed in de-

phosphorylated BamHI digested M13mp18 using size-selected

(220–1000 bp) pig genomic DNA restricted with MboI. The

library was screened with 32P-labelled (CA)16 and (GT)16

probes. Positive clones were sequenced with an automated

DNA sequencer (ABI 3100, Foster City, CA, USA) at the Ad-

vanced Genetic Analysis Center, College of Veterinary Medicine,

University of Minnesota. All sequences were queried against

these and previously mapped clones1–4. The polymerase chain

reaction (PCR) primers were designed interactively with Primer

v.3 (Whitehead Institute for Biomedical Research, http://

www.genome.wi.mit.edu/cgi-bin/primer/primer3_http://

www.cgi). Primer pairs were typed on the IMpRH panel5,6.

Mapping data were placed in the INRA RH mapping database

(http://imprh.toulouse.inra.fr/). Map distances and two-point

LOD scores were provided by the INRA RH website. The posi-

tion of markers for which the two-point LOD score is less than 6

should be considered preliminary.

PCR conditions: Oligonucleotide primer-pairs for each locus

(Table 1) were optimized for PCR amplification by testing over a

range of annealing temperatures against porcine and hamster

genomic DNA to ensure porcine-specific amplification. The PCR

reactions (15 ll total volume) included 25 ng RH DNA,

1.5 mM MgCl2, 2.5 pmol each primer, 100 lM dNTP and

0.35 U Hotstar Taq polymerase (Qiagen, Valencia, CA, USA).

Amplifications were performed in an MJ Research thermal

cycler (Waltham, MA, USA) under the following reaction

conditions: 15 min at 94 �C; 30 cycles of 30 s at 94 �C, 30 s at

annealing temperature, 30 s at 72 �C and a final extension of

5 min at 72 �C.

Acknowledgements: This work was supported by a USDA grant

USDA-NRI #99-35205-8619.

References1 Rohrer G. A. et al. (1994) Genetics 136, 231–45.

2 Rohrer G. A. et al. (1996) Genome Res 6, 371–91.

3 Alexander L. J. et al. (1996) Mam Genome 7, 368–72.

4 Alexander L. J. et al. (1996) Anim Genet 27, 137–48.

5 Yerle M. et al. (1999) Cytogenet Cell Genet 82, 182–8.

6 Hawken R. J. et al. (1999) Mamm Genome 10, 824–30.

Correspondence: L J Alexander ([email protected])

� 2002 International Society for Animal Genetics, Animal Genetics, 33, 468–485

Brief notes 477

Page 11: Mapping of the porcine alpha-fetoprotein (AFP) gene to swine chromosome 8

Table 1 Porcine microsatellite information. The GenBank accession number, primer sequences, PCR annealing temperature, map information (chromosomal assignment, closest marker, distance

from closest marker and two-point LOD score) and fragment size (bp) are included for each locus

Marker

GenBank

accession no. Forward primer Reverse primer Temp. Chr.

Linked

marker

Distance

(Ray)

LOD

score

Fragment

size (bp)

UMNp6 AF511384 TCTTCCCGGTACAAACCATC GTGGATGATGTGGCTCACAG 56 13 SW1495 0.29 13.10 138

UMNp7 AF511406 CAAAAAACTCCCAAAGAGAAGG CACGTTCCCCTAGCAGATTC 56 13 S0288 0.13 17.20 145

UMNp9 AF511407 TCTGGGGAAATCTCTCACAC CAGAAGTCACCGAAGGTTCTG 56 1 S0331 0.59 7.07 106

UMNp10 AF511117 AGGTGTGGCCGTAAAAAGAC GGGAAGACACCATATTGAATGC 56 15 SW938 0.49 8.63 239

UMNp13 AF511118 AGATGGCAAGACTGTGGGAC TATATTTTGGATTTTGTGGGCC 56 2 SSC2F05 0.59 7.19 186

UMNp17 AF511121 TGCTGCAAATGGTATTACATTC GTCCCATTGACAAATGAATGG 56 10 SW1991 0.25 14.42 142

UMNp19 AF511130 GAAAAGCAAACATTGAAGGAGG CAGGGGGAATTTTAGCTACTTG 56 5 SW1200 0.23 15.82 199

UMNp22 AF511140 GGAACTGCACAATTAACAGATATAC ATTTCCATCAGTGGATAGAATATTC 64 10 SWR334 0.2 16.70 146

UMNp25 AF511151 ACCCCTTAGCTCCAGCTAGG TTACCAGCCTTCCTGTGACC 64 13 S0288 0.14 16.45 147

UMNp26 AF511160 CATCACAGCACCCACAGG GGGAAACGGGGCTTACAC 62 13 SWR428 0.4 8.55 190

UMNp29 AF511181 GCCACTTGTGTTGGAACATG GAAGGTGTCAATGGAGGGAG 60 1 SW373 0.12 18.69 117

UMNp30 AF511187 GGAGCCTAAAGACTTTGTGGG AAGACGATGAATTCATGCAGG 65 7 TNFB 0.46 9.15 136

UMNp31 AF511195 TTGCCAAACAGAGCATACATG CACAAAGCTCGGAGGAAAAG 58 16 SW557 0.4 10.75 196

UMNp32 AF511196 TCCTATTGTGCAGGAATCCC CAGAACTCTGGAGCCTGGTC 64 9 SW1651 0.23 15.41 122

UMNp33 AF511203 ATTCCACCCCTAGCCTGG CTACACCGCCTTCTAAACTTCG 65 10 SW 1894 0.37 10.34 114

UMNp147 AF511119 GCCTTCGTTACATGGCATTC TCTCTGTGAGGTCATGGTGG 58 13 SW769 0.04 24.40 140

UMNp167 AF511120 GGAGAAATGAAAGAACATTTGG AAGCCCACTCATTGTCCTTG 60 2 SW942 0.62 6.12 123

UMNp171 AF511122 TCTTTCCATCCCTAAAATGGG TAAAGTGCTAGCCCAGTGCC 62 9 SW2074 0.13 19.08 179

UMNp172 AF511123 ATCTGATGAACCACTCACATGG CACTTGGGTGACCTGTAATGG 62 14 SW1556 0.14 18.58 239

UMNp174 AF511124 TTTCCACTGCACATGTGGTT GGCAGTGCAAAAAGGCTAAG 62 16 SW1645 0.07 25.68 134

UMNp176 AF511125 AACAACTGAAGTGCCCATCA AAGGTTCATGCATGTTTTTGC 64 15 SW 1989 0.07 22.33 150

UMNp177 AF511126 TCCCACCTTCCTTCCTTTG ATTGCAGATGGACAAAAATGC 62 14 SW761 0.27 11.76 155

UMNp178 AF511127 AACTCTCATTCGGCTCCTAGC TCCTCATGCCAAGGGTGT 62 1 SW1668 0.78 3.50 145

UMNp185 AF511128 ATCAAACAAGTTGAACCGTGG ACCCACTTAGTGATGGGCAG 62 9 SWR1848 0.4 10.71 150

UMNp189 AF511129 ATAAGTAGGTATGAGGAACTTCGTG AGATACAATTCTCCCAAAGTCAGC 62 6 UOX 0.2 16.21 177

UMNp191 AF511131 CATATATGGTCAGCCTGGGG CTCAGCCCTGAAGTAGTATGGG 56 14 S0007 0 22.39 137

UMNp192 AF511132 CTGGAGGTGGTTCTTTATTTCG CAATGCACCACAGACCCTC 62 1 SW301 0.12 20.96 180

UMNp195 AF511133 GCCACAGGTACAGCCCTAAA TGACCCCAAGTTATCTGATGC 62 6 SW1057 0.1 22.44 133

UMNp201 AF511134 AAATATTTGGGGGCCTTGAC ACGCAAATCCCTCTCTCTGA 62 6 SW2466 0.24 14.84 134

UMNp210 AF511135 AGACTGGCCCAGGGTAATCT GCAGAACTATATGCCCTGCC 62 13 SWC22 0.6 4.82 102

UMNp213 AF511136 TTTGGCTTCCAGTCTTCTTTC TGCTACCGCTTTAGCAACG 62 15 SW1119 0.29 9.71 145

UMNp215 AF511137 GCCTGCTTGTATGGTGTGTG TGTCTCTGACCATGAGTTCCA 62 7 SW732 0.31 13.04 121

UMNp218 AF511138 CGAGGTGAGGTCCTGCTAAG TGCCTCCCAGATTAATGGAG 62 2 SW1450 0.43 7.52 129

UMNp219 AF511139 TCTAGGACCAGGGGAGGG TCCAAGGATGTTGATTTCTGC 62 13 S0287 0.53 7.44 200

UMNp223 AF511141 CAGCAGCCCCATCATTAATT CAAAAATGCTCTCTTCAAACCC 62 9 SW2074 0.22 15.42 232

UMNp225 AF511142 CAGGTGGGACTTCCATGAGT GGCATTACACCCAGAAGGAA 62 14 SW6 0.16 14.26 126

UMNp229 AF511143 CCTTCAACTTCAGCTCCAGC GAATGCGTGCATCCACAG 64 2 SWR1342 0.41 8.16 103

UMNp230 AF511144 TCCATACACTGTAGGTGTGGC TCTCTCCTCTAGCCCTTGCC 65 14 SW328 0.14 12.69 136

�2002

Intern

ational

Society

for

Anim

alG

enetics,

Anim

al

Genetics,

33,

468–4

85

Brief

no

tes4

78

Page 12: Mapping of the porcine alpha-fetoprotein (AFP) gene to swine chromosome 8

UMNp238 AF511145 ATCTGAAAAACTGTTCTATTTTGGG CAATTATTCCCTAGCACGTATGC 64 10 SWR334 0.2 16.70 173

UMNp239 AF511146 CTTACAAAACCACCACCATCG TCAATATCAACATTGCGTGTTG 60 3 SW1327 0.69 5.64 86

UMNp242 AF511147 TGTTTAGACCCCTAGCCCAG TGACTCCTCTCTTTCAGGAAAG 62 13 SWR428 0.4 8.55 100

UMNp245 AF511148 GAGGCCCTCCTTTTCGAC TGTTTTTTATGTTTGGGGGC 60 1 SW373 0.12 18.69 123

UMNp246 AF511149 TGGTAACCACAAACCAAAAATC CTTGACCCCTGAGCAAGG 65 7 TNFB 0.46 9.15 162

UMNp248 AF511150 AAATTCCTTTTTTCCTGTATCACTG AGTGAAAACAATGTTTCTTACTGGG 64 9 SW1651 0.23 15.41 122

UMNp250 AF511152 AAACCAATACACAATAGGGACG GGTAACAAAGGGAAGCTGACC 62 7 S0334 0.43 7.72 182

UMNp251 AF511153 AAAGCATGGCTCAAGGGTC ACTTCGTATTGTGCATTTGGG 62 10 SW1626 0.23 12.49 148

UMNp252 AF511154 ACCCCCCCTAAGTAAATTAGTG TTCTTTCATGGGACTTTGTGC 58 15 SW1530 0.28 10.58 122

UMNp254 AF511155 CCCTTTCATCATGTGTCGTG CTGGTGGAGGGCTCAGTG 58 13 S0215 0.03 17.86 140

UMNp255 AF511156 TCTCTCCTTCACTGTCTCTCCC AGCTGACTGAGCTTAGCATGTG 62 X SW980 0.8 3.42 175

UMNp256 AF511157 CCTTGACCCATTTTTCAAGG GAAATCTCTGTGCCTGGCTC 58 1 SWR702 0.49 6.61 142

UMNp258 AF511158 TCATAACAAGGCCAAATCCC GCCTGTGAGCTAATAAAACCG 62 16 SW 1897 0.41 7.91 147

UMNp259 AF511159 TCCACACATCTCTCCTGCC AAACATCACTGTTGACCCTGG 62 11 SW1460 0.62 4.76 131

UMNp260 AF511161 TTGCATGCTGGCCATAATC TCCCCAAGGAGTCAGTATTCC 60 6 SW973 0.31 9.78 191

UMNp261 AF511162 CTTAGTTTGCAGCACCCTCC TCCTGTACATGCAGCCACAC 62 14 S0007 0.98 2.30 150

UMNp262 AF511163 GTTTATTCCAGGGCACATAAGC ATGAACATTTGGCCATTTTTG 58 3 SW2021 0.49 6.92 137

UMNp263 AF511164 TTAGCAACATTTGAAAATACAGACC TGATAAGGATGTGTAGGATTGTGG 62 15 SW1118 0.42 8.18 145

UMNp265 AF511165 AAAGGCAGGAAAGACCGTG GATCAACCCCTCATCAGCAG 62 13 SW1378 0.25 10.70 133

UMNp266 AF511166 TACCATAATGCCACAACAGGG AAGGACCAGATTCGTTGGG 58 1 SW373 0.65 4.35 170

UMNp268 AF511167 TCTCTTTTAGGGCCTTTCAGC CAGGTGAGGCCAAGAAAAAC 62 11 SW1377 0.29 10.55 158

UMNp270 AF511168 CTGGCTCTAACTCCCATCTCC CTCCAGCTCTAAGGGTGTGC 62 6 SW446 0.18 13.53 171

UMNp272 AF511169 GGGAACAGCCCTATTTACTGC CAAGGAGCTTGAAGAACCATG 62 14 SW2612 0.08 19.53 124

UMNp274 AF511170 ATTCGTTTCCGCTGTACCAC TTCACCTCCACCTCCATCTC 58 16 S0077 0.43 7.51 141

UMNp275 AF511171 GAGGTAGGCTGTGAGCCTTG CTATGGTTTTCTTTCTGGTGCC 62 13 SW2196 0.47 6.36 148

UMNp276 AF511172 CCAGAGCTGTCCCTTCCTC CTGTGCACTGTGGCAACTG 62 14 SW1556 0.52 6.24 147

UMNp279 AF511173 GCTCTGATTGGACCTCAAGC AGGACGCCTTTCTGGGTC 62 3 S0335 0.17 14.51 166

UMNp280 AF511174 CTTGTCTTGTTGCTTTGAGGG CCCATGTTGCTGTGGCTAC 62 8 SW527 0.35 9.27 176

UMNp281 AF511175 CGACATTAGGAAAAGGGAAGG GCTCTGGCATATACTTGCAGC 62 14 ADRA2 0.17 13.81 189

UMNp283 AF511176 CAGAAACTCTCAGTGAACAGAACTG GAGAAAAATATCAAAAACTTTTGGC 62 13 SW 1876 0.24 10.88 140

UMNp286 AF511177 GTCTTTTCAACACATACACAAACAC ATGACTGCCATCATCAAACG 62 3 IL1B 0.43 7.82 107

UMNp287 AF511178 GGAGGCCTTACTGTAAATTCCC CATACACCGTGGGTGCAG 62 18 S0062 0.68 4.45 117

UMNp288 AF511179 GTGGGCAACAGTGAAACATG ATGGTCCAGTGACTCTTGGG 64 3 SW236 0.22 12.90 150

UMNp289 AF511180 CTCTATTCATCCAGCCTCCG GGTGCAGCCAAAAGAGAGAG 62 15 SW1339 0.53 4.87 178

UMNp292 AF511182 TCACAAATGGGAGGACTTCC GTGTCCATTGACAGATGAATGG 56 9 SW2401 0.07 18.08 119

UMNp293 AF511183 TTCACATACCTCCTCCCACC CAGGTGTGTGTATATGCCCG 56 3 SW833 0.84 3 141

UMNp296 AF511184 CAGGGAACTCTCTTCAATATCC ACATTTGATTTCCAAAGTTGTG 58 3 SW487 0.68 4.13 140

UMNp298 AF511185 GCTATAAGAACCGCCTCATTG TGTGTGCTGCTGAAGCATG 58 3 SW730 0.66 4.41 166

UMNp299 AF511186 GATCTCCACCCCTCTACAC CTTTTACCCCCTCTCCCG 56 14 SW1631 0.17 13.94 107

UMNp300 AF511188 AATAGAGGCCCCTGAGGAAG AAAGGTCATGTATGATGTCCCC 58 3 SW2047 0.51 6.20 169

UMNp301 AF511189 TGAGCAAAGCAAGTGTGGAC TTGTTTCATTGCTACTTTTTCTCC 60 7 NFKB 0.12 17.27 154

UMNp303 AF511190 ACTTGCTGAGCCACCAGG CCTCAGCTTCCATTCTGCTC 60 13 MX1 0.46 5.91 171

UMNp305 AF511191 ATGGCAATACTTTGCTGTTCTG TCCATACGCTGCAAATGC 58 2 SW240 0.74 3.85 132

�2002

Intern

ational

Society

for

Anim

alG

enetics,

Anim

al

Genetics,

33,

468–4

85

Brief

no

tes4

79

Page 13: Mapping of the porcine alpha-fetoprotein (AFP) gene to swine chromosome 8

Table 1 (Continued)

Marker

GenBank

accession no. Forward primer Reverse primer Temp. Chr.

Linked

marker

Distance

(Ray)

LOD

score

Fragment

size (bp)

UMNp306 AF511192 GATCAATTTTTCTTCTGGCACC TTGTAAGGAGAGGTCGCCC 58 18 SW1808 0.52 5.94 222

UMNp308 AF511193 AGTTGGGCGTTTCTGCTG GATCAGCCCTGTCTCCACAC 58 16 S0105 0.81 3.36 140

UMNp309 AF511194 TGCATAAAGCAGACTGTGCC CTTCAATATGCTGCAGGTGC 60 6 S0003 0.25 10.70 150

UMNp321 AF511197 AGCTTTGAAGTACTCGGTGTTT CCTCCATATGCTGCAGGG 54 8 S0144 0.26 11.39 123

UMNp322 AF511198 CCACTACCGACCACCTCG TCTGAGATGATTTTCCTCCTCC 54 1 SW1301 0.51 5.75 186

UMNp323 AF511199 TTTGCAAAATACACACATGTGC TCCAGTCACCCCCTTTACTG 54 4 SW841 0.55 5.31 110

UMNp327 AF511200 AGATAATAGTTTGCAGGGCCC GAGGGGCCTCAGATGCTAG 54 6 S0087 0.53 6.13 154

UMNp328 AF511201 ATGGAGACCCCATTTCACTG ATCTGGCAGTGCTGAATCAG 54 7 SW632 0.84 3.03 132

UMNp329 AF511202 AAGAATTTCTGGATGCGGAG AAGGAGAGAGAGAAAGAGTGCG 54 8 SWR1101 0.57 5.47 147

UMNp330 AF511204 GATTCTGGGTAGAACCCATGG TATTTCTATTTGCCCTGGCTG 56 1 SWR817 0.74 3.93 140

UMNp331 AF511205 TACCAGCCTCCTTGCTGG CCCTATACACATGCACGTGC 62 3 SW1443 0.32 10.19 108

UMNp332 AF511206 GGAAAACTTGCTCTTTCCTGG TGATGTCTGTGTGTGCACATG 56 3 SW836 0.12 17.09 120

UMNp333 AF511207 CTCTTAAATACAACCGCGCC TGAGCCTTTTTCAATAAAATGG 54 1 SW1332 0.41 7.74 245

UMNp334 AF511208 AATGCCCATAGTACCCAAAGC ATCCTTGTTGCTCCAAATGG 60 X SW1522 0.47 6.70 202

UMNp335 AF511209 TGCACCACAATGGGAACTC GAAGCCTATACATGCATACGTG 54 5 SW378 0.54 5.70 150

UMNp336 AF511210 AAAATCCCTCCCTAAGAAGGG TTTTGTTCATTGGGACAACG 54 8 SWR1101 0.35 9.20 195

UMNp337 AF511211 CCTTCCTTCTGCTGACTTTAGC GGTGCAGCTCTCAAGAGACC 54 18 SW1808 0.46 6.91 149

UMNp338 AF511212 TAAAAAGATGTCACCACGCG TACTTGTCTCCTCAGTGTCGTG 54 6 SWR1384 0.31 8.93 115

UMNp339 AF511213 TAACCCGATGCTCCACAAG CATATGCCACAGGTGCAGTC 60 3 SW2021 0.47 7.17 94

UMNp340 AF511214 ACTCCTCCCATCCCACCTAC CTTTGAAGTGTTACTTGGCCC 54 7 SSC2B02 0.15 15.85 174

UMNp342 AF511215 ATGGACATGGAGGAGCCTC TCCCTAACTGCCTGCCTG 60 10 SW920 0.67 4.36 104

UMNp343 AF511216 GAACTTCCCTATGCCCCG AACCACTCCCAAGCAATTTG 54 7 SW1354 0.28 10.36 143

UMNp344 AF511217 ACTTCCATGTGCCCCTAGTG CAGTTCACACAAAAATGTGTGC 62 16 SW2411 0.3 10.53 173

UMNp345 AF511218 ACACAGTCAAGGTCAAGTGGG CAGAAATCATCCTCAGAAGCG 54 1 S0122 0.68 4.19 169

UMNp346 AF511219 TCTCTGGGCAGAGTGTGTTG TCCTTACACTTAAAGCTGAGCC 58 13 S0084 0.41 6.85 140

UMNp347 AF511220 TTTCACCTCTTATTGCTGGTTC AAACAAGTCGCAGGAGAATAGC 60 2 SW1602 0.18 13.20 108

UMNp349 AF511221 CCCTTCTATAGTGCCTCTGATG GAGCAGACATAGGCAGGGAC 60 3 SW2532 0.17 14.37 126

UMNp351 AF511222 TCAGTGTCACCCCTCATCAC TCTCCTTGACCTTCTAAGCACC 58 14 SW1321 0.57 5.66 127

UMNp352 AF511223 ATAGATAACCAGAACACAGGCC TTCAGAGCCTGTGTGGTGAG 58 X SW2470 0.33 9.85 156

UMNp353 AF511224 TCTAGGAGTCACCCCCCAG ACCACTACACAGCTTTGTGGG 58 6 SW492 0.68 4.40 176

UMNp354 AF511225 GACCCACAGGCTGAGAAAAG TCTAGGTCAGCCCTGCATG 56 14 SW210 0.31 9.78 151

UMNp355 AF511226 GGGCCTCATGATGGACAG GTACCCATTGCACCAGCC 56 3 SW828 0.63 4.84 157

UMNp356 AF511227 GGTGTTGCTGTGGCTGTG GGTTCAGTTGATATCCTCCAGC 58 13 SW2440 0.23 11.34 157

UMNp357 AF511228 GTACCTCAGTCAAGCTTCCCC TAGGATACGGCGACCAGC 56 4 S0161 0.71 4.04 91

UMNp358 AF511229 AAGTCATTTCACACCTCTGTGC CGTTGCAGTTACTATTCCAAGC 60 13 SST 0.35 7.56 148

UMNp360 AF511230 AACCAGGCAAATAAAGCGC TGAGTTTCTTTTTGCATTTTTG 54 15 SW2072 0.3 10.39 113

UMNp362 AF511231 GATGTGTAGCTGATTTGCAATG GACAAGAATCTGAAAAGGAGCG 60 6 SW1202 0.27 10.82 123

UMNp363 AF511232 TAGGCAATGAATCAGGTTTTTG AAGGGCTAGGCCATCAGG 54 4 S0107 0.24 12.53 164

UMNp365 AF511233 TGTAAGTGTAGGCCGGCAG ACCTGAAAAGGAACTCAGGATG 60 8 SW1924 0.64 4.69 170

�2002

Intern

ational

Society

for

Anim

alG

enetics,

Anim

al

Genetics,

33,

468–4

85

Brief

no

tes4

80

Page 14: Mapping of the porcine alpha-fetoprotein (AFP) gene to swine chromosome 8

UMNp366 AF511234 TCCTCACTTGCTCCAGCC TGCATATGCCACAGGTATGG 60 X SW1943 0.41 8.10 200

UMNp367 AF511235 GGTGGATGGTCAGATGCC CTCTGTCAATTGCAAGCTGC 60 1 S0320 0.11 15.41 147

UMNp369 AF511236 CTGTGGCTGGGGTGTAGG GTGTTTGCCCTGTTTTCCTC 64 15 SW15 0.31 9.77 239

UMNp371 AF511237 TTAACACAACCAAAAACCCTTG TGACAGTGCCAGTTCTGAGC 60 11 S0071 0.77 3.58 132

UMNp373 AF511238 TTTGTTCAGCCTCTATGCCC ATTTTGTTTTGTTTGTTTGGGG 54 1 S0357 0.89 2.81 108

UMNp374 AF511239 CCACCAGGGAACTCCTGG AGCAATTCACACTTTGTGTGTG 60 X SW1346 0.19 13.93 124

UMNp376 AF511240 TCAATTTAACTCATTAAGCTACACAC TTCATTGAACCTTAAGACTTTTAGTG 54 14 SW2593 0.28 9.61 101

UMNp378 AF511241 GCTTGAAGAAAAATGCTCAACC TTGTAAATTGCTTCCTCGTTTG 54 9 SW539 0.65 4.61 122

UMNp379 AF511242 TGATTCAATCCCTAGCCTGG ACACCCTGAATATGCATCTGG 60 X SW1325 0.09 18.24 192

UMNp380 AF511243 TTTGCAGGGAAGGTGAGC GATCCCCCAGCTCTCAATTC 54 1 SW1515 0.1 16.78 148

UMNp381 AF511244 CCGATTAGACCCCTAGTCTGG CAGATTAGCGTTCCCTGTTTG 60 8 sw2521 0.53 5.94 161

UMNp382 AF511245 AGGTCCCTCGACAGGAATG CGTTATTTCATTCCTTTTTTTATAGC 62 3 SW2527 0.16 15.36 169

UMNp383 AF511246 GGGAACCTCCCATATGCC CCCAGAAAAAGGGAAGTAAGG 62 2 SW1879 0.29 10.43 149

UMNp385 AF511247 CTGCAGCTCTGATTCGATACC CCCAGATATCAAACCCATGC 62 X SW1565 0.22 12.79 181

UMNp386 AF511248 TGGCTGTGAAGTAGGCTGG CTTTGCCTGGAATGCTCTTC 60 2 SW834 0.29 10.45 140

UMNp388 AF511249 GATGCCTGAGGATTTTCCAG CTTTGCTATTCTGCATCACTGC 54 5 AC02 0.37 8.42 176

UMNp391 AF511250 CTGTAGTCTTTTGACAGCAGAGTG TAAGCACAGTTTGGCATTGC 54 5 SW1987 0.05 19.94 193

UMNp397 AF511251 AAATGAATCCTTCGCAGGG GAGAAGGGCAAGCATAAATATG 56 13 SWR2114 0.19 9.63 126

UMNp398 AF511252 AAGTCCTTACAACAGCCAGAGG GACCAGAGTGAACAAAGGAGAG 56 6 DGC 0.14 16.21 119

UMNp400 AF511253 GGCATAAAAACAAGCTTGGG CACCCCCAACAAATAACCAC 58 4 S0097 0.42 7.90 139

UMNp404 AF511254 AAATACATACCCACACGTGAGC TCACTCGGGTTTCTTTTCTCC 58 8 SSP1 0.08 16.66 99

UMNp405 AF511255 CAGAGTTCACCTCTCCCTTTAC TCCTTGCTGAGTCCCAGG 62 5 SW439 0.29 10.30 146

UMNp407 AF511256 TCCACGCTCTGAACTTTGTG GATGGTTCGCCTGTCGAC 56 16 S0077 0.32 9.72 120

UMNp408 AF511257 ATAGAAGGCACACCAGTGGC AGGACCTGGACCACAACATC 64 17 S0332 0.22 13.32 136

UMNp409 AF511258 AAATCCAGTTAGAAAATCTGGAGG TGACTAGGCTTAAATCTCAAATCTG 62 X SW1522 0.54 5.67 149

UMNp411 AF511259 CACATACTTCTCCCTCCCTCC CAGCTCCTGCTGTTCTACCC 62 5 SW1071 0.45 7.52 144

UMNp413 AF511260 TGCTCTGAACTTCCCTTTAAGC CCTCTAGCCTGGCAACCTC 60 4 SW1707 0.85 2.94 122

UMNp414 AF511261 CGGAGAAGGTGACCTTTGAG ACCCTGTGCCCCTAAACTG 62 6 S0333 0.09 15.99 135

UMNp415 AF511262 TGGCTGAATAATATTCCTTGGG TAGCTAAGACATGGGGACAATC 62 13 SWR1008 0.85 2.69 144

UMNp418 AF511263 CCACATCAAGCTGCTATAGCC TTGACCCTAGCCTGGGAAC 62 14 SW2508 0.62 4.71 190

UMNp419 AF511264 TAAAGATTGCAGAGACTCAGCC AGGTAGAAGTCTGGCTGTCAGC 64 13 S0075 0.18 12.96 138

UMNp420 AF511265 GGGGGTGTGGCTCTAAAAAG TAAATCTATGACTGGGCGGG 60 8 SW1924 0.7 4.13 149

UMNp421 AF511266 CCCTCTAATGTTGTTGCAAATG TGGAAGCAACATAAGTGTCCC 62 1 SWR1427 0.33 9.88 177

UMNp422 AF511267 CCACACCCAGCACCTTTC ACCTCCATATGCTGAGGGTG 62 7 SW263 0.16 13.99 158

UMNp423 AF511268 GTGCTAGGAGTACTCATTGCTACG GGTAAGTATAGATGCAAATGAGTGTG 62 17 ENDO3 0.1 16.78 133

UMNp424 AF511269 GGAGAGGCTTTAGGATTGCC AGTTGGCACCCAAATAAATTG 54 X S0218 1.39 0.59 191

UMNp425 AF511270 GGACTTAGGAGGGCAGGAAG CTGGCCTTGTCTCAGCAAG 62 2 SW2623 0.48 6.76 156

UMNp426 AF511271 TTTTGGTTGGAGACTTGAGTCC CCAATTAGACTCATAGCCTGGG 60 12 S0090 0.79 3.55 139

UMNp428 AF511272 AAGGCCAGGAATCGAACC TAAACGCCTAAGCCTATGTGG 62 3 SW2047 0.6 4.97 196

UMNp429 AF511273 ACCATCTGAACGTTGCAGG CTCCCGACTTATGTTGTGGG 56 X SW949 0.16 15.36 150

UMNp430 AF511274 GGCATTGCTGTGGCTCTG ATTGCCATAAAATGGATGGC 54 8 SW374 0.65 4.21 159

UMNp431 AF511275 TTCTTCTGGTCTACCTCAAGGC AACCTTTTCAGCTCTCGCTG 54 1 S0354 0.85 3.03 190

UMNp433 AF511276 CTGCTCGGGGTTTTGTCC ACACGCGTGACGAAACTG 62 X SW2588 0.53 6.05 103

�2002

Intern

ational

Society

for

Anim

alG

enetics,

Anim

al

Genetics,

33,

468–4

85

Brief

no

tes4

81

Page 15: Mapping of the porcine alpha-fetoprotein (AFP) gene to swine chromosome 8

Table 1 (Continued)

Marker

GenBank

accession no. Forward primer Reverse primer Temp. Chr.

Linked

marker

Distance

(Ray)

LOD

score

Fragment

size (bp)

UMNp435 AF511277 GCATGTGTTTTCATTTCGTTG GGGAACTCTGACTCCACCAC 62 13 S0215 0.03 17.98 148

UMNp436 AF511278 CAAAGGGGACGTGCAGAC GCCACAGCATGTCACAGC 62 6 SW122 0.15 15.24 114

UMNp437 AF511279 ACCTCAATAGGCTGCAGGTG ACTGCCATCCTAGTGGCTATG 62 15 SW1339 0.27 9.28 199

UMNp439 AF511280 ACAGTCAGGTTGAGAAGACAGC TTTTTGCACACTAATCACACCC 56 5 SW1071 0.59 5.25 133

UMNp440 AF511281 ACGGGAACTCCTATCACAGTG ATCTACCTTACCCATGGCCG 60 3 SW1066 0.18 13.67 195

UMNp441 AF511282 TGGGAACCTCCATATGCG CAGGGGAAAAACATGTCAGC 60 2 PTH3 0.09 18.96 150

UMNp442 AF511283 ATCCAAGCTGCTGAAGTTGG AAACATTTCCACAAGAAAATGG 60 8 SW368 0.22 13.24 103

UMNp443 AF511284 GAAAGGTAATCCCTTCTCCCC GATCTGGGGAAAGAAGAGGG 60 1 SW1828 0.13 13.74 144

UMNp445 AF511285 CCCAGCAATCTAATTCTCTTTC GGAAAAAATGAAGGCAGCTG 58 16 SW742 0.61 5.16 186

UMNp447 AF511286 TTTTTGTGCACAAACTTGTTTG AGGGGTGGTCTGAAAGCC 58 1 SW301 0.25 11.74 166

UMNp448 AF511287 TACAGCTCCGATTCAAACCC ACTTCCACAGCTAGGGGGAC 60 X SSC13B11 0.39 8.62 155

UMNp449 AF511288 GGCTGGCAGCTACAGCTC TACCCCGATATCTTCATCTTTG 60 11 SW1460 0.56 5.49 143

UMNp451 AF511289 GCTTTGGCTCTGGCGTAG TCCTACTTGCTGAAGAATGCC 58 3 SW828 0.69 4.27 168

UMNp452 AF511290 GTGACCTGGGGAGGTGTG GGGTGAGGAGCTCACATTTG 58 13 SSC24F05 0.09 15.43 118

UMNp453 AF511291 TCATTCTCTATCTCAAGATGCATG CTGAGGTACCTTTGCCTAGAGG 58 2 SW1602 0.24 11.08 116

UMNp456 AF511292 TCCATATGCCATGCATGC TTCAAGGCTTTTGCCGTATC 54 15 SWR1002 0.27 10.67 162

UMNp457 AF511293 AGACATGCACATACATATGCCC CCACTGGGCAAGAAGTCC 58 7 S0115 0.27 10.58 193

UMNp459 AF511294 ACCTCCATATGCTGTGGGAC ATGCATATTGCTGCAAATGG 56 9 S0095 0.35 9.16 187

UMNp460 AF511295 GCTCAATTTCATACCTAAAGCC GAAATGACATCTTTTCCTTGCC 60 10 SW 1829 0.34 10 185

UMNp461 AF511296 ACTGCTAACACAAGAAAGCAGG GATCCCTAATCACTCCTGTGTG 60 15 SW1262 0.56 5.45 119

UMNp464 AF511297 ATCAGTGGCTTCTCCCCC CAGAATGTATAGGCTTTTCCCG 60 4 SWR362 0.3 10.39 138

UMNp467 AF511298 ACCTCCATAAGCCACTGGTG CAAGGGTGCTGGATGGAC 62 1 SW1332 0.42 7.52 188

UMNp469 AF511299 CTGGGAACTTCTGCATACTGC AAAAAACCCACAAAAAAACCC 58 13 SW1378 0.91 2.62 174

UMNp470 AF511300 ATGGTAATAGTCAGAGCTCGGG AAGAAAAGAAAAATGGGCTTTG 58 2 S0226 0.28 10.20 119

UMNp472 AF511301 TGAAATAACTTCCCCTGACCC TCACTTGGTGATTAAGGTTTGG 58 15 SWR283 0.29 10.18 130

UMNp473 AF511302 AATTCAACCCCTAACCTGGG AGATGGCTCAGTTATGCTTTTG 60 4 SW1003 0.87 2.72 114

UMNp474 AF511303 CTATCTGACCCAGCTTGCAC CAGTCAATAGCAGCAGGCAG 60 7 SW2155 0.03 20.57 151

UMNp476 AF511304 TCTTTCATGTCTTTCCCATGC CAGGCTAGCCTATAGCATCCC 62 X SW2588 0.51 6.59 180

UMNp477 AF511305 TGCAAGCAGAGTCTTAGAGGG TCACCTTTTCCTCTTGGGG 60 4 SW286 0.5 6.60 198

UMNp478 AF511306 TGTCTGGTAAGTCCAAGACACG TAAGGCCTGACCCTTTGTTG 60 6 SW2052 0.1 16.49 186

UMNp479 AF511307 AACAGAGCAGAGCGTGTGTG GAGGAAGTAACTTGGCAGCG 60 6 SW322 0.07 19.48 100

UMNp480 AF511308 AGTGATTTCTGCCCAGGATG CCTAGGAATTTCCCTCTGCC 60 6 S0087 0.59 5.48 131

UMNp481 AF511309 AAAAACCCAAATTTGTTGATGG TCAAGATGCATGAACCATCTAC 60 1 SSC1F12 0.59 5.21 126

UMNp482 AF511310 AAAGGAGAACTCTCCACTGTGG AGGCTGACATGTACACGTTCC 60 16 S0105 0.04 22.63 122

UMNp483 AF511311 CATAGTCATGTGAGCCAATTCC GTTTGTGCTTCAAAGGAGATTG 60 5 SW1489 0.22 13.15 149

UMNp484 AF511312 CATTCATGTTTGCCACAGATG AGGAAGTTCAATGCAATGTTTG 60 1 S0122 0.62 4.77 169

UMNp485 AF511313 CCTCAGGCTCAGCTCTGC GTTGTCCGTGAGTCCCTAGC 58 7 S0102 0.2 11.84 188

UMNp486 AF511314 TTTCTTGTGGATTTTGTTAGGC TTTAAGTAAGGAATGCGCGC 60 1 SW2432 0.35 8.99 184

UMNp487 AF511315 CCTGTCATTTGCACATTTGC AATAAAATAGAGGGATGGCGTG 62 2 SWR2157 0.3 10.39 119

�2002

Intern

ational

Society

for

Anim

alG

enetics,

Anim

al

Genetics,

33,

468–4

85

Brief

no

tes4

82

Page 16: Mapping of the porcine alpha-fetoprotein (AFP) gene to swine chromosome 8

UMNp488 AF511316 TTCATATGCCGTGGGTACAC TCTACAGGCAGAAAATTCAACC 60 X SW2059 0.46 7.31 178

UMNp489 AF511317 AAGCACCATAGGAGAAGACTGG CTCGGAAGCAAGTAAGTGGG 60 3 SW2527 0.75 3.79 111

UMNp492 AF511318 TGGCCGTGATGTATGCTG ATCCTTTCAAGGCGTGTGTG 60 7 SW859 0.58 5.28 150

UMNp493 AF511319 TTGCTGGCTCTCACCCTC TTTGTCAGGCCTTTGGTAGG 60 2 SW256 0.07 19.53 147

UMNp494 AF511320 CTGCCTGATTGGCACATTAG GGTAATGGGAAAGCCTAGCC 60 13 S0084 0 20.59 121

UMNp495 AF511321 AGGCCATCCCTAGGTTATTTG TCTTTCTTTCTCCGCCCC 60 15 S0149 0.44 7.73 112

UMNp497 AF511322 TTCGAACCAAGAAATCACTGG TTATGTGGCTTTTCTTCAAGTG 58 X SW949 0.87 2.93 107

UMNp499 AF511323 GGCTTGACTCTCCAGAGGC TGCAGACTGTCCCGAAGTC 60 14 SW510 0.27 11.32 129

UMNp500 AF511324 TGAGGCTATCACCTGCAGTG GACTGAACCCTTAACAGATGGG 60 7 SW147 0.41 8.04 206

UMNp502 AF511325 TGGCAAACGTTGCTTTAGG TAGGGAAATATCTGAAATCTAAAATG 60 13 SW1030 0.44 6.30 147

UMNp506 AF511326 CTACCCATGAAGAACACTCGG CTCCATATGCCACGGGAG 60 2 SWR783 0.23 12.01 150

UMNp507 AF511327 ACAAACAAACAAGACCGTTTCC ATCAGCAGATTTTGATGGGC 60 3 SW590 0.61 4.67 219

UMNp509 AF511328 AAACTACATCCATTCTCTTGGG GTTGTGCCAGTTACACTTCTGC 60 1 SW65 0.41 8.10 138

UMNp511 AF511329 GATCACTGTGTGAGTGCATGC AACAGAGTTCCATTTTGCGG 60 15 SW1683 0.69 4.22 96

UMNp513 AF511330 TTCTCTCTTGCAAATGCGC TCACCAGGAAGAGGATGAGG 60 2 SW240 0.14 15.81 135

UMNp516 AF511331 TACAAAACTCTATTCTAGCAGGATTC AATAACTACAATTACCATTTTGGCG 58 6 SW973 0.77 3.62 149

UMNp518 AF511332 AAAAGGGCCTCATGGACAG ATATACGTACCCACCATTGCG 60 6 DGC 0.45 7.22 166

UMNp519 AF511333 GCCAGTTCTCACATGTGCAC AGAAATAGTTTTCCCTCAGCCC 64 10 SSC10G07 0.41 8.02 163

UMNp522 AF511334 CAACAAATACACACACGCACG CCCTCAGACTCAGAAGGTGG 62 1 SW1621 0.46 7.33 195

UMNp523 AF511335 TGGCTCCAATGTCTAGGCTC ACCACGTGCATGTATATGTTTG 62 14 SW245 0.13 16.94 150

UMNp524 AF511336 AATAAAGACCAAATCCTGAATGTG CCCCTGATTTATAGTGATTCAGG 60 15 SW1989 0.11 15.66 179

UMNp526 AF511337 ACAGAGCCCAGCAAGTGG TCCTTTAAATATGGTGTGCCTG 60 1 SWR817 0.6 5.29 112

UMnp527 AF511338 TGTCCCTAGAAACCTGGACG ATTTGCTGAAACTGAAGGATTG 60 4 SW286 0.4 8.29 149

UMNp528 AF511339 CCAATTGGAGTCATTTCCTAGG CAAAAACATGCACTCTGAGAGG 60 1 SW1514 0.59 5.24 150

UMNp530 AF511340 CTGTGGCTGTGGGGTAGG TGGGGTTTTCCTATGCTTTG 54 14 SW1527 0.23 11.24 140

UMNp531 AF511341 GGTGCAGCCCTCAAAAGAC TACGTGGACAGCTAAAAATTGC 62 10 SW497 0.34 9.58 198

UMNp534 AF511342 GGGAAGTTCAGAGCAATACAGG TGATTTCCTTCCTTCTACTGGC 58 12 SW62 0 193

UMNp535 AF511343 TCCAGGAACTATCTCCACGG TTTCCTTCGGGAACATTAACC 54 12 S0106 0.65 4.35 125

UMNp537 AF511344 GGCTACAGCTCCGATTTGAC TCATCTCTGGAGGTGGAACC 60 8 SSP1 0.11 15.92 147

UMNp538 AF511345 TGTCCACCAACAAACCAATG TCTTTTCATGTTGCTGAAAATG 60 5 SW1071 0.27 11.67 149

UMNp539 AF511346 CAACGTTGCTGTGGCTGTAG TTCTGGTTTATGGTTCCCATG 60 13 SW1407 0.49 6.52 152

UMNp540 AF511347 ATCACCTCCGCCTTCACC TTTCAAGCCTCAGCGGAC 58 2 SW1602 0.43 7.43 140

UMNp541 AF511348 CCTTCCCAGATTTGCTCTTG TTCTATAGGTGTTATTGAGCACTAGG 54 15 Sw315 0.13 14.96 209

UMNp544 AF511349 ACCCCAATTATTTTTTTCCTTC ATTCAGAATGGATAAGCAATGG 54 3 SW2532 0.71 4.17 287

UMNp545 AF511350 GAATATGGTATGGTTGGAATGC CTTGCTCTCATACAGCAATCTG 60 16 SW1035 0.94 2.56 182

UMNp546 AF511351 CTACTCCAGTGGTGTGGTTTTG ATTAATCATGTAGCAATGGGGC 54 9 SW174 0.13 15.71 173

UMNp547 AF511352 TTGAATGTTGCTCAAATCATCC TCCACCTCTTGGTCTTACGG 56 11 SSC6E09 0.55 5.77 120

UMNp548 AF511353 TCCAAGTTAGACTGCCTGCC ACTGCTGCTTATTTCTCAAGGG 60 15 Sw315 0.28 10.72 169

UMNp550 AF511354 TCCCAACTGAGGGTGACTTC CTGTAACACGTGCGCACAC 54 13 S0222 0.18 10.32 155

UMNp551 AF511355 ACCTATGTTGCTGCAAATGG GCCAGGATGTGGAAAAAATG 60 9 SW944 0.58 5.70 172

UMNp553 AF511356 ATCCTTACCTGCTCCACACG AGGTAGAGCTGAAACTGTTGGC 54 5 SW1987 0.4 8.15 163

UMNp554 AF511357 ACCTGCAGCTCCTCTAAATCC TAGCTTGGGAACTTCCATATGC 60 X SW2048 0.26 11.60 146

UMNp555 AF511358 CCTCTATATGCCGCAGAAGC CTATAGCTCTGGTTGGACCCC 60 4 SW841 0.7 3.82 268

�2002

Intern

ational

Society

for

Anim

alG

enetics,

Anim

al

Genetics,

33,

468–4

85

Brief

no

tes4

83

Page 17: Mapping of the porcine alpha-fetoprotein (AFP) gene to swine chromosome 8

Table 1 (Continued)

Marker

GenBank

accession no. Forward primer Reverse primer Temp. Chr.

Linked

marker

Distance

(Ray)

LOD

score

Fragment

size (bp)

UMNp556 AF511359 TGTAGCTCTGATTGGACCCC GTCCCCAGCATTCCTAACTG 60 2 SW1408 0.32 9.43 157

UMNp557 AF511360 AACTCATCATTTGAGGGATGC AAGGCTGGGAACTCCCAC 55 1 S0155 0.74 3.88 200

UMNp558 AF511361 CTCTTTTATAAACTGTTGCCATGG AAGCAGTAAACGTGTGTATCTTATTG 54 8 SW1905 0.12 16.91 153

UMNp559 AF511362 CTTCATTAGCCATCAGGGATG TCCATCCCCAACAGTGTATG 54 7 S0101 0.76 3.63 153

UMNp562 AF511363 TCGGGTTTGTTACTGTTGAGC TCCACATGTCTCGGCATG 60 5 SW1468 0.18 14.47 149

UMNp564 AF511364 CTGAAAATTGGTAGTGGGGG AAGAAGGTACCTGGAGTCCTCC 56 2 SW747 0.07 18.69 105

UMNp565 AF511365 TGTAGCTCTGATTGGACCCC CCTCCAAGAAGAACCAGCC 64 6 SSC8E02 0.32 8.61 200

UMNp566 AF511366 GATCCTGAAAGTGCGCACA CCAGGTGATGCCTATGGC 54 10 SW1894 0.16 13.56 114

UMNp569 AF511367 TGGTTAGGAAAGTGCCAACC TCATGAAAAACTGTTCATCTGG 60 16 SW1897 0.46 7.13 134

UMNp570 AF511368 TGCAAAGTTGTATTTGTTTCTGG AAAAGAATCTGAAAAAGGAGGG 54 6 SW2415 0.22 12.53 127

UMNp571 AF511369 AACTGGGATTGTTCTGTGTGC CCTTAGCAGCTCCAGACAGG 58 13 SW1056 0.23 10.53 178

UMNp572 AF511370 AAGTCTTTTCACCACGTGCC TGAGGGGGTAGGATGGAAG 54 15 SWR283 0.48 6.69 107

UMNp573 AF511371 GAGACACTCAAAGGCAAGGC CTTCCTCTGCTCTTCACATGG 64 1 S0122 0.02 22.72 149

UMNp577 AF511372 AAAGCGAGAGCAAGAACGAG AGCCAGGGACAATTGTATGG 54 X SW2470 0.16 15.29 173

UMNp578 AF511373 AAAGCGCAAAGCCTAAGTAGG TCCATACTCAATCATCCAGGC 54 2 SW766 0.91 2.44 194

UMNp579 AF511374 CTAAACAGATGTCAAGGGAAGC GCTGCAGTTCTAATTCAATCCC 64 6 SW1355 0.46 7.19 150

UMNp583 AF511375 GACCCTATTTCCCCATTCTTC TTCATCAGCCAAGTTGCAAG 54 3 S0002 0.57 5.43 199

UMNp585 AF511376 CAAAGCCAAATCAGGTTCTACC AGTCATCAGTGCAGCTGTGG 54 X SW1411 0.3 10.24 199

UMNp586 AF511377 GTGACTTTCTCCTCCCATTCC GGTGGGGAGTCGCTACATC 54 5 SW1383 0.23 13.15 150

UMNp587 AF511378 GTTGCTTTCTCCACGGTTTC CGATGTTGATGAACACGTACG 54 14 SW6 0.39 8.43 167

UMNp589 AF511379 CCTCCATATGCTGCAGGTG AACTTCCCCAGTCCATAATGG 62 9 SW511 0.02 24.16 208

UMNp590 AF511380 ATGCAGAATGAATTGTGAGGG CAAAGCAATACAATGAATGTGC 62 13 SWR1008 0.37 7.39 195

UMNp591 AF511381 CACATGTAGCCGGTATGGC CTTCCATGTCTTGGCTATTGC 62 4 SW589 0.09 17.98 234

UMNp594 AF511382 AAACCTCCATATGCCGAGG TCAAGGTTGAGTCTAGGGTCTG 62 14 SW104 0.68 4.43 141

UMNp599 AF511383 AAATAATGTTAGTTTCCCAAAAGTTC TTTTTTCTCTGAAATCCTTAATTCC 54 10 SWR158 0.15 15.69 135

UMNp601 AF511385 CTGTAGCATAGGTCACAGCTGC TTTGGAAACTTTGGTTTTTCTG 60 16 SW1454 0.6 5.08 291

UMNp602 AF511386 TGGAGGCAGACAGATGACAG GTGGAAAAGTGCATGGCAC 60 7 SW1083 0.4 8.52 176

UMNp603 AF511387 GATCCCCTAGGGACACAGC GGTGTGTGTCACCTCACAGG 64 7 SSC12B09 0.35 8.99 172

UMNp606 AF511388 CACATTCAAATTGGACCATCC CAGTCATTCTGCTGTTAATGGG 64 4 S0301 0.55 5.88 164

UMNp610 AF511389 CTTTGGCTCAATCTCATTCATG TGGGCTTTTGAAAATTTAAATG 60 2 SW1602 0.14 15.02 187

UMNp611 AF511390 GCTCCAGTAAAGGCGCAG TGGTTCTGGGAGTTAATGGC 60 X S0218 0.91 2.05 178

UMNp612 AF511391 AATTTGACCCGTAGCCTGG CATAGTTTTCCTAGGCCTGTGG 64 7 TNFB 0.09 18.62 166

UMNp614 AF511392 TGAACATGGAAATGAAGACACC ACAACAAAGTGATTCGGTTTTG 54 6 SW1355 0.49 6.79 115

UMNp615 AF511393 AGCCTGAGAACTTCAATATGCC CTTTCTTCTGCTCATTCGGG 64 17 SWR1120 0.25 10.81 164

UMNp616 AF511394 TTCGGAGCGTCTGTACTGG CAGCTTCTTGAAAACAGGGG 60 1 S0331 0.76 3.70 192

UMNp630 AF511395 GGCCCAAATGTTATTCATGG GAACCATACAGAGCACTGATGC 54 16 SW1638 0.62 4.92 192

UMNp632 AF511396 CAGGAAAGTCCCTATGAAGTGG TGGCTCAGCACTTCCATTC 54 1 SW803 0.05 19.02 189

UMNp633 AF511397 TAAGCAACAAATTCCTACTGTGC TGGTATCCAGTAAACTGATTAGTTG 54 10 S0038 0.05 18.61 146

UMNp634 AF511398 TTTTATCTCCTTGGAGAGGCC TCAGTTTGAAAGGGCCAGTC 60 8 SW1679 0.23 13.15 190

�2002

Intern

ational

Society

for

Anim

alG

enetics,

Anim

al

Genetics,

33,

468–4

85

Brief

no

tes4

84

Page 18: Mapping of the porcine alpha-fetoprotein (AFP) gene to swine chromosome 8

UMNp640 AF511399 TATGCCATGTGCGTGGTC ACAAACTGCACCACAGAATAGC 60 3 SW1327 0 23.90 111

UMNp642 AF511400 CACATGTCACAGGTGCAGC ACAAATCCAACCGTTACCTCC 60 X SW1411 0.09 18.21 191

UMNp645 AF511401 CAAAGTCTCCAGGGAACTTCC CAAGACCTTGAAAAGGCTCG 60 2 SW240 0.96 2.34 188

UMNp646 AF511402 ATTCTTATCTGCACTGCCTGC GCCACATTCTGTATGCCATG 56 14 S0007 0.11 15.53 193

UMNp647 AF511403 TAGCACTCCTCCAAATAAATGG CTGAGCTCAGGCTGCAGAC 54 3 SW271 0.09 18.47 187

UMNp659 AF511404 CTCCATGCTAACGGCCTAAC TGGCATTGTCTCTTAACACAGG 54 8 SW1037 0.84 2.94 196

UMNp661 AF511405 CTTTTATGCTTCTGTCGCCC GACTTTCACGATGGAATGGG 54 6 SW1057 0.09 19.17 189

�2002

Intern

ational

Society

for

Anim

alG

enetics,

Anim

al

Genetics,

33,

468–4

85

Brief

no

tes4

85