Marine Regime Shifts Causes and Consequences

Download Marine Regime Shifts Causes and Consequences

Post on 27-Jun-2015

551 views

Category:

Science

2 download

Embed Size (px)

TRANSCRIPT

<ul><li><p>Marine Regime ShiftsDrivers and Impacts on Ecosystem Services </p><p>!!</p><p>Rocha, J.C; Yletyinen, J; Biggs, R; Blenckner, T &amp; G. Peterson</p></li><li><p>The Anthropocene </p><p>Social challenge: Understand patters of causes and consequences of regime shifts !</p><p>How common they are? Where are they likely to occur? Who will be most affected? What can we do to avoid them? What possible interactions or cascading effects?</p></li><li><p>Blenckner T, Niiranen S (2013) Biodiversity - Marine Food-Web Structure, Stability, and Regime Shifts. In: Climate Vulnerability, Understanding and Addressing Threats to Essential Resources (ed. Pielke R), Elsevier, 1570 pp</p><p>Science challenge: understand phenomena where experimentation is rarely an option, data availability is poor, and time for action a constraint</p></li><li><p>to assess co-occurrence patterns of the drivers and ecosystem services consequences that </p><p>can inform better managerial practices</p></li><li><p>Regime Shifts DataBase</p><p>Established or proposed feedback mechanisms exist that maintain the different regimes = hysteresis !The shift substantially affect the set of ecosystem services provided by a social-ecological system </p><p>!The shift persists on time scale that impacts on people and society</p></li><li><p>Mechanism</p><p>Exist</p><p>ence</p><p>Well </p><p>established</p><p>Speculative</p><p>Contested</p><p>Contested</p><p>Speculative</p><p>Well established</p><p>Mangroves collapse</p><p>!Thermohaline circulation</p><p>collapse</p><p>Fisheries collapse</p><p>!Marine Eutrophication</p><p>!Marine food webs</p><p>Arctic sea ice </p><p>Salt marshes to flat </p><p>tidal</p><p>Greenland Ice Sheet </p><p>collapse</p><p>West Antarctica Ice Sheet</p><p>Bivalves collapse</p><p>!Coral transitions</p><p>!Hypoxia</p><p>!Kelps transitions</p><p>!Sea grass transitions</p><p>Evidence type! Models</p><p> Paleo observation</p><p> Contemporary observation</p><p> Experiments</p><p> Other!Reversibility! Irreversible</p><p> Hysteretic</p><p> Reversible</p><p> Unknown</p></li><li><p>Methods</p><p>Tripartite network and one-mode projections: 13 Regime shifts + 54 Drivers + 26 Ecosystem Services </p><p>104 random bipartite graphs to explore significance of couplings: mean degree, co-occurrence &amp; clustering coefficient statistics on one-mode projections.</p><p>Regime shiftsDrivers</p></li><li><p>Drivers Network Cooccurrence Index</p><p>ssquared</p><p>Dens</p><p>ity</p><p>1.4 1.6 1.8 2.0</p><p>02</p><p>46</p><p>8</p><p>Regime Shifts Network Cooccurrence Index</p><p>ssquared</p><p>Dens</p><p>ity16 20 24</p><p>0.00.1</p><p>0.20.3</p><p>0.4</p><p>Average Degree in simulated Drivers Networks</p><p>Mean Degree</p><p>Dens</p><p>ity</p><p>23 24 25 26 27</p><p>0.00.2</p><p>0.40.6</p><p>0.8</p><p>Average Degree in simulated Regime Shifts Networks</p><p>Mean Degree</p><p>Dens</p><p>ity</p><p>9 10 11 12 13</p><p>0.00.5</p><p>1.01.5</p><p>Ecosystem Services Network Cooccurrence Index</p><p>ssquared</p><p>Dens</p><p>ity</p><p>1 2 3 4 5 6 7</p><p>01</p><p>23</p><p>4</p><p>Regime Shifts Network Cooccurrence Index</p><p>ssquared</p><p>Dens</p><p>ity</p><p>22 24 26</p><p>0.00.2</p><p>0.40.6</p><p>0.81.0</p><p>Average Degree in simulated Ecosystem Services Networks</p><p>Mean Degree</p><p>Dens</p><p>ity</p><p>12 16 20 24</p><p>0.00.2</p><p>0.40.6</p><p>0.81.0</p><p>1.2</p><p>Average Degree in simulated Regime Shifts Networks</p><p>Mean Degree</p><p>Dens</p><p>ity</p><p>10 14 18</p><p>0.00</p><p>0.02</p><p>0.04</p><p>0.06</p><p>0.08</p><p>0.10</p></li><li><p>Agriculture</p><p>Atmospheric CO2</p><p>Deforestation</p><p>Demand</p><p>Erosion</p><p>Fishing</p><p>Floods Global warming</p><p>Human population</p><p>Nutrients inputs</p><p>Sea level riseSea surface temperature</p><p>Sewage</p><p>TemperatureUpwellings</p><p>Urbanization</p><p>Arctic sea ice</p><p>Bivalves collapse</p><p>Coral transitions</p><p>Fisheries collapse</p><p>Hypoxia</p><p>Kelps transitions</p><p>Mangroves collapse</p><p>Marine eutrophication</p><p>Marine foodwebs</p><p>Salt marshes</p><p>Sea grassThermohaline circulation</p><p>Western Antarctic IceSheet Collapse</p><p>Food production related drivers, coastal development and climate change are the most important drivers and </p><p>they co-occur very strongly. </p></li><li><p>Soil formation</p><p>Primary production</p><p>Nutrient cycling</p><p>Water cyclingBiodiversity</p><p>Freshwater</p><p>FoodcropsLivestock</p><p>Fisheries</p><p>Wild animal and plant foods</p><p>Timber</p><p>Wood fuel</p><p>Feed, fuel &amp; fiber cropsClimate regulation</p><p>Water purificationWater regulationRegulation of soil erosion</p><p>Pest and disease regulation</p><p>Natural hazard regulation</p><p>RecreationAesthetic values</p><p>Knowledge and educational values</p><p>Spiritual and religious</p><p>Arctic sea ice</p><p>Bivalves collapseCoral transitions</p><p>Fisheries collapse</p><p>Hypoxia</p><p>Kelps transitions</p><p>Mangroves collapse</p><p>Marine eutrophicationMarine foodwebs</p><p>Salt marshes</p><p>Sea Grass</p><p>Termohaline circulation</p><p>Western Antarctic IceSheet Collapse</p><p>The most co-occurring ecosystem services are fisheries, biodiversity, nutrient cycling, water purification. </p><p>Many regime shifts in coastal ecosystems have impacts on aesthetic values and recreation. </p></li><li><p>Dem</p><p>and</p><p>Agric</p><p>ultur</p><p>eSe</p><p>wage</p><p>Defo</p><p>resta</p><p>tion</p><p>Urba</p><p>nizat</p><p>ionGl</p><p>obal </p><p>warm</p><p>ingFi</p><p>shing</p><p>Nutri</p><p>ents </p><p>input</p><p>sHu</p><p>rrica</p><p>nes</p><p>Ocea</p><p>n ac</p><p>idific</p><p>ation</p><p>Drou</p><p>ghts</p><p>Infra</p><p>struc</p><p>ture</p><p> dev</p><p>elopm</p><p>ent</p><p>Sea </p><p>surfa</p><p>ce te</p><p>mpe</p><p>ratu</p><p>reAq</p><p>uacu</p><p>lture</p><p>Irriga</p><p>tion </p><p>infra</p><p>struc</p><p>ture</p><p>Gree</p><p>n ho</p><p>use </p><p>gase</p><p>sTi</p><p>des</p><p>Surfa</p><p>ce m</p><p>elting</p><p> pon</p><p>dsSu</p><p>rface</p><p> melt</p><p> wat</p><p>erSt</p><p>rato</p><p>sphe</p><p>ric o</p><p>zone</p><p>Ocea</p><p>n te</p><p>mpe</p><p>ratu</p><p>re (d</p><p>eep </p><p>wate</p><p>r)Ice</p><p> surfa</p><p>ce m</p><p>elting</p><p>Glac</p><p>iers g</p><p>rowt</p><p>hCl</p><p>imat</p><p>e va</p><p>riabil</p><p>ity (S</p><p>AM)</p><p>Glac</p><p>iers</p><p>Turb</p><p>idity</p><p>Ther</p><p>mal </p><p>anom</p><p>alies</p><p> in su</p><p>mm</p><p>erLo</p><p>w tid</p><p>esPo</p><p>lluta</p><p>nts</p><p>Flus</p><p>hing</p><p>Urba</p><p>n sto</p><p>rm w</p><p>ater</p><p> runo</p><p>ffFi</p><p>shing</p><p> tech</p><p>nolog</p><p>yPr</p><p>ecipi</p><p>tatio</p><p>nIn</p><p>vasiv</p><p>e sp</p><p>ecies</p><p>Trag</p><p>edy o</p><p>f the</p><p> com</p><p>mon</p><p>sAc</p><p>cess</p><p> to m</p><p>arke</p><p>tsSu</p><p>bsidi</p><p>esFo</p><p>od su</p><p>pply</p><p>Wat</p><p>er st</p><p>ratifi</p><p>catio</p><p>nIm</p><p>poun</p><p>dmen</p><p>tsIrr</p><p>igatio</p><p>nAt</p><p>mos</p><p>pher</p><p>ic CO</p><p>2Te</p><p>mpe</p><p>ratu</p><p>reSe</p><p>a lev</p><p>el ris</p><p>eSe</p><p>dimen</p><p>tsDi</p><p>seas</p><p>eLa</p><p>ndsc</p><p>ape </p><p>fragm</p><p>enta</p><p>tion</p><p>Rainf</p><p>all va</p><p>riabil</p><p>ityEr</p><p>osion</p><p>Floo</p><p>dsFe</p><p>rtiliz</p><p>ers u</p><p>seHu</p><p>man</p><p> pop</p><p>ulatio</p><p>nEN</p><p>SO lik</p><p>e ev</p><p>ents</p><p>Upwe</p><p>llings</p><p>FreshwaterFeed, fuel &amp; fiber cropsTimberWood fuelWater regulationFoodcropsLivestockPest and disease regulationKnowledge and educational valuesSpiritual and religiousWater cyclingClimate regulationWild animal and plant foodsSoil formationRegulation of soil erosionNatural hazard regulationAesthetic valuesBiodiversityFisheriesWater purificationNutrient cyclingPrimary productionRecreation</p><p>In how many different ways can the drivers impact ecosystem services?</p></li><li><p>Bivalves collapseSea grass</p><p>Marine eutrophicationFisheries collapseCoral transitions</p><p>HypoxiaMangroves collapse</p><p>Salt marshesKelps transitions</p><p>Marine food websArctic sea ice</p><p>Thermohaline circulationWAIS Collapse</p><p>LocalNationalInternational</p><p>Proportion of RS Drivers0.0 0.2 0.4 0.6 0.8 1.0</p><p>WAI</p><p>S Coll</p><p>apse</p><p>Fishe</p><p>ries c</p><p>ollap</p><p>seM</p><p>arine</p><p> food</p><p> web</p><p>sSa</p><p>lt mars</p><p>hes</p><p>Arcti</p><p>c sea</p><p> ice</p><p>Therm</p><p>ohali</p><p>ne ci</p><p>rculat</p><p>ionM</p><p>angro</p><p>ves c</p><p>ollap</p><p>seSe</p><p>a gras</p><p>sCo</p><p>ral tr</p><p>ansit</p><p>ions</p><p>Hypo</p><p>xiaM</p><p>arine</p><p> eutro</p><p>phica</p><p>tion</p><p>Biva</p><p>lves c</p><p>ollap</p><p>seKe</p><p>lps tr</p><p>ansit</p><p>ions</p><p>Human Indirect ActivitiesBiogeochemical CycleBiodiversity LossLand Cover ChangeClimateBiophysicalWater</p><p>0 2 4 6 8 10Value</p><p>05</p><p>15Co</p><p>unt</p><p>A B</p><p>Climate drivers are common to all regime shifts but dont co-occur strongly, while strong co-occurrence is found in </p><p>biophysical, land cover change and biochemical drivers.</p><p>Managing regime shifts requires multi-level governance, but we can build resilience locally</p></li><li><p>Conclusions Key drivers cluster: food production, climate change </p><p>and coastal development </p><p> Key ecosystem services cluster: cultural services, biodiversity and primary production </p><p> Managing marine regime shifts requires coordinated actions across scales </p><p> Avoiding regime shifts requires addressing multiple drivers, shared drivers offer strategies for prioritisation and synergistic action.</p></li><li><p>Subscribe to our newsletter www.stockholmresilience.su.se/subscribe </p><p>Thank you!</p></li></ul>