marine sediments and sedimentary rocks

26
1 Marine Sediments and Sedimentary Rocks Interest in Marine Sediment Sediments reveal – Past climates – Ocean floor movements – Circulation patterns – Nutrient supplies – Ocean chemical history Prof. Rosenheim EENS/EBIO 223 Introductory Oceanography Rock Cycle 1. Sediments deposited 2. Lithification 3. Burial, compression 4. Deformation, melt 5. Re-crystallization 6. Tectonic uplift 7. Weathering and further deposition 1 2 3 4 5 6 7

Upload: others

Post on 18-Dec-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Marine Sediments and Sedimentary Rocks

1

Marine Sediments and Sedimentary Rocks

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Interest in Marine Sediment

• Sediments reveal– Past climates– Ocean floor movements– Circulation patterns– Nutrient supplies– Ocean chemical history

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Rock Cycle

1. Sediments deposited2. Lithification3. Burial, compression4. Deformation, melt5. Re-crystallization6. Tectonic uplift7. Weathering and further deposition

1

2

3

4

5

6 7

Page 2: Marine Sediments and Sedimentary Rocks

2

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Sedimentary Rock

• Deposited in horizontal layers

Strata (s. Stratum) –horizontal layers deposited on top of one another

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Law of Superposition

Sedimentary layers are deposited in a time sequence, with the oldest on the bottom and the youngest on the top.

Nicholas Steno

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Retrieval of Ancient Marine Sediment

• Drilling ships needed to access oldest marine sediments under sea – R/V JOIDES Resolution

Page 3: Marine Sediments and Sedimentary Rocks

3

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Retrieval of Ancient Marine Sediment

• Drilling ships now can theoretically drill to mantle – R/V Chikyu is a riser drilling platform

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Drill Ship Operations• Core through sediment layer

– Continuously pull core sections to the surface for analysis

• Find hole with sonar beacon– Ship uses thrusters for this purpose –

dynamic positioning• Rotary drill or Riser drill into

compacted, lithified layers below the sediment– Continuously bring core sections to

surface for analysis

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Sediment Coring

• http://www.iodp.org/coring-procedure/

Page 4: Marine Sediments and Sedimentary Rocks

4

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Marine Sedimentation

• Lithogenous Sediment– Generated from pre-existing rock material

• Biogenous Sediment– Originating from living organisms

• Hydrogenous Sediment– Precipitated from dissolved material in water

• Cosmogenous Sediment– Sourced extraterrestrially

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Sedimentation

• Energy dependent• Smallest grains in basins• Coarse grains nearer

coasts

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

From Sediment to Rock

• Lithification– Sediment compaction– Cementation

Figure: Dr. Bruce Railsback, UGA

Page 5: Marine Sediments and Sedimentary Rocks

5

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Sampling Lithified Marine Sediment

• http://www.iodp.org/deep-sea-drilling/2/• http://www.iodp.org/rotary-drilling/2/

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Core Analysis

• Retrieve core• Non-destructive analysis• Split• Measure and analyze

– Sample (one half)– Archive (the other half)

• http://www.iodp.org/core-analyzing-process/2/

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Sediment History

• What changes in sediment type ratios are there? (lithogenous vs. biogenous)

• How does biogenous sediment change through time? (biogenous)

• What evidence of impact sediments is apparent? (cosmogenous)

• How has ocean chemistry changed in the past? (hydrogenous and biogenous)

Page 6: Marine Sediments and Sedimentary Rocks

6

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Lithogenous Sediment

• Generated from pre-existing rock• Weathering, erosion, transport to ocean basin

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Lithogenous Sediment Deposition• Neritic deposits – continental margins and

islands, dominated by lithogenoussediment

• Pelagic deposits – deep ocean basins

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Lithogenous Sediment Sources

Page 7: Marine Sediments and Sedimentary Rocks

7

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Lithogenous Sediment Composition

• SiO2

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Lithogenous Sediment Transport• Water

– Terrigenous sediment transported in rivers

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Lithogenous Sediment Transport• Water

– Deposited in basins

photo: Lonnie Leithold

Page 8: Marine Sediments and Sedimentary Rocks

8

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Lithogenous Sediment Transport

• Air– Loess

• Wind blown dust• Finer material

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Quartz Distributions – Wind Transport

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Lithogenous Sediment Transport

• Ice– Calving ice sheets and

glaciers– Large, coarse fragments– Carried long distances by

icebergs

Page 9: Marine Sediments and Sedimentary Rocks

9

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Lithogenous Sediment Transport

• Ice-rafted debris

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Lithogenous Sediment Transport

• Ice-rafted debris– High rates of glaciation

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Lithogenous Sediment Transport

• Sea level change– Direct erosion of

vulnerable coastline– Transport out to sea and

deposition in basin

Page 10: Marine Sediments and Sedimentary Rocks

10

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Lithogenous Sediment Transport

• Volcanoes

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Lithogenous Sediment Transport

• Tephra layers

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Lithogenous Sediment Maturation

Page 11: Marine Sediments and Sedimentary Rocks

11

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Lithogenous Sediment Maturity

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Turbidites – From Neritic to Pelagic

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Turbidites – From Neritic to Pelagic

• Gravity transport – density current– underwater landslide

• Unique depositional record

Page 12: Marine Sediments and Sedimentary Rocks

12

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Turbidites – From Neritic to Pelagic

• Gravity transport – density current– underwater landslide

• Unique depositional record• High rate of speed

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Lithogenous Sediment

• Which ocean has the highest proportion of lithogenous sediments?

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Lithogenous Sediment

• Which ocean has the highest proportion of lithogenous sediments?

Page 13: Marine Sediments and Sedimentary Rocks

13

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Biogenous Sediment

• Sediment originating from living organisms– Foraminifera– Coccolithophorids– Radiolarians– Diatoms

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Calcareous Biogenic Sediment

• Ca2+ + CO32- CaCO3 (s)

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Calcareous Biogenous Sediment

• Calcareous Organisms– Foraminifera– Coccolithophorids– Pteropods

White cliffs of Dover (England) are made of chalk deposited in the Cretaceous Period. These cliffs are almost entirely made of coccoliths from ancient coccolithophorids.

Page 14: Marine Sediments and Sedimentary Rocks

14

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Coccoliths and Coccolithophorids

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Coccoliths and CoccolithophoridsCoccoliths

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Coccolithophorids

• Floating algae• Build coccoliths for protection and perhaps

light manipulation• Responsible for 25%CO2 sequestration by oceans every year

http://www.jochemnet.de/fiu/bot4404/BOT4404_16.html

Page 15: Marine Sediments and Sedimentary Rocks

15

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Coccolithophorids

• Dominant during Cretaceous Period– “creta” Latin for chalk

• Abundant in shallow inland seas• Warm and tropical

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Pteropods

Swimming sea snails, some form tine snail-type calcareous shells. These form a small part of calcareous sediment.

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Foraminifera

Page 16: Marine Sediments and Sedimentary Rocks

16

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

ForaminiferaForaminifera are floating and benthic protists (first ones –Greek for early life forms) . They form complex calcareous shells (tests) and use a cellular “net” to trap food. Those living in the surface of the oceans are normally symbiotic with photosynthetic algae.

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Foramifera

• Planktonic forams– Surface dwellers– Need and use light– Symbiosis– Tests fall to bottom

upon deathO.R. Anderson

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Foramifera

• Benthic Forams– Dwell bottom

sediments– Leave shells mixed

with planktic species upon death

Page 17: Marine Sediments and Sedimentary Rocks

17

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Foraminifera Records

• Many species are geologically short-lived, making them useful for paleontologist to date rocks

• Also useful for paleoceanography– Assemblages tell of climate change and

extinctions– Test (or shell) chemistry tells of global climate

change

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Foraminifera and Paleoceanography

• Cesare Emiliani –Father of Paleoceanography

• Sir Nicholas Shackleton – Emiliani’scounterweight

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Foraminifera and Paleoceanography

• Cesare Emiliani – isotopic change of oceans, recorded in foram tests, is related to temperature

• Sir Nicholas Shackleton – isotopic change of oceans is related to isotopic composition of oceans

• Answer – Both.

Page 18: Marine Sediments and Sedimentary Rocks

18

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Foraminifera and Paleoceanography

Whereas temperature probably played a large role in the isotope composition of planktic foraminifera, Shackletonmeasured benthic species which also showed change. We know that the deep oceans are fairly resistant to temperature change. Deep benthic foraminifera showing isotope variations meant that the isotope composition of the water had changed in concert with the temperature. More ice meant heavier values in the oceans. Cold temperatures meant heavier values in the oceans. Benthics vs. planktics offered a solution to this argument.

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Siliceous Biogenic Sediment

• Diatoms– Planktonic– Photosynthetic

• Radiolarians– Planktonic– Heterotrophic

• Siliceous Ooze

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

DiatomsPhotosynthic plankton with two halves (frustules). Like radiolarians, these collect in areas of high productivity.

Page 19: Marine Sediments and Sedimentary Rocks

19

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

RadiolariansNoted for their beauty, are best preserved in areas of high productivity where they rain at a higher rate than dissolution.

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Siliceous vs. Calcareous Ooze• Siliceous

deposits form in tropics and Antarctica –high productivity

• Calcareous deposits form where ocean chemistry allows preservation of delicate carbonate tests

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Carbonate Compensation Depth

• Lysocline– Stability of CaCO3 is related to temperature and pH– Lower temperatures dissolve more CO2, making

water more acidic– CaCO3 tends to dissolve when temperatures are low

(i.e. deep water)• CCD

– Where dissolution of CaCO3 balances production and CaCO3 can no longer accumulate

Page 20: Marine Sediments and Sedimentary Rocks

20

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Siliceous vs. Calcareous Ooze

• Pacific is largely below present day CCD.

• Abyssal clay is undiluted here

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Productivity and Preservation

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Productivity and Preservation

Page 21: Marine Sediments and Sedimentary Rocks

21

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

CCD and Lysocline

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

CCD and Lysocline

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Sedimentation on the Ocean Floor

• Sediment grows thicker away from mid-ocean ridge (spreading center)

• Oldest (thickest) sediment found toward continental margins

Page 22: Marine Sediments and Sedimentary Rocks

22

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Biogenous Sediments in Neritic Zone

• Coral reefs– Calcium carbonate

skeletons– Fragments

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Biogenous Sediments in Neritic Zone

• Mollusks– Calcium carbonate

skeletons– Shell hash

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Hydrogenous Sediments

• Forming from within the water column– Precipitation from dissolved constituents of

seawater

Page 23: Marine Sediments and Sedimentary Rocks

23

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Whitings – Calcium Carbonate• Oceans can be supersaturated with

regards to calcium carbonate (surface)• Whitings

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Why so blue?• Reflection of light through shallow waters

and white carbonate sands.– Biogenous– Hydrogenous

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Manganese Nodules

• Manganese, iron, and other metals– 5 cm in diameter, layered– Nucleates around a pre-existing grain

Page 24: Marine Sediments and Sedimentary Rocks

24

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Ooids – Calcium Carbonate

• Round grains of layered calcium carbonate

• Formed by repeated agitation in shallow, supersaturated water

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Ooids – Calcium Carbonate

• Make wonderful beach sand because of uniform spherical shape

• Lithified to oolite

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Metal Sulfides – Black Smokers

• Precipitation of reduced chemicals in hydrothermal vent fluids

Page 25: Marine Sediments and Sedimentary Rocks

25

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Cosmogenous Sediments

• Derived from extraterrestrial sources– Spherules– Meteorite debris

• Tektites

• 300,000 tons of space debris reach Earth’s surface every year

• Macroscopic debris is more rare

Microscopic debris

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Impact Debris

• Large impacts have been responsible for dramatically altering Earth’s conditions– Extinctions evidenced by impact

debris

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Impact Debris

• Would the Permian extinction impact event (if there was one) be observable in ocean sediments?

Page 26: Marine Sediments and Sedimentary Rocks

26

Prof. Rosenheim EENS/EBIO 223

Introductory Oceanography

Key Concepts

• Sediment types and genesis• Transport and deposition• Preservation• Uses of sediment records• Sampling techniques