market analysis

160
Table of Contents: Letter of Transmittal………………………………………………………… i Table of Contents…………………………………………………………… ii Project Overview…………………………………………………………… 1 Design Basis/Market Analysis………………………….…………………… 1 Process Flow Diagram with Stream Tables………………………………….. 6 Process Description…………………………………………………………… 22 Technical Discussion………………………………………………………… 23 Economic Analysis…………………………………………………………… 28 Conclusions…………………………………………………………………… 37 Recommendations…………………………………………………………… 37 Acknowledgements…………………………………………………………… 38 References…………………………………………………………………… 38 Appendix A: Production/Consumption Analysis…………………………… 39 Appendix B: World Consumption and Capacity for Styrene in 2001……… 40 Appendix C: U.S. Production and Sales of Styrene (Product Life Cycle)… 41 Appendix D: Price Trends and Forecast……………………………………… 42 Appendix E: Health and Safety Precautions………………………………… 44 Appendix F: Equipment Design Parameters………………………………… 47 Appendix G: Sizing of Equipment…………………………………………… 49 Appendix H: CSTR Design and Optimization……………………………… 50 Appendix I: PBR Design and Optimization………………………………… 53 Appendix J: Environmental Discharge Calculations………………………… 59 Appendix K: Material Balance and Energy Balance………………………… 60 Appendix L: Cash Flow Analysis…………………………………………… 61 Appendix M: Sensitivity Analysis Plots……………………………………… 62 Appendix N: ChemCAD Output……………………………………………… 64 ii

Upload: timothy212

Post on 21-Jan-2015

2.941 views

Category:

Documents


6 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Market Analysis

Table of Contents:

Letter of Transmittal………………………………………………………… i

Table of Contents…………………………………………………………… ii

Project Overview…………………………………………………………… 1

Design Basis/Market Analysis………………………….…………………… 1

Process Flow Diagram with Stream Tables………………………………….. 6

Process Description…………………………………………………………… 22

Technical Discussion………………………………………………………… 23

Economic Analysis…………………………………………………………… 28

Conclusions…………………………………………………………………… 37

Recommendations…………………………………………………………… 37

Acknowledgements…………………………………………………………… 38

References…………………………………………………………………… 38

Appendix A: Production/Consumption Analysis…………………………… 39

Appendix B: World Consumption and Capacity for Styrene in 2001……… 40

Appendix C: U.S. Production and Sales of Styrene (Product Life Cycle)… 41

Appendix D: Price Trends and Forecast……………………………………… 42

Appendix E: Health and Safety Precautions………………………………… 44

Appendix F: Equipment Design Parameters………………………………… 47

Appendix G: Sizing of Equipment…………………………………………… 49

Appendix H: CSTR Design and Optimization……………………………… 50

Appendix I: PBR Design and Optimization………………………………… 53

Appendix J: Environmental Discharge Calculations………………………… 59

Appendix K: Material Balance and Energy Balance………………………… 60

Appendix L: Cash Flow Analysis…………………………………………… 61

Appendix M: Sensitivity Analysis Plots……………………………………… 62

Appendix N: ChemCAD Output……………………………………………… 64

ii

Page 2: Market Analysis

Project Overview:

The purpose of this report is to show the results obtained for the styrene monomer unit designed to obtain high purity styrene as a raw material for the new HYPERCLEARTM facility. The HYPERCLEARTM polymer represents a significant advance in polymer technology and requires a minimum styrene content of 99.9 mol %. It will require a production of 400 million lbs per year by the end of a four-year introduction period. Initially, a market study was conducted to determine the feasibility of selling excess styrene on the open market. From this study the reaction path was chosen and developed as well as an overall plant capacity for the styrene monomer to be produced. Next, a preliminary design of the styrene monomer unit was developed. The design was broken into three sections: feed preparation, reaction, and purification and recovery. Finally, a full economic analysis of the unit was conducted.

The final result is a plant producing 1.1 billion pounds of styrene per year with an overall capital investment of $176 million and a net present value over ten years of $297 million. This gives an IRR of 39.64%, well over the required MARR of 20%. The discounted payback period is 3.76 years. The overall selectivity is 72% and overall conversion is 89%.

Design Basis:

The design basis for the styrene monomer unit was determined based on a market analysis of the current status of the styrene industry (current technology, main producers, and market growth), market position upon entry for the Innovative Chemical Company, production capacity, and possible recovery and sale of byproducts.

Market Analysis

Competitive Technology Summary

Current producers of styrene use either the dehydrogenation or the co-production propylene oxide process routes. The dehydrogenation process accounts for 90%, and the propylene oxide process route accounts for 10% of the total world production of styrene23.

DehydrogenationThe dehydrogenation of ethylbenzene is an endothermic reaction that takes place on a promoted iron oxide-potassium catalyst in a fixed bed reactor in the presence of steam 23. It is highly temperature dependent with typical operating condition of commercial reactors being 620ºC 30. This process is limited by thermodynamic equilibrium. The competing thermal reactions degrade ethylbenzene to benzene and carbon23. But the largest yield loss of styrene is due to the catalytic reactions producing toluene. Conversion of ethylbenzene varies but it is usually about 65% overall.

Propylene Oxide- Styrene Monomer Co-production (PO/SM) The alternative route to commercially produce styrene is through the co-production of propylene oxide. The typical production of styrene using the propylene oxide process involves eight major

1

Page 3: Market Analysis

unit operations. The major product of this reaction is propylene oxide23. In order to increase production of styrene, propylene oxide production must also be increased. The propylene oxide process has other disadvantages aside from poor styrene product selectivity. The formation of styrene yields additional oxygenated byproducts which are not easily separated from the final styrene product23, 30.

Other TechnologiesTechnologies producing styrene from other raw materials are being investigated. One alternative route to produce styrene, first developed by Dow Chemicals, is by converting butadiene in the crude C4 stream. Dow Chemicals claims that this process can significantly lower the cost of producing styrene. The overall yield to styrene is greater than 90%. Since 1994, Dow has operated a pilot plant at an 18-40 lb/hr capacity27.

The Innovative Chemical Co. has developed a catalyst technology to dimerize butadiene to 4-vinylcyclohexene (VCH). VCH is then dehydrogenated to yield ethylbenzene. This innovative technology will have a superior advantage over current commercial routes.

Production Consumption AnalysisA production consumption analysis (shown in Appendix A) was used to compare the butadiene process to the dehydrogenation process. Taking into consideration raw material costs and assuming that the ethylbenzene was recycled, the dehydrogenated process would produce a profit of $0.03 for every mole of ethylbenzene consumed. For the butadiene process, the net gain of styrene produced is $0.04 for every mole of butadiene consumed. Therefore it was determined that the butadiene process has the potential to obtain a greater profit margin compared to current commercial processes.

Styrene Market Analysis

Market GrowthDuring the 1996-2001 period world styrene demand grew at an average annual rate of 4.0%. The world styrene demand grew by 5.1% in 2002, and some reports expect continued growth of world styrene demand through 20077,12.

The increased growth of styrene was mainly due to the increase in demand for polystyrene. Polystyrene accounts for approximately 61% of styrene consumption. Appendix B shows the end uses of styrene. In addition to polystyrene, other end uses include acrylonitrile, styrene-acrylonitrile, styrene-butadiene latex, and unsaturated polyester resins. The demand for polystyrene has grown and will continue to grow mainly due to: increased demand in China, new home construction in the United States, and population growth.

Product Life Cycle As shown in Appendix C, the styrene market is in the mature stage in the US. Other Asian countries, such as China, are in the growth stage. Although new projects to increase capacity in Asian countries are planned, China will continue to be a net importer of styrene within the next five years4-10. See Figure B-2 (Appendix B) for the styrene capacity for major regions in 2001 and 2006.

2

Page 4: Market Analysis

Price Histories and TrendsStyrene prices have increased steadily over the last few years. From the price plot of styrene presented in Appendix D, the projected price of styrene one year from now is approximately $0.34 and five years from now about $0.37. In addition, the cost of butadiene has been lower than that of benzene and ethylene and is projected to be so for the next several years. The low cost will allow for a competitive advantage by offering a lower price and a higher quality good.

Current Producers in the Styrene MarketThere are approximately 5,000 producers and users of styrene today. The ten largest world producers and their annual capacity are presented in Table 1. The top 10 producers of styrene have the ability to produce more that 50% of the world consumption.

Table 1. Ten Largest World Producers of Styrene 22 in Millions of Pounds Per YearProducer Technology Annual Capacity Dow Chemical (United States) Dow dehydrogenation 4,903 Royal Dutch Shell Group (United Kingdom) PO/SM 4,890 BASF (Germany) PO/SM and dehydrogenation 3,578 Lyondell Chemical (United States) PO/SM 2,800 TotalFirmElf (France) 2,586 NOVA Chemicals (Canada) Fina-Badger dehydrogenation 2,271 BP (United Kingdom) Dehydrogenation 1,770 Sterling (United Kingdom) Monsanto dehydrogenation 1,702 EriChem (Italy) 1,455 Idermitsu (Japan) 1,246

Total 27,202

Market Opportunities, Positioning, Risk and Environmental Concerns

OpportunitiesSince the styrene industry is currently reaching its production capacity, the demand for styrene is high and the price of styrene is growing. This shows great potential for new members to enter the styrene market. In addition, the need for higher quality styrene has arisen and the industry is moving forward with development of better catalyst and more efficient processes.

Analysis of the current technology versus the advanced use of butadiene as a raw material shows that a there is a much greater profit margin in the latter case. In addition, the butadiene method is an exothermic process needing less energy which reduces operation cost.

PositioningWith this new catalyst making the use of butadiene feasible, the Innovative Chemical Company will be able to offer a higher quality product at a lower cost than the industry standard. Future developments that may match our technology will arise but as the demand for the product decreases the use of the product for HYPERCLEARTM will grow.

The increased company use will match the predicted slip in demand. Market analysis showed that some of the byproducts formed using the 1-3 butadiene route had some market value.

3

Page 5: Market Analysis

However, as a technology leader the Innovative Chemical Company wanted to refrain from selling byproducts on the open market since a competitive technological edge was not present.

Environmental IssuesAppendix E contains health and environmental concerns associated with the production of styrene.

Raw Material RequirementsThe raw material requirements for the styrene production unit are presented in Table 2. They include both the initial charge required for startup as well as amounts fed hourly.

Table 2: Raw Material Requirements for Styrene Production Unit. Raw Material Initial Charge Amount per hour Amount per year

ACN (lb) 401,485 176 1,543,162Butadiene (mol)   1,524,717 13,356,520,920Benzene (gal) 1,228,464 228 1,997,552Inhibitor (lbs)   4 39,212Catalyst (lb)   23 199,728Dowtherm (kg) 939,028   939,028

Product Specifications The styrene product will be recovered at a rate of 1.1 billion pounds per year with a purity of 99.91 mol% for use in the production of HYPERCLEARTM. The temperature and pressure of the product will be 90oF and 125 psig. The high purity will minimize the presence of color bodies in the styrene monomer.

Design ConstraintsThe design of the styrene unit was constrained by the following items that were considered for each section.

Feed Preparation Section1. Butadiene purity should be very high to simplify the reactor section.

Reactor SectionReaction 1: Butadiene to vinylcyclohexene

1. The catalyst is only active between 214°F and 248°F.2. Butadiene polymerizes at high concentration so an inert carrier should be used in a

3:1 ratio.Reaction 2: Vinylcyclohexene to styrene

1. Vinylcyclohexene must be kept below the explosive limit of 1% by volume.2. Reactor temperature must remain less than 200 K above the initial feed temperature

to avoid burnout, prevent excess side reaction, and avoid deactivating the catalyst.3. Styrene polymerizes only in the liquid phase.4. Packed bed rector (PBR) tubes should be small and flow rates fast so the zero-radial-

temperature-gradient assumption is accurate in the model.

4

Page 6: Market Analysis

Purification and Recovery Section1. Since styrene polymerizes in the liquid phase, an inhibitor is used and its

concentration should be 30 to 50 ppm.2. Inhibitor must remain below 290°F to avoid deactivation.3. Acetonitrile present in refinery return stream must be less than 400 ppm.

Overall Environmental constraints1. Volatile organics in exiting air streams must total less than 25 tons per year.2. Organics in exiting water streams must be less than 40 ppm.

Process Flow DiagramFigure 1 shows the process flow diagram for the styrene monomer plant.

5

Page 7: Market Analysis

Free Propane

23

19

Pressure, atm

Temperature, oF

Flow Rate, lb/hr

ICC - Styrene PlantDrawn by Team 8_ Date ________Checked by ________ Date ________Approved by ________ Date ________

Drawing No. ____1___Revision 0

Duty (MJ/hr)

cw

mps

hps

Q

Cooling Water

KEY

V-101AcetonitrileStorageTank

V-102Crude C4StorageTank

T-101ExtractiveDistillationMain Washer

E-101MainWasherCondenser

E-102MainWasherReboiler

V-105Main WasherReflux Drum

P-105 A/BAcetonitrileRecoveryPump

P-104 A/BMain WasherReflux Pump

T-102CrudeRecoveryTower

E-103CrudeTowerCondenser

E-104CrudeTowerReboiler

V-107CrudeTowerReflux Drum

P-106 A/BCrudeRefluxPump

T-103ExtractiveDistillationRectifier

E-105RectifierCondenser

E-106RectifierReboiler

P-107RectifierRefluxPump

V-106RectifierRefluxDrum

V-101

V-102

230.01229941

2.57

1

Acetonitrile Feed

90.0176

9.17

2

Crude Feed

90.0606087

9.17

4

3 229.51230118

2.37

90.9176

2.37

P-102 A/B

7 9

LIC

LIC

10

230.21230118

4.0

11

T-101

V-105

E-101

P-104 A/B

E-102

P-105 A/B

LIC

FIC

LIC

fp

13

Q = 357105

55

1

8

90.3606087

4.00

2

15

15

Q = -386186

12

16

95.1457555

4.2

184.61378649

4.0

T-102

V-107

E-103

P-106

E-104 LIC

FIC

LIC

cw

Q =196177

55

20

Q = -195236

97.5442595

7.98

30

139.814958

3.18

37

1

P-103 A/BCrude C4Feed Pump

T-103

V-106

E-105

P-107 A/B

E-106 LIC

FIC

I-41

fp

Q =236121

20

24

Q =-169501

26

27

249.1718259

4.0

10

1

99.7163668

5.94

E-107

Q = -36114.7

cw

31

21

18

25

To Reactor Section

P-101 A/B

P-103 A/B

5

6

P-101 A/BAcetonitrileFeed Pump

P-102 A/BRecyclePump

22

To Recover/PurificationSection

17

28

lps

lps

mps

Medium Pressure Steam

fp

High Pressure Steam

E-107RecycleCooler

Figure 1a: Process Flow Diagram for Styrene Monomer Plant (Feed Preparation Section)

6

Page 8: Market Analysis

293.1

99

248

771.0

P-109 A/B

E-108

R-101

662409

P-110 A/B

E-119

R-102P-111 A/B

E-120

R-103P-112 A/B

E-121

R-104P-113 A/B

E-122

R-105

E-123

248662409

11.98248

662409

11.98 248662409

11.98

248662408

9.00

40

4346

49

51

T-104

V-110

E-109

P-116 A/B

E-110

163.712331

9.0

332.6658418

6.96

T-105

V-113

E-111

P-114 A/B

E-112

319.5488037

6.96

154.51856

7.98

R-106

620.34671318

1.50

248.88341

7.98

LIC

LIC

FIC

FIC

LIC

LIC

LIC

LIC LIC

LIC

LIC

26

P 108 A/BBenzeneFeed Pump

E-108CSTRFeedCooler

R-101ButadieneIsothermalCSTR

E-119CSTRCoolantCondenser

P 109 A/BCSTRFeedPump

E-120CSTRHeatExchanger

R-102ButadieneIsothermalCSTR

P 111 A/BCSTREffluentPump 2

R-103ButadieneIsothermalCSTR

E-121CSTRHeatExchanger

P 110 A/BCSTREffluentPump 1

R-104ButadieneIsothermalCSTR

E-122CSTRHeatExchanger

P 112 A/BCSTREffluentPump 3

R-105ButadieneIsothermalCSTR

E-123CSTRHeatExchanger

P-113 A/BCSTREffluentPump 4

T-104ButadieneRecoveryColumn

E-110ButadieneReboiler

E-109ButadieneCondenser

V-110ButadieneRefluxDrum

P-116 A/BButadieneRefluxPump

T-105BenzeneRecoveryTower

E-112BenzeneReboiler

E-111BenzeneCondenser

V-113BenzeneRefluxDrum

P-114 A/BBenzeneRefluxPump

R-206PackedBedReactor

E-114PBR FeedHeater

E-120PBRDowthermExchanger

C-101AirComp. 1

cw

cw

36

38

41 44

47

50

56

61

C-101

cw

cw

cw

cw

cw

E-120

cw

hps

Dowtherm

E-114

75

620.34671323

1.50

74

63

Q =-2208

Q = -74293

Q = -19764Q = -7838

Q = -3928

Q = -2284

Q = 54516

Q = -15846

14

1

6

Q =164626

Q =-166830

30

20

1

Q =400803

Q =-793613

Benzene Feed

Butadiene FeedFrom Feed Prep.

To Recovery Section

Air

Styrene Product to Recovery Section

248662409

11.98

99.8163667

mps

hps

66

184

cw

P-108 A/B

32

39

42 45

48

C-104

C-103

C-102

C-102AirComp. 2

C-103AirComp. 3

C-104AirComp. 4

76

52

53 55 59

62

60

91

92

9894

95

96

9793

29

89

68

90

From Recovery Section

6758

85

57

33

54

64

498513

5.94

69

65

309.3170380

1.91

P-120

77.04500943

1.00

315.64500943

2.93

V-112

V-111CatalystSlurryTank

V-112CatalystSettlingTank

V-11137

LIC

35

34

5.9

V-103

11.98

V-103BenzeneFeed Tank

Figure 1b: Process Flow Diagram for Styrene Monomer Plant (Reactor Section)

7

Page 9: Market Analysis

Figure 1c: Process Flow Diagram for Styrene Monomer Plant (Recovery and Purification Section)

8

Page 10: Market Analysis

Table 3a: Input/Output Stream Table for PFD

Stream No. 1 2 32 66 73 78 80 88Name Acetonitrile Crude C4 Benzene Feed Air feed Refinery Return Non-condensables Waste Water Stryene Product

- - Overall - -Molar flow lbmol/h 4.29 10,848.14 2.92 156,007.30 7,859.69 154,069.31 3,986.11 1,214.39

Mass flow lb/h 176.16 606,088.00 228.03 4,500,943.00 444,451.00 4,464,061.50 72,430.17 126,483.77Temp F 90.00 90.00 77.00 77.00 90.00 204.00 204.00 90.00

Pres atm 9.17 9.17 1.00 1.00 9.19 1.09 1.09 8.51Vapor mole fraction 0.00 0.00 0.00 1.00 0.00 1.00 0.00 0.00

Enth MJ/h 73.83 -79,976.00 65.52 -474.18 -201,220.00 -250,310.00 -506,230.00 59,126.00Tc F 522.23 296.84 552.02 -223.29 293.86 -218.96 705.47 705.16

Pc atm 47.70 39.88 48.31 35.57 38.92 36.29 217.86 39.50Std. sp gr. wtr = 1 0.79 0.60 0.89 0.87 0.60 0.86 1.00 0.91Std. sp gr. air = 1 1.42 1.93 2.70 1.00 1.95 1.00 0.63 3.60

Degree API 48.25 103.02 28.38 31.93 106.28 33.22 10.05 23.72Average mol wt 41.05 55.87 78.11 28.85 56.55 28.97 18.17 104.15

Actual dens kg/m3 771.68 581.48 873.01 1.18 573.43 1.05 959.44 894.06Actual vol m3/h 0.10 472.79 0.12 1,730,755.91 351.57 1,936,934.15 34.24 64.17

Std liq m3/h 0.10 456.06 0.12 2,360.10 339.08 2,359.31 32.90 62.99Std vap 60F m3/h 46.11 116,570.14 31.37 1,676,397.98 84,457.43 1,655,573.09 42,833.32 13,049.35

Total lb/h 176.16 606,088.00 228.03 4,500,943.00 444,451.00 4,464,061.50 72,430.17 126,483.77Flowrates in lb/h

1-3-Butadiene 0 181,826 0 0 19,785 0 0 0I-Butene 0 181,826 0 0 181,826 0 0 01-Butene 0 121,218 0 0 121,217 0 0 0N-Butane 0 66,670 0 0 66,670 0 0 0I-Butane 0 54,548 0 0 54,548 0 0 0

Acetonitrile 176 0 0 0 176 0 0 0Vinylcyclohexene 0 0 0 0 0 77 76 83

Benzene 0 0 228 0 228 0 0 0Styrene 0 0 0 0 0 664 674 126,400Oxygen 0 0 0 1,048,336 0 914,023 0 0Water 0 0 0 0 0 1,687 71,681 0

Nitrogen 0 0 0 3,452,607 0 3,452,607 0 0Carbon Dioxide 0 0 0 0 0 95,004 0 0

Input Streams Output streams

9

Page 11: Market Analysis

Table 3b: Stream Tables for PFD shown in Figure 1

Stream No. 1 2 3 4 5 6 7 8Name Acetonitrile Crude C4 3- - Overall - -Molar flow lbmol/h 4.29 10,848.14 4.29 10,848.14 4.29 10,848.14 4.29 10,848.14Mass flow lb/h 176.16 606,088.00 176.16 606,088.00 176.16 606,088.00 176.16 606,088.00Temp F 90.00 90.00 90.76 90.14 90.74 90.25 90.85 90.27Pres atm 9.17 9.17 2.37 4.00 3.39 5.02 2.37 4.00Vapor mole fraction 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Enth MJ/h 73.83 -79,976.00 73.83 -79,976.00 73.84 -79,927.00 73.84 -79,927.00Tc F 522.23 296.84 522.23 296.84 522.23 296.84 522.23 296.84Pc atm 47.70 39.88 47.70 39.88 47.70 39.88 47.70 39.88Std. sp gr. wtr = 1 0.79 0.60 0.79 0.60 0.79 0.60 0.79 0.60Std. sp gr. air = 1 1.42 1.93 1.42 1.93 1.42 1.93 1.42 1.93Degree API 48.25 103.02 48.25 103.02 48.25 103.02 48.25 103.02Average mol wt 41.05 55.87 41.05 55.87 41.05 55.87 41.05 55.87Actual dens kg/m3 771.68 581.48 771.23 581.37 771.24 581.30 771.17 581.28Actual vol m3/h 0.10 472.79 0.10 472.87 0.10 472.94 0.10 472.95Std liq m3/h 0.10 456.06 0.10 456.06 0.10 456.06 0.10 456.06Std vap 60F m3/h 46.11 116,570.14 46.11 116,570.14 46.11 116,570.14 46.11 116,570.14Total lb/h 176.16 606,088.00 176.16 606,088.00 176.16 606,088.00 176.16 606,088.00Flowrates in lb/h1-3-Butadiene 0 181,826 0 181,826 0 181,826 0 181,826I-Butene 0 181,826 0 181,826 0 181,826 0 181,8261-Butene 0 121,218 0 121,218 0 121,218 0 121,218N-Butane 0 66,670 0 66,670 0 66,670 0 66,670I-Butane 0 54,548 0 54,548 0 54,548 0 54,548Acetonitrile 176 0 176 0 176 0 176 0Vinylcyclohexene 0 0 0 0 0 0 0 0Benzene 0 0 0 0 0 0 0 0Styrene 0 0 0 0 0 0 0 0Oxygen 0 0 0 0 0 0 0 0Water 0 0 0 0 0 0 0 0Nitrogen 0 0 0 0 0 0 0 0Carbon Dioxide 0 0 0 0 0 0 0 0

10

Page 12: Market Analysis

Table 3b: Stream Tables for PFD shown in Figure 1 (Cont’d)

Stream No. 9 10 11 12 13 15 16 17Name Cut 1- - Overall - -Molar flow lbmol/h 29,953.81 29,953.81 29,953.81 8,180.69 32,621.25 32,621.25 8,180.69 32,621.25Mass flow lb/h 1,230,117.38 1,230,117.38 1,230,117.38 457,555.41 1,378,649.38 1,378,649.38 457,555.41 1,378,649.50Temp F 229.47 230.12 230.17 94.96 184.54 184.57 95.08 184.59Pres atm 2.37 5.02 4.00 4.00 4.00 5.02 5.22 4.00Vapor mole fraction 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Enth MJ/h 630,190.00 630,410.00 630,410.00 -196,790.00 718,190.00 718,280.00 -196,740.00 718,280.00Tc F 521.96 521.96 521.96 300.34 497.27 497.27 300.34 497.27Pc atm 47.66 47.66 47.66 38.35 45.45 45.45 38.35 45.45Std. sp gr. wtr = 1 0.79 0.79 0.79 0.60 0.76 0.76 0.60 0.76Std. sp gr. air = 1 1.42 1.42 1.42 1.93 1.46 1.46 1.93 1.46Degree API 48.33 48.33 48.33 104.66 53.68 53.68 104.66 53.68Average mol wt 41.07 41.07 41.07 55.93 42.26 42.26 55.93 42.26Actual dens kg/m3 552.40 681.90 681.86 573.98 684.28 684.26 573.89 673.50Actual vol m3/h 1,010.08 818.26 818.31 361.59 913.87 913.90 361.64 928.50Std liq m3/h 709.75 709.75 709.75 346.70 819.11 819.11 346.70 819.11Std vap 60F m3/h 321,872.75 321,872.75 321,872.75 87,906.78 350,536.14 350,536.14 87,906.78 350,536.17Total lb/h 1,230,117.38 1,230,117.38 1,230,117.38 457,555.41 1,378,649.38 1,378,649.38 457,555.41 1,378,649.50Flowrates in lb/h1-3-Butadiene 7 7 7 18,184 163,648 163,648 18,184 163,648I-Butene 107 107 107 181,933 0 0 181,933 01-Butene 121 121 121 121,334 5 5 121,334 5N-Butane 1,228 1,228 1,228 67,897 0 0 67,897 0I-Butane 1 1 1 54,549 0 0 54,549 0Acetonitrile 1,228,654 1,228,654 1,228,654 13,658 1,214,996 1,214,996 13,658 1,214,996Vinylcyclohexene 0 0 0 0 0 0 0 0Benzene 0 0 0 0 0 0 0 0Styrene 0 0 0 0 0 0 0 0Oxygen 0 0 0 0 0 0 0 0Water 0 0 0 0 0 0 0 0Nitrogen 0 0 0 0 0 0 0 0Carbon Dioxide 0 0 0 0 0 0 0 0

11

Page 13: Market Analysis

Table 3b: Stream Tables for PFD shown in Figure 1 (Cont’d)

Stream No. 18 19 20 21 22 23 24 25Name- - Overall - -Molar flow lbmol/h 8,180.69 7,826.62 354.03 7,826.62 7,826.62 3,025.80 29,595.49 3,025.80Mass flow lb/h 457,555.41 442,595.28 14,957.70 442,595.28 442,595.28 163,667.81 1,214,983.50 163,667.81Temp F 95.11 97.01 147.06 97.53 97.55 99.45 271.03 99.61Pres atm 4.20 4.20 4.20 9.00 7.98 4.00 4.00 6.96Vapor mole fraction 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Enth MJ/h -196,740.00 -200,580.00 4,773.10 -200,410.00 -200,410.00 123,440.00 661,460.00 123,480.00Tc F 300.34 293.71 500.19 293.71 293.71 306.01 522.23 306.01Pc atm 38.35 38.90 44.68 38.90 38.90 42.70 47.70 42.70Std. sp gr. wtr = 1 0.60 0.60 0.76 0.60 0.60 0.63 0.79 0.63Std. sp gr. air = 1 1.93 1.95 1.46 1.95 1.95 1.87 1.42 1.87Degree API 104.66 106.36 54.23 106.36 106.36 93.94 48.25 93.94Average mol wt 55.93 56.55 42.25 56.55 56.55 54.09 41.05 54.09Actual dens kg/m3 573.87 568.12 708.89 567.73 567.72 598.21 653.03 598.09Actual vol m3/h 361.66 353.38 9.57 353.61 353.62 124.10 843.92 124.12Std liq m3/h 346.70 337.78 8.91 337.78 337.78 118.38 700.73 118.38Std vap 60F m3/h 87,906.78 84,102.00 3,804.26 84,102.00 84,102.00 32,514.17 318,022.37 32,514.17Total lb/h 457,555.41 442,595.28 14,957.70 442,595.28 442,595.28 163,667.81 1,214,983.50 163,667.81Flowrates in lb/h1-3-Butadiene 18,184 18,176 7 18,176 18,176 163,650 0 163,650I-Butene 181,933 181,826 107 181,826 181,826 0 0 01-Butene 121,334 121,212 121 121,212 121,212 5 0 5N-Butane 67,897 66,670 1,228 66,670 66,670 0 0 0I-Butane 54,549 54,548 1 54,548 54,548 0 0 0Acetonitrile 13,658 164 13,494 164 164 13 1,214,984 13Vinylcyclohexene 0 0 0 0 0 0 0 0Benzene 0 0 0 0 0 0 0 0Styrene 0 0 0 0 0 0 0 0Oxygen 0 0 0 0 0 0 0 0Water 0 0 0 0 0 0 0 0Nitrogen 0 0 0 0 0 0 0 0Carbon Dioxide 0 0 0 0 0 0 0 0

12

Page 14: Market Analysis

Table 3b: Stream Tables for PFD shown in Figure 1 (Cont’d)

Stream No. 26 27 28 29 30 31 32 33Name Benzene Feed- - Overall - -Molar flow lbmol/h 3,025.80 29,595.49 29,595.49 78,003.65 354.03 29,949.52 2.92 2.92Mass flow lb/h 163,667.81 1,214,983.50 1,214,983.50 2,250,471.50 14,957.70 1,229,941.25 228.03 228.03Temp F 99.63 249.15 231.00 77.00 139.78 230.02 77.00 77.19Pres atm 5.94 2.98 2.57 1.00 3.18 2.57 1.00 6.96Vapor mole fraction 0.00 0.05 0.00 1.00 0.02 0.00 0.00 0.00Enth MJ/h 123,480.00 661,460.00 625,340.00 -237.09 4,773.10 630,110.00 65.52 65.59Tc F 306.01 522.23 522.23 -223.29 500.19 521.96 552.02 552.02Pc atm 42.70 47.70 47.70 35.57 44.68 47.66 48.31 48.31Std. sp gr. wtr = 1 0.63 0.79 0.79 0.87 0.76 0.79 0.89 0.89Std. sp gr. air = 1 1.87 1.42 1.42 1.00 1.46 1.42 2.70 2.70Degree API 93.94 48.25 48.25 31.93 54.23 48.33 28.38 28.38Average mol wt 54.09 41.05 41.05 28.85 42.25 41.07 78.11 78.11Actual dens kg/m3 598.08 75.28 681.71 1.18 181.37 681.97 873.01 872.90Actual vol m3/h 124.13 7,320.69 808.41 865,377.95 37.41 818.06 0.12 0.12Std liq m3/h 118.38 700.73 700.73 1,180.05 8.91 709.65 0.12 0.12Std vap 60F m3/h 32,514.17 318,022.37 318,022.37 838,198.99 3,804.26 321,826.65 31.37 31.37Total lb/h 163,667.81 1,214,983.50 1,214,983.50 2,250,471.50 14,957.70 1,229,941.25 228.03 228.03Flowrates in lb/h1-3-Butadiene 163,650 0 0 0 7 7 0 0I-Butene 0 0 0 0 107 107 0 01-Butene 5 0 0 0 121 121 0 0N-Butane 0 0 0 0 1,228 1,228 0 0I-Butane 0 0 0 0 1 1 0 0Acetonitrile 13 1,214,984 1,214,984 0 13,494 1,228,477 0 0Vinylcyclohexene 0 0 0 0 0 0 0 0Benzene 0 0 0 0 0 0 228 228Styrene 0 0 0 0 0 0 0 0Oxygen 0 0 0 524,168 0 0 0 0Water 0 0 0 0 0 0 0 0Nitrogen 0 0 0 1,726,304 0 0 0 0Carbon Dioxide 0 0 0 0 0 0 0 0

13

Page 15: Market Analysis

Table 3b: Stream Tables for PFD shown in Figure 1 (Cont’d)

Stream No. 34 35 36 37 38 39 40 41Name Cut 2- - Overall - -Molar flow lbmol/h 2.92 9,464.51 9,464.51 9,464.51 8,435.12 8,435.12 8,435.12 8,160.72Mass flow lb/h 228.03 662,410.00 662,410.00 662,410.00 662,409.00 662,409.00 662,409.00 662,408.13Temp F 77.29 206.77 252.34 248.00 248.00 248.09 248.12 248.00Pres atm 5.94 5.94 12.38 11.98 11.98 13.00 11.98 11.98Vapor mole fraction 0.00 0.20 0.01 0.00 0.00 0.00 0.00 0.00Enth MJ/h 65.59 327,310.00 327,600.00 325,390.00 251,100.00 251,140.00 251,140.00 231,370.00Tc F 552.02 476.90 476.90 476.90 536.10 536.10 536.10 552.46Pc atm 48.31 49.11 49.11 49.11 48.70 48.70 48.70 47.96Std. sp gr. wtr = 1 0.89 0.80 0.80 0.80 0.85 0.85 0.85 0.86Std. sp gr. air = 1 2.70 2.42 2.42 2.42 2.71 2.71 2.71 2.80Degree API 28.38 45.48 45.48 45.48 36.00 36.00 36.00 33.48Average mol wt 78.11 69.99 69.99 69.99 78.53 78.53 78.53 81.17Actual dens kg/m3 872.85 70.76 563.14 651.45 718.02 717.95 717.92 738.13Actual vol m3/h 0.12 4,246.01 533.55 461.22 418.46 418.50 418.52 407.06Std liq m3/h 0.12 376.15 376.15 376.15 356.00 356.00 356.00 350.63Std vap 60F m3/h 31.37 101,702.24 101,702.24 101,702.24 90,640.78 90,640.78 90,640.78 87,692.11Total lb/h 228.03 662,410.00 662,410.00 662,410.00 662,409.00 662,409.00 662,409.00 662,408.13Flowrates in lb/h1-3-Butadiene 0 172,737 172,737 172,737 61,374 61,374 61,374 31,687I-Butene 0 0 0 0 0 0 0 01-Butene 0 33 33 33 33 33 33 33N-Butane 0 0 0 0 0 0 0 0I-Butane 0 0 0 0 0 0 0 0Acetonitrile 0 209 209 209 209 209 209 209Vinylcyclohexene 0 43 43 43 111,405 111,405 111,405 141,091Benzene 228 489,388 489,388 489,388 489,388 489,388 489,388 489,388Styrene 0 0 0 0 0 0 0 0Oxygen 0 0 0 0 0 0 0 0Water 0 0 0 0 0 0 0 0Nitrogen 0 0 0 0 0 0 0 0Carbon Dioxide 0 0 0 0 0 0 0 0

14

Page 16: Market Analysis

Table 3b: Stream Tables for PFD shown in Figure 1 (Cont’d)

Stream No. 42 43 44 45 46 47 48 49Name- - Overall - -Molar flow lbmol/h 8,160.72 8,160.72 8,052.11 8,052.11 8,052.11 7,997.95 7,997.95 7,997.95Mass flow lb/h 662,408.13 662,408.13 662,408.06 662,408.06 662,408.06 662,408.00 662,408.00 662,408.00Temp F 248.08 248.12 248.00 248.08 248.12 248.00 248.08 248.12Pres atm 13.00 11.98 11.98 13.00 11.98 11.98 13.00 11.98Vapor mole fraction 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Enth MJ/h 231,420.00 231,420.00 223,580.00 223,620.00 223,620.00 219,690.00 219,730.00 219,730.00Tc F 552.46 552.46 559.01 559.01 559.01 562.29 562.29 562.29Pc atm 47.96 47.96 47.58 47.58 47.58 47.38 47.38 47.38Std. sp gr. wtr = 1 0.86 0.86 0.86 0.86 0.86 0.87 0.87 0.87Std. sp gr. air = 1 2.80 2.80 2.84 2.84 2.84 2.86 2.86 2.86Degree API 33.48 33.48 32.48 32.48 32.48 31.98 31.98 31.98Average mol wt 81.17 81.17 82.27 82.27 82.27 82.82 82.82 82.82Actual dens kg/m3 738.07 738.04 746.40 746.35 746.32 750.60 750.55 750.52Actual vol m3/h 407.09 407.11 402.55 402.58 402.59 400.30 400.33 400.34Std liq m3/h 350.63 350.63 348.50 348.50 348.50 347.44 347.44 347.44Std vap 60F m3/h 87,692.11 87,692.11 86,525.06 86,525.06 86,525.06 85,943.02 85,943.02 85,943.02Total lb/h 662,408.13 662,408.13 662,408.06 662,408.06 662,408.06 662,408.00 662,408.00 662,408.00Flowrates in lb/h1-3-Butadiene 31,687 31,687 19,938 19,938 19,938 14,078 14,078 14,078I-Butene 0 0 0 0 0 0 0 01-Butene 33 33 33 33 33 33 33 33N-Butane 0 0 0 0 0 0 0 0I-Butane 0 0 0 0 0 0 0 0Acetonitrile 209 209 209 209 209 209 209 209Vinylcyclohexene 141,091 141,091 152,841 152,841 152,841 158,700 158,700 158,700Benzene 489,388 489,388 489,388 489,388 489,388 489,388 489,388 489,388Styrene 0 0 0 0 0 0 0 0Oxygen 0 0 0 0 0 0 0 0Water 0 0 0 0 0 0 0 0Nitrogen 0 0 0 0 0 0 0 0Carbon Dioxide 0 0 0 0 0 0 0 0

15

Page 17: Market Analysis

Table 3b: Stream Tables for PFD shown in Figure 1 (Cont’d)

Stream No. 50 51 52 53 54 55 56 57 58Name- - Overall - -Molar flow lbmol/h 7,966.69 7,966.69 219.80 7,746.89 219.80 7,746.89 186.72 7,824.18 33.08Mass flow lb/h 662,408.00 662,408.00 12,331.51 650,077.00 12,331.51 650,077.00 10,475.83 658,418.25 1,855.68Temp F 248.00 248.13 163.70 356.63 163.70 344.99 163.70 345.48 163.70Pres atm 11.98 9.00 9.00 9.00 9.00 7.98 9.00 7.98 9.00Vapor mole fraction 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.04 0.00Enth MJ/h 217,450.00 217,450.00 9,034.40 247,090.00 9,034.40 247,090.00 7,674.90 248,640.00 1,359.50Tc F 564.18 564.18 332.45 569.44 332.45 569.44 332.45 570.09 332.45Pc atm 47.25 47.25 44.24 46.93 44.24 46.93 44.24 46.85 44.24Std. sp gr. wtr = 1 0.87 0.87 0.65 0.87 0.65 0.87 0.65 0.87 0.65Std. sp gr. air = 1 2.87 2.87 1.94 2.90 1.94 2.90 1.94 2.91 1.94Degree API 31.69 31.69 85.58 30.67 85.58 30.67 85.58 30.75 85.58Average mol wt 83.15 83.15 56.10 83.91 56.10 83.91 56.10 84.15 56.10Actual dens kg/m3 753.04 752.95 570.55 684.70 570.55 265.91 570.55 294.87 570.55Actual vol m3/h 399.00 399.05 9.80 430.66 9.80 1,108.90 8.33 1,012.83 1.48Std liq m3/h 346.83 346.83 8.59 338.24 8.59 338.24 7.30 342.77 1.29Std vap 60F m3/h 85,607.15 85,607.15 2,361.90 83,245.31 2,361.90 83,245.31 2,006.47 84,075.75 355.43Total lb/h 662,408.00 662,408.00 12,331.51 650,077.00 12,331.51 650,077.00 10,475.83 658,418.25 1,855.68Flowrates in lb/h1-3-Butadiene 10,696 10,696 10,696 1 10,696 1 9,086 1 1,610I-Butene 0 0 0 0 0 0 0 0 01-Butene 33 33 33 0 33 0 28 0 5N-Butane 0 0 0 0 0 0 0 0 0I-Butane 0 0 0 0 0 0 0 0 0Acetonitrile 209 209 84 125 84 125 71 125 13Vinylcyclohexene 162,082 162,082 1 162,080 1 162,080 1 170,360 0Benzene 489,388 489,388 1,518 487,871 1,518 487,871 1,289 487,919 228Styrene 0 0 0 0 0 0 0 13 0Oxygen 0 0 0 0 0 0 0 0 0Water 0 0 0 0 0 0 0 0 0Nitrogen 0 0 0 0 0 0 0 0 0Carbon Dioxide 0 0 0 0 0 0 0 0 0

16

Page 18: Market Analysis

Table 3b: Stream Tables for PFD shown in Figure 1 (Cont’d)

Stream No. 59 60 61 62 63 64 65 66 67Name Cut 3 Air feed- - Overall - -Molar flow lbmol/h 7,824.17 6,249.07 1,575.11 6,249.07 6,435.79 6,435.79 1,575.11 156,007.30 33.08Mass flow lb/h 658,418.25 488,038.00 170,380.45 488,038.00 498,514.00 498,514.00 170,380.45 4,500,943.00 1,855.68Temp F 332.67 319.47 426.31 319.47 304.62 293.11 309.27 77.00 154.47Pres atm 6.96 6.96 6.96 6.96 6.96 5.94 1.91 1.00 7.98Vapor mole fraction 0.09 0.00 0.00 0.00 0.04 0.08 0.53 1.00 0.04Enth MJ/h 248,640.00 196,050.00 50,378.00 196,090.00 203,770.00 203,770.00 50,378.00 -474.18 1,359.50Tc F 570.09 552.02 618.52 552.02 546.43 546.43 618.52 -223.29 332.45Pc atm 46.85 48.31 33.86 48.31 48.45 48.45 33.86 35.57 44.24Std. sp gr. wtr = 1 0.87 0.89 0.84 0.89 0.88 0.88 0.84 0.87 0.65Std. sp gr. air = 1 2.91 2.70 3.74 2.70 2.67 2.67 3.74 1.00 1.94Degree API 30.75 28.38 37.54 28.38 29.58 29.58 37.54 31.93 85.58Average mol wt 84.15 78.10 108.17 78.10 77.46 77.46 108.17 28.85 56.10Actual dens kg/m3 155.38 717.77 625.78 717.77 265.07 146.00 11.66 1.18 264.09Actual vol m3/h 1,922.14 308.42 123.50 308.42 853.06 1,548.75 6,626.18 1,730,755.91 3.19Std liq m3/h 342.77 250.36 92.41 250.36 257.65 257.65 92.41 2,360.10 1.29Std vap 60F m3/h 84,075.75 67,150.22 16,925.52 67,150.22 69,156.69 69,156.69 16,925.52 1,676,397.98 355.43Total lb/h 658,418.25 488,038.00 170,380.45 488,038.00 498,514.00 498,514.00 170,380.45 4,500,943.00 1,855.68Flowrates in lb/h1-3-Butadiene 1 1 0 1 9,087 9,087 0 0 1,610I-Butene 0 0 0 0 0 0 0 0 01-Butene 0 0 0 0 28 28 0 0 5N-Butane 0 0 0 0 0 0 0 0 0I-Butane 0 0 0 0 0 0 0 0 0Acetonitrile 125 125 0 125 196 196 0 0 13Vinylcyclohexene 170,360 41 170,319 41 43 43 170,319 0 0Benzene 487,919 487,870 49 487,870 489,160 489,160 49 0 228Styrene 13 0 13 0 0 0 13 0 0Oxygen 0 0 0 0 0 0 0 1,048,336 0Water 0 0 0 0 0 0 0 0 0Nitrogen 0 0 0 0 0 0 0 3,452,607 0Carbon Dioxide 0 0 0 0 0 0 0 0 0

17

Page 19: Market Analysis

Table 3b: Stream Tables for PFD shown in Figure 1 (Cont’d)

Stream No. 68 69 70 71 72 73 74 75 76Name Refinery Ret.- - Overall - -Molar flow lbmol/h 78,003.65 156,007.30 7,859.69 7,859.69 7,859.69 7,859.69 157,582.41 157,582.41 159,347.09Mass flow lb/h 2,250,471.50 4,500,943.00 444,451.00 444,451.00 444,451.00 444,451.00 4,671,323.50 4,671,323.50 4,671,318.00Temp F 315.63 315.51 97.81 98.10 98.12 90.00 305.66 620.33 620.33Pres atm 2.93 1.91 7.98 10.62 9.59 9.19 1.91 1.50 1.50Vapor mole fraction 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00Enth MJ/h 137,600.00 275,200.00 -199,050.00 -198,950.00 -198,950.00 -201,220.00 325,580.00 726,380.00 -67,229.00Tc F -223.29 -223.29 293.86 293.86 293.86 293.86 -187.20 -187.20 -171.93Pc atm 35.57 35.57 38.92 38.92 38.92 38.92 60.59 60.59 56.16Std. sp gr. wtr = 1 0.87 0.87 0.60 0.60 0.60 0.60 0.87 0.87 0.86Std. sp gr. air = 1 1.00 1.00 1.95 1.95 1.95 1.95 1.02 1.02 1.01Degree API 31.93 31.93 106.28 106.28 106.28 106.28 32.13 32.13 32.61Average mol wt 28.85 28.85 56.55 56.55 56.55 56.55 29.64 29.64 29.32Actual dens kg/m3 2.39 1.56 567.74 567.53 567.51 573.43 1.62 0.90 0.89Actual vol m3/h 427,376.91 1,311,214.19 355.09 355.22 355.23 351.57 1,307,516.12 2,347,334.06 2,373,527.14Std liq m3/h 1,180.05 2,360.10 339.08 339.08 339.08 339.08 2,452.51 2,452.51 2,459.72Std vap 60F m3/h 838,198.99 1,676,397.98 84,457.43 84,457.43 84,457.43 84,457.43 1,693,323.53 1,693,323.53 1,712,286.19Total lb/h 2,250,471.50 4,500,943.00 444,451.00 444,451.00 444,451.00 444,451.00 4,671,323.50 4,671,323.50 4,671,318.00Flowrates in lb/h1-3-Butadiene 0 0 19,785 19,785 19,785 19,785 0 0 0I-Butene 0 0 181,826 181,826 181,826 181,826 0 0 01-Butene 0 0 121,217 121,217 121,217 121,217 0 0 0N-Butane 0 0 66,670 66,670 66,670 66,670 0 0 0I-Butane 0 0 54,548 54,548 54,548 54,548 0 0 0Acetonitrile 0 0 176 176 176 176 0 0 0Vinylcyclohexene 0 0 0 0 0 0 170,319 170,319 8,516Benzene 0 0 228 228 228 228 49 49 49Styrene 0 0 0 0 0 0 13 13 127,752Oxygen 524,168 1,048,336 0 0 0 0 1,048,336 1,048,336 914,023Water 0 0 0 0 0 0 0 0 73,368Nitrogen 1,726,304 3,452,607 0 0 0 0 3,452,607 3,452,607 3,452,607Carbon Dioxide 0 0 0 0 0 0 0 0 95,004

18

Page 20: Market Analysis

Table 3b: Stream Tables for PFD shown in Figure 1 (Cont’d)

Stream No. 77 78 79 80 81 82 83 84 85Name Non-cond. Waste Water- - Overall - -Molar flow lbmol/h 159,347.09 154,069.31 1,291.68 3,986.11 1,291.68 77.28 1,214.39 77.28 77.28Mass flow lb/h 4,671,318.00 4,464,061.50 134,826.20 72,430.17 134,826.20 8,341.42 126,483.77 8,341.42 8,341.42Temp F 204.00 204.00 204.00 204.00 204.01 248.38 275.65 248.83 248.88Pres atm 1.09 1.09 1.09 1.09 1.00 0.80 0.80 9.00 7.98Vapor mole fraction 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Enth MJ/h -593,290.00 -250,310.00 66,671.00 -506,230.00 66,671.00 1,547.50 69,657.00 1,551.70 1,551.70Tc F -171.93 -218.96 699.60 705.47 699.60 618.29 705.16 618.29 618.29Pc atm 56.16 36.29 39.08 217.86 39.08 34.02 39.50 34.02 34.02Std. sp gr. wtr = 1 0.86 0.86 0.91 1.00 0.91 0.84 0.91 0.84 0.84Std. sp gr. air = 1 1.01 1.00 3.60 0.63 3.60 3.73 3.60 3.73 3.73Degree API 32.61 33.22 24.57 10.05 24.57 37.47 23.72 37.47 37.47Average mol wt 29.32 28.97 104.38 18.17 104.38 107.93 104.15 107.93 107.93Actual dens kg/m3 1.06 1.05 834.22 959.44 834.21 739.18 802.33 738.93 738.89Actual vol m3/h 2,002,937.32 1,936,934.15 73.31 34.24 73.31 5.12 71.51 5.12 5.12Std liq m3/h 2,459.72 2,359.31 67.51 32.90 67.51 4.52 62.99 4.52 4.52Std vap 60F m3/h 1,712,286.19 1,655,573.09 13,879.90 42,833.32 13,879.90 830.45 13,049.35 830.45 830.45Total lb/h 4,671,318.00 4,464,061.50 134,826.20 72,430.17 134,826.20 8,341.42 126,483.77 8,341.42 8,341.42Flowrates in lb/h1-3-Butadiene 0 0 0 0 0 0 0 0 0I-Butene 0 0 0 0 0 0 0 0 01-Butene 0 0 0 0 0 0 0 0 0N-Butane 0 0 0 0 0 0 0 0 0I-Butane 0 0 0 0 0 0 0 0 0Acetonitrile 0 0 0 0 0 0 0 0 0Vinylcyclohexene 8,516 77 8,363 76 8,363 8,280 83 8,280 8,280Benzene 49 0 49 0 49 49 0 49 49Styrene 127,752 664 126,414 674 126,414 13 126,400 13 13Oxygen 914,023 914,023 0 0 0 0 0 0 0Water 73,368 1,687 0 71,681 0 0 0 0 0Nitrogen 3,452,607 3,452,607 0 0 0 0 0 0 0Carbon Dioxide 95,004 95,004 0 0 0 0 0 0 0

19

Page 21: Market Analysis

Table 3b: Stream Tables for PFD shown in Figure 1 (Cont’d)

Stream No. 86 87 88 89 90 91 92 93Name Stryene Product- - Overall - -Molar flow lbmol/h 1,214.39 1,214.39 1,214.39 78,003.65 78,003.65 39,001.82 39,001.82 39,001.82Mass flow lb/h 126,483.77 126,483.77 126,483.77 2,250,471.50 2,250,471.50 1,125,235.75 1,125,235.75 1,125,235.75Temp F 276.12 276.18 90.00 77.00 315.63 77.00 77.00 77.00Pres atm 9.93 8.91 8.51 1.00 2.93 1.00 1.00 1.00Vapor mole fraction 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00Enth MJ/h 69,723.00 69,723.00 59,126.00 -237.09 137,600.00 -118.55 -118.55 -118.55Tc F 705.16 705.16 705.16 -223.29 -223.29 -223.29 -223.29 -223.29Pc atm 39.50 39.50 39.50 35.57 35.57 35.57 35.57 35.57Std. sp gr. wtr = 1 0.91 0.91 0.91 0.87 0.87 0.87 0.87 0.87Std. sp gr. air = 1 3.60 3.60 3.60 1.00 1.00 1.00 1.00 1.00Degree API 23.72 23.72 23.72 31.93 31.93 31.93 31.93 31.93Average mol wt 104.15 104.15 104.15 28.85 28.85 28.85 28.85 28.85Actual dens kg/m3 802.09 802.05 894.06 1.18 2.39 1.18 1.18 1.18Actual vol m3/h 71.53 71.53 64.17 865,377.95 427,377.42 432,688.98 432,688.98 432,688.98Std liq m3/h 62.99 62.99 62.99 1,180.05 1,180.05 590.02 590.02 590.02Std vap 60F m3/h 13,049.35 13,049.35 13,049.35 838,198.99 838,198.99 419,099.50 419,099.50 419,099.50Total lb/h 126,483.77 126,483.77 126,483.77 2,250,471.50 2,250,471.50 1,125,235.75 1,125,235.75 1,125,235.75Flowrates in lb/h1-3-Butadiene 0 0 0 0 0 0 0 0I-Butene 0 0 0 0 0 0 0 01-Butene 0 0 0 0 0 0 0 0N-Butane 0 0 0 0 0 0 0 0I-Butane 0 0 0 0 0 0 0 0Acetonitrile 0 0 0 0 0 0 0 0Vinylcyclohexene 83 83 83 0 0 0 0 0Benzene 0 0 0 0 0 0 0 0Styrene 126,400 126,400 126,400 0 0 0 0 0Oxygen 0 0 0 524,168 524,168 262,084 262,084 262,084Water 0 0 0 0 0 0 0 0Nitrogen 0 0 0 1,726,304 1,726,304 863,152 863,152 863,152Carbon Dioxide 0 0 0 0 0 0 0 0

20

Page 22: Market Analysis

Table 3b: Stream Tables for PFD shown in Figure 1 (Cont’d)

Stream No. 94 95 96 97 98 99 273Name- - Overall - -Molar flow lbmol/h 39,001.82 39,001.82 39,001.82 39,001.82 39,001.82 156,007.30 5,277.79Mass flow lb/h 1,125,235.75 1,125,235.75 1,125,235.75 1,125,235.75 1,125,235.75 4,500,943.00 207,256.38Temp F 77.00 315.63 315.63 315.63 315.63 315.63 204.00Pres atm 1.00 2.93 2.93 2.93 2.93 2.93 1.09Vapor mole fraction 1.00 1.00 1.00 1.00 1.00 1.00 0.00Enth MJ/h -118.55 68,801.00 68,801.00 68,801.00 68,801.00 275,200.00 -439,560.00Tc F -223.29 -223.29 -223.29 -223.29 -223.29 -223.29 701.70Pc atm 35.57 35.57 35.57 35.57 35.57 35.57 171.47Std. sp gr. wtr = 1 0.87 0.87 0.87 0.87 0.87 0.87 0.94Std. sp gr. air = 1 1.00 1.00 1.00 1.00 1.00 1.00 1.36Degree API 31.93 31.93 31.93 31.93 31.93 31.93 19.50Average mol wt 28.85 28.85 28.85 28.85 28.85 28.85 39.27Actual dens kg/m3 1.18 2.39 2.39 2.39 2.39 2.39 874.09Actual vol m3/h 432,688.98 213,688.45 213,688.45 213,688.45 213,688.65 854,754.83 107.55Std liq m3/h 590.02 590.02 590.02 590.02 590.02 2,360.10 100.41Std vap 60F m3/h 419,099.50 419,099.50 419,099.50 419,099.50 419,099.50 1,676,397.98 56,713.22Total lb/h 1,125,235.75 1,125,235.75 1,125,235.75 1,125,235.75 1,125,235.75 4,500,943.00 207,256.38Flowrates in lb/h1-3-Butadiene 0 0 0 0 0 0 0I-Butene 0 0 0 0 0 0 01-Butene 0 0 0 0 0 0 0N-Butane 0 0 0 0 0 0 0I-Butane 0 0 0 0 0 0 0Acetonitrile 0 0 0 0 0 0 0Vinylcyclohexene 0 0 0 0 0 0 8,439Benzene 0 0 0 0 0 0 49Styrene 0 0 0 0 0 0 127,088Oxygen 262,084 262,084 262,084 262,084 262,084 1,048,336 0Water 0 0 0 0 0 0 71,681Nitrogen 863,152 863,152 863,152 863,152 863,152 3,452,607 0Carbon Dioxide 0 0 0 0 0 0 0

21

Page 23: Market Analysis

Process Description

Feed Preparation SectionFresh acetonitrile solvent (176 lb/hr) in Stream 1 and fresh C4 feed in Stream 2 (606, 087 lb/hr) are stored into bullet day tanks. The acetonitrile stream is then mixed with a recycle, Stream 31, and fed into an extractive distillation column, T-101, at 230oF and 4 atm. The crude C4 stream is also fed into this tower at 90.3oF and 4 atm. The overhead of the tower is Stream 18, containing most of the unwanted C4 components. The bottoms stream is a mix of acetonitrile and butadiene and is sent to distillation column T-103 for butadiene separation and acetonitrile recovery. The overhead product of T-103 is the final butadiene stream, Stream 26, at 163,667 lb/hr, 99.8oF, and 5.9 atm. The bottoms product of T-103 is almost pure acetonitrile and is recycled back to the front end in Stream 28. In order to have maximum acetonitrile recovery, the overhead from T-101 is distilled in T-102. The overhead of T-102 is sent to the recovery and purification section. The bottoms of T-102 is mixed into the acetonitrile recycle loop and the combined recycle, Stream 31, is mixed into the fresh acetonitrile at the front end of the process.

Reactor SectionTo prevent the butadiene from polymerizing in the CSTR, the butadiene is mixed with benzene as an inert carrier. To maintain a ratio of 25 wt% butadiene and 75 wt% benzene in the reactor, a fresh benzene feed, Stream 32, will enter the process at 184 lb/hr at 77oF and 1 atm and will combine with the butadiene stream, Stream 26, and with a recycled benzene and unreacted butadiene stream, Stream 64. The mixed stream is then pumped and condensed prior to entering a series of continuous stirred reactors, R-201 to R-206. To maintain isothermal reactors, cooling water will be used to remove heat from the reactors.

The reactor effluent, Stream 51, is sent to a distillation column, T-104, where benzene and unreacted butadiene are recovered overhead in Stream 54. Additional recovery of benzene is achieved in the T-105 distillation column. The recovered VCH, Stream 85, from distillation column T-106 in the recovery section is mixed with the bottoms of T-104. The mixed stream, Stream 59, is sent to distillation column T-105. The overhead, Stream 62, is mostly benzene, and vinylcyclohexene is recovered in the bottoms product, Stream 65.

Before Stream 54 is recycled, a small amount of impurities are purged to prevent accumulation in the system. The waste stream, Stream 67, will be sent to the recovery and purification section at 1,856 lb/hr, 154.5oF and 7.98 atm. Stream 56 is combined with the overhead of the second distillation column, Stream 62, and recycled to the front end of the process.

The recovered VCH from T-105 in Stream 65 is mixed with a 1.43107 lb/hr fresh air feed (77oF and 1 atm), Stream 69, in order to maintain the vinylcyclohexene under its explosive limit of 1% by volume.

After mixing the streams, Stream 74 is cooled prior to entering the styrene packed bed reactor, R-206. The final styrene product stream, Stream 76, will exit at 620oF and 1.5 atm with a total flow rate of 4.67107 lb/hr. The molar purities are 77.3% nitrogen, 17.9% oxygen and 0.8% styrene.

22

Page 24: Market Analysis

Purification and Recovery SectionStream 76 is cooled prior to entering a three-phase decanter, V-104. The bottom phase of V-104, containing water and trace hydrocarbons, Stream 80, is sent to wastewater treatment. The vapor stream leaving the top of the decanter, Stream 78, is a non-condensable mixture (composed mainly of air and carbon dioxide) that will be vented to the atmosphere. Stream 79 from the decanter contains a hydrocarbon mixture composed of VCH, styrene, and benzene. Stream 79 is mixed with a styrene inhibitor prior to being sent to distillation column T-104. The inhibitor is used to prevent polymerization of styrene and enters at a level of 35 to 50 ppm.

The distillation column (T-104) recovers the VCH and benzene overhead, Stream 85, and styrene in the bottoms product, Stream 83. Stream 85 is recycled to the reactor section at 8,341 lb/hr at 248.8oF and 7.98 atm.

In order for the distillation column to remain below 290oF to prevent inhibitor deactivation, T-104 is operated at 0.8 atm. A steam jet ejector (comprised of the following unit ops: P-307, E-305, V-304) is used to create a vacuum in the distillation column.

The styrene bottoms product, Stream 83, is pressurized and cooled to meet final product specifications. The final styrene product, Stream 88, exits the styrene plant at 90oF and 125 psig, with 99.91 mol% purity.

Byproduct RecoveryThe unused crude C4 Stream from the feed preparation section, Stream 22, consists of 1,3-butadiene, mixed butanes and butenes, and acetonitrile (4.11 wt%, 27.39 wt%, and 68.46 wt% respectively) at 97.6oF and 7.98 atm. Stream 22 is mixed with Stream 67, which is the waste stream from the reactor section at 155oF and 9 atm.

The mixed streams are pressurized and cooled to meet specifications of 90oF and 9.19 atm. Stream 73 will be sent back to the refinery, and contains 0.037 wt% of acetonitrile.

Process Selection and Technical Discussion

Feed PreparationThe purpose of this section was to obtain high purity butadiene to feed to the reactor section. Butadiene cannot be separated from a C4-hydrocarbon mixture by simple distillation since 1,3-butadiene and butane form an azeotrope. Additionally, the azeotrope of cis- and trans-2-butene has a boiling point slightly above butadiene. Butadiene can be isolated by liquid-liquid extraction or extractive distillation. Extractive distillation is commonly the method of choice to obtain butadiene.

Tower DiscussionExtractive distillation with acetonitrile is the most attractive means to separate butadiene from the crude C4 feed because it is relatively inexpensive. The number of stages of all columns and the feed stage were optimized in ChemCAD.

23

Page 25: Market Analysis

The feed streams’ pressures were reduced to 4 atm to optimize the reboiler duties in the three columns and set total condenser temperatures such that propane or cooling water could be used. Lowering the pressure resulted in condenser temperatures less than 90°F.

The extractive distillation column (T-101) recovered approximately 90% of the butadiene by weight. T-103 was used to purify the butadiene feed for the reactor section. High purity butadiene of 99.98% by weight was recovered in the feed preparation section to prevent accumulation of impurities in the downstream processes. The bottom product of T-102 contains additional acetonitrile removed for recycle while the distillate stream is returned to the refinery containing less than 400 ppm acetonitrile. T-102 eliminated the need to dispose of any waste products in the feed preparation section. The acetonitrile recycle stream was minimized so that the ratio of acetonitrile to crude feed was at a minimum while still obtaining the desired separation; the acetonitrile to crude ratio is 6.75 to 1.

Alternatives considered for T-103 included burning of the C4 stream exiting T-101 above the 400 ppm constraint. However, the temperature needed to burn this mixture would need to be significantly high to prevent formation of nitrogen oxide emissions (NOX).

Additional tower parameters are found in Appendix F.

Additional Unit OperationsStorage vessels V-101 and V-102 were sized to hold 2,800 and 30,000 moles of feed respectively. The size of the tanks is 700,000 and 500,000 gallons respectively. In the event that the feed streams are stopped, the tanks will enable the plant to continue operation. Sizing of the tanks are shown in Appendix G.

Reactor Section

High purity butadiene is reacted in a series of continuous stirred tank reactors (CSTR) to produce vinylcyclohexene (VCH). VCH is then mixed with air and reacted in a packed bed reactor (PBR) to form styrene product. The goal of the reactor section was to achieve high overall conversion and high styrene selectivity while minimizing capital costs.

1,3-Butadiene reaction to VinylcyclohexeneReaction Kinetics The liquid phase reaction of butadiene to vinylcyclohexene is second-order and irreversible. The exothermic reaction proceeds as follows with no side reactions:

2C4H6 C8H12 [1]Butadiene Vinylcyclohexene

The catalyst that will be used is copper zeolite. Experimentation showed that the reactor temperature should be held between 212ºF and 248ºF to prevent deactivation of the catalyst. In addition, this reaction is run in the presence of excess inert carrier benzene to prevent polymerization of butadiene. Research showed the best ratio of reactant to carrier is 25-wt% butadiene and 75-wt% benzene.

24

Page 26: Market Analysis

Continuous Stirred Tank Reactor Design In order to prevent polymerization of the styrene product, benzene was introduced in the feed at a 3 to 1 ratio to butadiene. This inert carrier was favored over the alternative ethylbenzene due to the difficulty of separating ethylbenzene from VCH and styrene. Copper zeolite catalyst was added to the feed of R-101. The reaction was set to 248oF, the maximum allowable temperature given in the design specification. The pressure was increased to 11.96 atm so that all feed entering the CSTR was liquid.

Optimization of the CSTR is described in Appendix H. Using the design equations which were dependent on the feed rate(shown in Appendix H) and the densities of butadiene and benzene, it was found that five CSTR in series would yield 94.8% per- pass conversion. A higher conversion could have been achieved using more reactors, but the increased conversion would not be justified due to the resulting increase in capital cost. The CSTR were based on a 50,000-gallon design (the largest commercially available standard size). Splitting the feed into parallel streams was analyzed and shown to have no benefit in conversion. Bypassing a percentage of the fresh feed was analyzed at various split rates. It was thought that the feeding of fresh feed to the CSTR could drive the reaction further. It was found that feeding fresh feed to any of the CSTR did not increase conversion greater than that of the original CSTR in series. Internal coils were chosen to cool the CSTR, and it was found that coils would easily fit within the tanks. Calculations for sizing of cooling coils are presented in Appendix H. The heat from the reaction will be used to generate steam as shown in Appendix I.

Products leaving the CSTR are fed into a settling tank (V-111). This tank was designed to have a settling time of 10 minutes– enough time to allow for separation of the catalyst. Catalyst is then recycled to the inlet of R-101.

Tower DiscussionThe reactor effluent from the CSTR is sent to a distillation column (T-104) where benzene and unreacted butadiene are recovered overhead. Additional recovery of benzene is achieved overhead in a second distillation column (T-105), and vinylcyclohexene is recovered in the bottoms product.

Approximately 99.99% of unreacted butadiene is removed from the VCH product (Stream 51) by T-105. To prevent the build up of impurities in the system, 15% of the unreacted butadiene stream was purged. The bottoms stream of T-105 yields a 99.96% pure VCH stream by weight.

Vinylcyclohexene to Styrene

Reaction Kinetics The reaction of vinylcyclohexene to styrene is highly exothermic and can be considered pseudo-first order due to the large excess of air used in the oxidation. It proceeds as presented in equations 2-4.

C8H12 + O2 C6H5C2H3 + H2O [2]Vinylcyclohexene + Oxygen Styrene + Water

25

Page 27: Market Analysis

C6H5C2H3 + 10O2 8CO2 + 4H2O (Side Reaction) [3]Styrene + Oxygen Carbon Dioxide + Water

C8H12 + 11O2 8CO2 + 6 H2O (Side Reaction) [4]Vinylcyclohexene + Oxygen Carbon Dioxide + Water

Packed Bed Reactor (PBR)The design equations used to design the PBR are found in Appendix I. The reaction is held under the explosive limit by having less than 1% by volume vinylcyclohexene fed to the reactor with an excess of air. Using the design equations presented in Appendix I, the number of tubes in the reactor, the size of the tubes, and the inlet temperature were varied.

Parameters, which yielded the highest conversion to styrene within design constraints, were chosen. The PBR (R-106) will have an inlet temperature of 620oF. The overall conversion of VCH in a single pass was found to be 95.6%, with 78.4 % selectivity towards styrene; the conversion of VCH to styrene was 74.9%. The maximum temperature increase from the inlet/wall temperature was found to be less than 6oF.

The final design of the PBR consisted of 5 bundles, each with 304,786 1-inch inner diameter tubes in a triangular tube pitch formation contained within the 30-ft shell. The conversion and selectivity modeled is achieved with 150,000 tubes that are 19.3 ft long. Calculations used to determine this configuration are found in Appendix I. A total of 14% extra tubes will be empty for use in the event of catalyst coking. Alternative configurations for piping arrangement were not considered. The reactor was designed for a countercurrent flow shell and tube configuration. Due to the gaseous nature of the reaction, the PBR cannot be substituted with a CSTR.

Dowtherm was chosen as reactor coolant because it is a well-understood standard in the industry and lasts longer than the alternative– molten salt. Water cannot be used to directly cool the reactor due to the high temperature of operation. Heat gained by the Dowtherm coolant was used to generate steam. It was found that the steam generated could power 4 compressors and 2 reboilers (calculations are found in appendix I). Water was pressurized and sent to a heat exchanger (E-114). The water removed the heat from the Dowtherm loop and was converted to high pressure steam in the process. A summary of all reactor specifications is given in Table 4.

Table 4. Summary of reactor specificationsReactor SummaryName R-201 R-202 R-203 R-204 R-205 R-206Thermal mode 2 2 2 2 2 2Temperature F 248 248 248 248 248 620.33Heat duty MJ/h -63425.4 -15503.5117 -5848.77 -2831.58 -1603.75 -652950.25Key Component 1 1 1 1 1 7Frac. Conversion 0.6741 0.5056 0.3858 0.3041 0.2475 0.95Reactor Pressure atm 16 16 16 16 16 4Calc H of Reac. (kJ/kmol) -77620 -77620 -77620 -77620 -77620 -1.17E+06

26

Page 28: Market Analysis

Recovery and Purification SectionThe goal of this section was to obtain 99.9 mol% purity styrene, recover unreacted VCH for recycle to reactor section, prepare crude C4 for return to the refinery and dispose of any waste in an environmentally safe manner.

Three Phase Separator DiscussionA vapor/liquid/liquid decanter (V-104) was used to separate the nitrogen/hydrocarbon/water system. Thermodynamic equilibrium is well understood, and the use of a decanter proved to be the cheapest of various alternatives. Because of the large differences in volatilities in the system and immiscibility of water, all three phases can be separated in a single decanter. Alternatives that were considered include distillation and a multistage flash. Because of the large amount of non-condensables in the system, a distillation tower for this separation was unacceptable since mostly vapor is entering the tower and the temperature of the condenser is too low. Also, since the volatilities of the gas and liquids are so different, it does not seem necessary to use a more expensive column. A gas/liquid separation could be separated with a flash, and then a smaller decanter could separate the remaining hydrophilic/hydrophobic mixture. Using one decanter in place of the equivalent two was more economical. The decanter was sized for a 10 minute resonance time (5,000 gallon capacity). Detail of the sizing is shown in Appendix G. In modeling the separation, the equilibrium data as seen in Table 5 was used in Appendix G.

Table 5. Separation in weight percent for V-104.

 To Air

(Stream 78)Organics

(Stream 79)Water

(stream 80)Benzene   1  Styrene 0.0052 0.9947  

VCH 0.009 0.991  Nitrogen 1    Oxygen 1    

Carbon Dioxide 1    Water 0.023   0.976

The constraint of 25 tons/year VOC air emissions were not met (See Appendix J). Due to limitations in modeling, this was not explored further. Using this given equilibrium data, environmental parameters may be met by adding either an additional flash or burning.

Inhibitor DiscussionInhibitor was added to the liquid styrene/VCH mixture to prevent the polymerization of the styrene product. Inhibitor was added at 50 ppm (154 gallons per week). A vessel (V-109) to hold inhibitor was sized at 160 gallons (sizing shown in Appendix G). This volume is enough to hold a one week supply of inhibitor. The inhibitor is only affective in preventing polymerization of styrene under 290 oF.

Tower DiscussionThe separation of styrene from VCH was done with T-106. The column was run under a vacuum to prevent the styrene stream temperature from rising above 290oF, causing inhibitor deactivation. The pressure of the column was raised as high as possible so that the styrene product would still be within temperature specifications.

27

Page 29: Market Analysis

In order to obtain vacuum pressure in the column, a steam jet ejector was used. Since distillation columns utilize vapor/liquid equilibriums, pumps, which cannot handle vapors, may not be used. Pumps that can handle the mixed phases are expensive. The steam jet ejector was the most attractive option. Tower parameters are found in Appendix F.

The VCH recovered from the tower is sent back to the reactor section; small amounts of benzene are present in the VCH stream, the recycle is sent to T-105 (Benzene/VCH tower).

Feed Preparation and Reactor Section Waste StreamsThe combination of waste steams from previous sections diluted acetonitrile to 310 ppm so that it met the refinery specification of 400ppm. This stream was then pressurized and cooled to meet the additional specifications of temperature and pressure (90oF and 125 psig).

Material and Energy BalanceAppendix K contains the material and energy balance from the ChemCAD simulation. The material balance and the energy balance is a check to show that simulation is working appropriately. There is no accumulation within the styrene monomer unit.

Economic Analysis

Process Equipment Schedule

ChemCAD was used to determine the cost of major equipment such as towers, compressors, heat exchangers and pumps. Capcost was used to determine the cost of vessels and reactors. Table 6 shows the Process Equipment Schedule for the proposed styrene monomer plant.

28

Page 30: Market Analysis

Table 6: Process Equipment ScheduleItem Name Size Number Cost in US dollars

Feed PreparationV-101 Acetonitrile Storage Tank 700 Gallons, CS 1 $5,310V-102 Crude C4 Storage Tank 500,000 Gallons, SS 1 $39,000P-101 Acetonitrile Feed Pump 0.01 (MJ/hr), CS 2 $23,982P-102 Recycle Pump 220.07 (MJ/hr), CI 2 $27,758P-103 Crude C4 Feed Pump 49.02 (MJ/hr), CI 2 $13,414P-104 Main Washer Reflux Pump 44.83 (MJ/hr), CI 2 $12,522P-105 Recovery Pump 94.74 (MJ/hr), CI 2 $18,034P-106 Crude Reflux Pump 172.28 (MJ/hr), CI 2 $19,652P-107 Rectifier Reflux Pump 37.29 (MJ/hr), CI 2 $10,066

E-101 Main Washer Condenser 15210 (m2), CS 1 $4,572,845

E-102 Main Washer Reboiler 3018 (m2), CS 1 $835,694

E-103 Crude Tower Condenser 7596 (m2), CS 1 $1,722,052

E-104 Crude Tower Reboiler 2924 (m2), CS 1 $997,854

E-105 Rectifier Condenser 7917 (m2), CS 1 $1,821,051

E-106 Rectifier Reboiler 636 (m2), CS 1 $139,438

E-107 Recycle Cooler 157 (m2), CS 1 $24,323T-101 Extractive Distill: Main Washer 55.9 m, 55 stages, CS 1 $2,868,224T-102 Crude Recovery Tower 55.9 m, 55 stages, CS 1 $1,317,727T-103 Extractive Distill: Rectifier 20.3 m, 20 stages, CS 1 $283,897

$14,752,843

ReactionV-103 Benzene Feed Tank 800 Gallons, CS 1 $5,495V-111 Catalyst Slurry Tank 40,000 Gallons, CS 1 $48,869P-108 Benzene Feed Pump 0.07 (MJ/hr), CS 2 $12,346P-109 CSTR Feed Pump 284.44 (MJ/hr), CI 2 $164,422P-110 CSTR Effluent Pump 1 43.38 (MJ/hr), CI 2 $12,250P-111 CSTR Effluent Pump 2 42.20 (MJ/hr), CI 2 $12,050P-112 CSTR Effluent Pump 3 41.73 (MJ/hr), CI 2 $11,970P-113 CSTR Effluent Pump 4 41.50 (MJ/hr), CI 2 $11,930P-114 Butadiene Reflux Pump 1.02 (MJ/hr), CI 2 $5,819

29

Page 31: Market Analysis

Table 6: Process Equipment Schedule (cont’d)P-115 Crude Recovery Pump 95.07 (MJ/hr), CI 2 $15,706P-114 Benzene Reflux Pump 31.97 (MJ/hr), CS 2 $10,795R-101 to R-105 CSTR 50,000 Gallons, CS 5 $291,300

R-106 Packed Bed Reactor 5-25 ft2 bundles, CS 1 $4,630,015

E-108 CSTR Feed Cooler 9 (m2), CS 1 $3,965

E-109 Butadiene Condenser 113 (m2), CS 1 $18,610

E-110 Butadiene Reboiler 100 (m2), CS 1 $36,988

E-111 Benzene Condenser 475 (m2), CS 1 $126,787

E-112 Benzene Reboiler 239 (m2), CS 1 $1,197,257

E-113 Crude Cooler 164 (m2), CS 1 $25,295

E-114 PBR Feed Exchanger 561 (m2), CS 1 $78,713

C-101 Air Compressor 167,000 (MJ/hr), Reciprocating 1 $4,348,709

C-102 Air Compressor 267,000 (MJ/hr), Reciprocating 1 $4,348,706

C-103 Air Compressor 367,000 (MJ/hr), Reciprocating 1 $4,348,709

C-104 Air Compressor 467,000 (MJ/hr), Reciprocating 1 $4,348,706

T-104 Butadiene Recovery Tower 14.2 m, 14 stages, CS 1 $203,000T-105 Benzene Recovery Tower 30.5 m, 30 stages, CS 1 $1,035,558

$25,353,970

Recovery and Purification

E-115 PBR Effluent Cooler 1257 (m2), CS 1 $185,471V-104 Decanter 5,000 Gallons, CS 1 $25,860V-109 Inhibitor Tank 160 Gallons, CS 1 $2,415T-106 Styrene Recovery Tower 70.2 m, 70 stages, CS 1 $1,019,944P-117 Styrene Reflux Pump 4.26 (MJ/hr), CI 2 $5,868P-118 Styrene Product Pump 66.34 (MJ/hr), CI 2 $10,516

E-116 Styrene Condenser 191 (m2), CS 1 $66,725

E-117 Styrene Reboiler 134 (m2), CS 1 $1,121,481

E-118 Styrene Product Cooler 115 (m2), CS 1 $19,001$2,457,281

Total Purchased Equipment $42,564,094

Fixed Capital Investment (4.13*purchased equipment) $175,789,710

Total Capital Investment (4.89*purchased equipment) $208,138,421

Estimate of Working Capital (Total CI-Fixed CI) $32,348,711

30

Page 32: Market Analysis

Estimate of Capital Requirement

As shown in Table 6, the total cost of purchased equipment was $42,564,094. The fixed capital investment and total capital investment were determined by using the Hand and Lang Factors of 4.13 and 4.89 respectively. The total fixed and capital investments are $175,789,710 and $208,138,421 respectively. The total working capital was determined from the estimate of working capital in Table 6 and from the initial startup costs associated with the purchase of raw materials. The total working capital is $34,644,725.

The data presented in Table 6 was further analyzed and graphically represented in Figures 2 and 3. Figure 2 shows the percentage of equipment cost for each section of the styrene monomer plant. As shown in Figure 3, the majority of capital investment was from the reactor section. The total cost of the reactor section was high due to the four compressors and two reactors within this section.

Figure 2: Cost of Equipment by Sections of the Plant

Figure 3 shows the percentage of equipment that contributed to the total capital investment. The majority of the total capital investment was due to the distillation towers and the four compressors, which accounted for 45.5% and 40.9% of the total capital investment.

Figure 3: Distribution of Equipment on Total Capital Investment

Production Costs

Table 7 shows the economic details used to estimate the production costs. From this analysis, the styrene credit was determined to be $0.3008/lb styrene with a total product cost of $0.021/lb styrene. The total profit was $0.0898/lb styrene.

Reactor, 59.57%

Recovery and Purification, 5.77%

Feed Preparation Section, 34.66%

Compressors, 40.87%

Vesels, 0.30%

Reactors, 11.56%

Heat Exchangers,

0.79% Pumps, 0.94%

Distillation Towers, 45.54%

31

Page 33: Market Analysis

Table 7: Production Costs (Based on Fist Year of Production)Item Details (per lb of styrene product) Cost

Cents/lb productRaw Materials

ACN 0.0013 lbs 0.096Butadiene 11.9 mols 0.834Benzene 0.0017 gal 0.217Inhibitor 3.4910-5 lbs 0.175Catalyst 0.00178 lbs 0.080Raw Material Subtotal 1.402UtilitiesCooling Water 840.17kg 0.307Steam

lps 4.6 kg 1.215mps 0.25 kg 0.000hps 1.84 kg 0.826

Propane 1993 kg 0.000Power 2164 kg 0.007Labor

Operating Labor $15/man hr 0.219Operating Supervision 15% operating labor 0.033

Maintenance 6% fixed capital 0.941Operating supplies 15% maintenance 0.141Laboratory Charges 15% operating labor 0.033

Direct Production Cost 3.721

Depreciation linear, 10yr, zero salvage 1.5685Property taxes 3% fixed capital 0.4705Insurance 0.7% fixed capital 1.0979Fixed Cost 3.1369

Plant overhead Cost60% (operating labor + operating Supervision+ maintenance) 0.716

Manufacturing Costdirect production + fixed costs + plant overhead 8.731

Administrative expenses 15% operating labor 0.033Distribution and marketing 5% total production labor 0.215Total General Expenses 0.248

Styrene Credit 30.08

Total Product Cost 21.10Profit 8.98

32

Page 34: Market Analysis

The distribution of production costs is shown in Figure 4. Typically in a chemical plant, the cost of raw materials account for a large portion of production costs. However, due to the raw materials cost advantage that the 1,3-butadiene route introduces, the raw materials cost accounts for approximately 16% of production costs.

Figure 4: Distribution of Production Cost

The main cost to produce styrene was due to fixed costs, which account for approximately 41% of production costs (shown in Figure 4). The utilities used in the styrene monomer plant were: cooling water, steam, propane, and electrical power, which account for 17% of the production costs. Table 8 shows the utilities summary for the major equipments in the styrene monomer plant.

Table 8: Utilities SummaryUtility Item # Equipment Name Rate Annual Cost

Cooling Water

(Gallons/hr) (MMGal/yr) $/yrE-105 Rectifier Condenser 19,258,378 160,268 2,275,681E-107 Recycle Cooler 410,340 3,415 48,488E-108 CSTR Feed Cooler 25,089 208.8 2,965E-109 Butadiene Condenser 180,048 1,498 21,276E-111 Benzene Condenser 1,895,486 15,774 223,982E-115 PBR Effluent Cooler 5,976,990 49,741 706,276E-116 Styrene Condenser 527,929 4,393 62,383R-101 CSTR 1 844,101 7,025 99,744R-102 CSTR 2 15,744 131.0 1,860R-103 CSTR 3 3,236 26.93 382R-104 CSTR 4 1,094 9.11 129R-105 CSTR 5 480 4.00 57

Steam (lb/hr) (MMlb/yr) $/yrE-102 Main Washer Reboiler 463,289 3,815 5,109,530E-104 Crude Tower Reboiler 254,510 2,096 2,806,944E-106 Rectifier Reboiler 70,727 582 3,341,331E-110 Butadiene Reboiler 213,577 1,759 Used cE-112 Benzene Reboiler 66,159 545 2,355,499E-114 PBR Feed Exchanger 519,981 4,282 9,257,557E-117 Styrene Reboiler 66,159 545 0

Fixed Cost41%

Utilities17%

Labor Cost15%

Raw Material16%

General Expenses

3%Plant Overhead

8%

33

Page 35: Market Analysis

Table 8: Utilities Summary (cont’d)Propane (Gallons/hr) (MMGal/yr) $/yr

E-101 Main Washer Condenser 44,729,920 372,242 Returned to RefineryE-103 Crude Tower Condenser 22,613,188 188,187 Returned to RefineryE-118 Styrene Product Cooler 122,739 1,021 Returned to RefineryE-113 Crude Cooler 26,321 219 Returned to Refinery

ElectricityOutput Power

(kw-hr)Output Power

(kw-yr) $/yrP-101 Acetonitrile Feed Pump 0.003 24.73 0.51P-102 Recycle Pump 61.13 508,723.17 18,522P-103 Crude C4 Feed Pump 13.62 113,324.60 2,524

P-104Main Washer Reflux Pump 12.45 103,634.33 2,156

P-105 ACN Recovery Pump 26.32 219,009.61 4,878P-106 Crude Reflux Pump 47.86 398,255.55 10,472P-107 Rectifier Reflux Pump 10.36 86,208.06 1,774P-108 Benzene Feed Pump 0.020 165.75 4P-109 CSTR Feed Pump 79.01 657,520.06 14,645P-110 CSTR Effluent Pump 1 12.05 100,283.80 2,234P-111 CSTR Effluent Pump 2 11.72 97,552.10 2,173P-112 CSTR Effluent Pump 3 11.59 96,468.62 2,149P-113 CSTR Effluent Pump 4 11.53 95,931.62 2,137P-114 Butadiene Reflux Pump 0.282 2,349.39 62P-115 Crude Recovery Pump 26.41 219,760.44 5,779P-116 Benzene Reflux Pump 8.88 73,910.22 0P-117 Styrene Reflux Pump 1.18 9,854.87 205P-118 Styrene Product Pump 18.43 153,364.29 3,416

Project EvaluationTable 9 shows the estimated return on investment. Based on the first year of production, the estimated gross sales income is $304,303,400. The total gross profit is $203,665,776, with annual net earnings of $101,832,888. The net return on investment is 48.93%.

A discounted cash flow diagram is shown in Figure 5, and was evaluated over a project life of 10 years. Detailed analysis for the discounted cash flow diagram is shown in Appendix L. The Modified Accelerate Cost Recovery System (MACRS) was used to depreciate the capital investment over 5 years. The main economic risk that was assumed in this analysis is that the styrene and benzene raw material costs are expected to increase over the next 10 years. The trend lines obtained from the market analysis (Appendix D) were extrapolated to determine the raw materials cost. Additionally, it was assumed that all styrene produced would be used for internal consumption or sold on the open market.

From Figure 5, the discounted payback period for the styrene monomer plant was 3.76 years. The net present value for this process was $298,000,000, with an internal rate of return of 39.64%. The company’s minimum acceptable rate of return on capital (MARR) was 20%. These factors indicate that the project would be a profitable investment for the company to accept.

34

Page 36: Market Analysis

Table 9: Return on Investment (Based on First Year of Production at 100% Capacity)

Gross Sales

Annual Production Rate (MMlbs) 1,121

Sales Price ($/lb) 0.2858

Gross Sales Income $304,303,400

Less Manufacturing Cost

Manufacturing Cost 97,860,815

Gross Profit $206,442,586

Less SARE

SARE Expenses (10% Sales) 2,776,810

Net Income before Taxes $203,665,776

Less Income Taxes

Income Taxes (50% Net Income) $101,832,887.97

Net Annual Earnings $101,832,887.97

Return on Investment

Net Annual Earnings $101,832,888

Total Fixed & Working Capital $208,138,421

% Net Return on Investment 48.93%

Payback Period (years) 3.76

(300)

(200)

(100)

0

100

200

300

400

-1 0 1 2 3 4 5 6 7 8 9 10

Years

Cas

h F

low

( x

106)

Figure 5: Discounted Cash Flow Diagram

35

Page 37: Market Analysis

Sensitivity Analysis

A sensitivity analysis was conducted to determine how sensitive the NPV, IRR, and payback period were to any changes in capital investment, cost of goods sold, and selling price of styrene. This analysis varied the three factors independently. Table 10 shows the results obtained and the extremes (negative and positive) of change for each factor.

Table 10: Sensitivity Study

 Capital Investment Selling Price of Styrene Cost of Goods Sold+40% -40% +20% -20% +20% -20%

NPV $191,215,544 $403,649,812 $454,402,136 $140,463,220 $260,041,578 $334,823,779IRR 30.2% 56.6% 48.5% 29.9% 37.2% 42.1%Payback Period 5.42 2.20 2.74 5.58 4.18 3.39

These results are graphically represented in Appendix M. Although the process is most sensitive to the change in selling price of styrene it is not greatly effected by the change in price of any of these variables. At the bounds of change the IRR is still greater than the required MARR of 20%.

Key Assumptions and Risk Styrene market is price competitive. Our company is able to manufacture styrene at

lower cost during first few years of production. All styrene produced is used for internal consumption or sold on the open market. Price trends for styrene and benzene are increasing linearly. Thermodynamic properties are correctly modeled by UNIFAC and SRK equations of

state. If vapor-liquid equilibrium data was incorrect, distillation column could require more trays and capital investment would be larger.

Reaction kinetics will scale up properly. CSTR:

System is operated under ideal conditions: there are no radial gradients within the reactor, constant liquid properties are maintained throughout the reaction, and there is no change in volume or density upon mixing.

Catalyst will not degrade or lose effectiveness over time. PBR

No radial gradients. Wall temperature was constant and equal to the inlet gas temperature. Pressure drop is negligible.

The three phase decanter is accurately modeled at the specified temperature and pressure. The amount of inhibitor added to the styrene does not affect the size of the column, or

appreciably affect chemical interactions other than polymerization. Volatile organic components exceed 25 ton/yr limit; further investigations are needed. Heuristics adequately predicted unit efficiencies. Pressure drops within pipes were not modeled.

Conclusions

36

Page 38: Market Analysis

Production consumption analysis indicted that the butadiene process has the potential to yield a greater profit margin compared to current commercial processes. Continued growth in the styrene market is expected within the next five years, due to increased demand in China and population growth in the U.S.

Styrene is a global nondifferentiated commodity, and therefore the styrene market is very price competitive. The new catalyst will give an advantage in the production of styrene– better yield and more cost effective. However, big competitors may have the ability and resources to develop a technology that will be comparable to the proposed project.

The projected price of styrene in 2004 is $0.33/lb. The project will utilize the following major unit operations:

Five 50,000 gal CSTRs cooled with internal cooling coils A PBR consisting150,000 tubes that are 19.3 ft long contained within 5 30 ft

diameter shells 6 distillation towers ranging in size from 14 to 70 stages 4 69,000 MJ/hr reciprocating comperssors 1 gas/liquid/liquid decanter

All processes indicated a need for safety measures when handling chemicals that were consumed or formed during the production of styrene.

Design a plant based on 1.1 billion lbs per year styrene capacity with the combined byproduct stream of waste from the feed preparation and reactor sections sent back to the refinery.

Styrene product meets specifications: it has a purity of 99.91 mol% and leaves the process at 90oF and 125 psig.

Waste water is sent to a water treatment facility to be safely returned to the environment. Air discharge exceeds the volatile organic component 25 ton/year limit. The NPV is most sensitive to the price of styrene. Economic analysis for the project produced the following results:

Total capital investment: $176 MM NPV (10 years): $297 MM IRR: 40% Discounted payback period: 3.8 years

Recommendations: Collect experimental data to ensure that thermodynamics accurately model the process. Build pilot plant to ensure magnitude of scale up is accurately modeled in ChemCAD. If thermodynamic tests and pilot plants are successful, build a styrene monomer plant that

will produce a maximum capacity of 1.1 billion lbs per year. Return the unused feed (isobutene, 1-butene, n-butane, isobutene) to the refinery.

Perform further research on waste disposal.

Acknowledgements1. Professor Robert E. Harris

37

Page 39: Market Analysis

2. Chemstations Inc.

References:1. “Chemical Economics Handbook 2002- SRI International”2. “Chemical Prices.” Chemical Market Reporter 5 Jan. 1998 through 13 Jan. 20033. ChemCAD [computer program]. Version 5.2.0. Houston (TX):Chemstations, Inc, 1998-2002.4. Chemical Market Reporter; New York; Dec 10, 2001; Robert Brown5. Chemical Market Reporter; New York; May 14, 20016. Chemical Market Reporter; New York; Dec 2, 2002; Robert Brown7. Chemical Market Reporter; New York; Jan 6, 2002; Robert Brown8. Chemical Market Reporter; New York; July 15, 2002; John Hoffman9. Chemical Market Reporter; New York; September 2, 2002; Robert Brown10. Chemical Market Reporter; New York; Oct 7, 2002; Robert Brown11. Chemstations Inc. (2002). ChemCAD 5.2.0, copyright 1998.12. “CMAI’s 2003 Styrene Analysis.” http://www.cmaiglobal.com/news/files/2003WSA.pdf13. “ Comet Chemical Component Ltd.” http://www.cometchemical.com/Prices.htm14. “Current Situation of Chinese Styrene Market.” http://ce.cei.gov.cn/sample/mf00fk16.htm15. Dr. C.C. Breakthrough, Director of Research, Innovative Chemical Company. Private

communications, March 2003.16. Excel [computer program]. Microsoft Windows XP. Redmond (WA): Microsoft

Corporation, 1985-2001.17. Fogler, H., Elements of Chemical Reaction Engineering. Prentice Hall: New Jersey, 199818. Harris, R. (2003, February-March). Lecture presented at Case Western Reserve University,

Cleveland, Ohio.19. “Information on the Regulatory Treatment of Styrene”

http://www.styreneforum.org/regulatory_us.html20. J.H. Major. Private Communication. Subject: “Proposed Styrene Plant” 3 January 2003.21. J.M. Watt. Private Communication. Subject: “Proposed Styrene Plant” 29 January 2003.22. Keon- Ling Ring , Yoji Muri, Chemical Economics Handbook 2002-Marketing Research

Report, 200223. Kirk-Othmer Encyclopedia of Chemical Technology. Vol. 22. John Wiley & Sons: New

York, 1997; pp. 956-985. 24. “MSDS Database.” https://www.cwru.edu/msds-cgi/ohsqform.pl25. Perry, R. H., and D. W. Green, Eds., "Heat Transfer Equipment,” Chapter 11, in "Perry's

Chemical Engineers' Handbook," 7th ed., McGraw-Hill, New York (1997).26. “Price Index.” Oil and Gas Journal 5 Jan. 1998 through 20 Jan 200327. “Styrene Bounces off the Bottom.”

http://pubs.acs.org/cen/coverstory/8011/print/8011petrochemicals1.html28. “Styrene from Butadiene via 4-Vinylcyclohexene by the Dow Process.”

http://pep.sric.sri.com/Public/Reports/Phase_94/RW94-2-4/RW94-2-4.html29. Turton, R, Bailie, R., Whiting W. Analysis, Synthesis and Design of Chemical Processes.

Prentice Hall: New Jersey, 1998; pp. 25030. Ullman’s Encyclopedia of Industrial Chemistry. Vol. A25. VCH: New York, 1994; pp. 332-

337, 437-440.

Appendix A: Production/Consumption Analysis

38

Page 40: Market Analysis

Table A-1 shows the production consumption analysis used to compare the butadiene process to the current commercial processes. Due to the large capital investment required to purify the styrene byproduct produced in the PO/SM route, a production consumption analysis was only used to compare the butadiene process to the dehydrogenation process.

Table A-1: Production Consumption Analysis for the Dehydrogenation and Butadiene Processes

Chemical Price Price per mole

Ethylene $0.24 /lb $0.0137Benzene $1.30 /gal $0.0303Styrene $0.33 /lb $0.0755Hydrogen $0.00 $0.0000Butadiene $0.13 /lb $0.0158

ethylene + benzene -> ethylbenzene -> styrene + H2 (per mole) (per lb)

$0.0137 $0.0303 $0.0755 $0.0000 $0.0314 $0.1369

Net GainPROCESS 1: Dehydrogenation

2 butadiene -> ethylbenzene + H2 -> styrene + 2 H2 (per mole) (per lb)

$0.0317 $0.0755 $0.0000 $0.0438 $0.1909

Net GainPROCESS 2: Butadiene

39

Page 41: Market Analysis

2001 2006 (Forecast)

Rest of the World8%

Eastern Europe

3%

Japan10%

Other Asia27%

Western Europe

21%

North America

25%

Eastern Europe

3%

Japan13%

Other Asia23%

Western Europe24%

North America

28%

Rest of the World9%

Appendix B: World Consumption and Capacity for Styrene in 20011

Table B-1: World Consumption of Styrene 2001 (million of pounds)

North America Western Europe Asia Other TotalPolystyrene 6583 6821 11855 2571 27840ABS/SAN Resins 904 1010 4409 57 6380S/B Copolymer Latexes 888 882 595 104 2469Unsaturated Polyester Resin 752 584 829 163 2328SBR and Latexes 564 348 679 476 2088Styrenic Copolymers 403 223 304 0 930Other 1138 763 1257 507 3664Total 11232 10631 19938 3878 45679

Figure B-1: Pie Chart of World Consumption of Styrene in 20011

Figure B-2: World Capacity for Styrene in 2001 and forecasted in 2006. Other Asia includes China, Hong Kong, Indonesia, India, the Republic of Korea, Malaysia, Singapore, Taiwan and Thailand.1

Polystyrene61%ABS/SAN Resins

14%

S/B Copolymer Latexes6%

Unsaturated Polyester Resin5%

SBR and Latexes4%

Styrenic Copolymers2%

Other8%

40

Page 42: Market Analysis

Appendix C: U.S. Production and Sales of Styrene (Product Life Cycle)1

Figure C-1: U.S. Production and Sales of Styrene. Note: Data for sales of styrene are no longer reported by United States International Trade Commissions (USITC) source beginning in 1995.

41

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

1950 1960 1970 1980 1990 2000 2010

Year

Mill

iion

of P

ou

nd

s

Production

Sales

Page 43: Market Analysis

Appendix D: Price Trends and Forecast2,26

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.41/

5/19

98

5/5/

1998

9/5/

1998

1/5/

1999

5/5/

1999

9/5/

1999

1/5/

2000

5/5/

2000

9/5/

2000

1/5/

2001

5/5/

2001

9/5/

2001

1/5/

2002

5/5/

2002

9/5/

2002

1/5/

2003

5/5/

2003

9/5/

2003

1/5/

2004

5/5/

2004

9/5/

2004

Pri

ce p

er G

allo

n (

Do

llars

)

WT Sour

World

Imports

Alaska N

Figure D-1. Price26 trends for various crudes over the last five years. Linear fits have been applied to maximum, minimum, and average values to show what price predictions over the next two years. Note that fitted trend lines may only be a valid prediction if the past trends are highly representative of future trends.

0

0.1

0.2

0.3

0.4

0.5

0.6

1/5

/19

98

5/5

/19

98

9/5

/19

98

1/5

/19

99

5/5

/19

99

9/5

/19

99

1/5

/20

00

5/5

/20

00

9/5

/20

00

1/5

/20

01

5/5

/20

01

9/5

/20

01

1/5

/20

02

5/5

/20

02

9/5

/20

02

1/5

/20

03

5/5

/20

03

9/5

/20

03

1/5

/20

04

5/5

/20

04

9/5

/20

04

Price per Pound (Dollars)

Styrene Low

Styrene High

Styrene Average

Figure D- 2. Plot of Styrene prices over the last five years. Linear fits have been applied to the low, average, and high costs of styrene and extrapolated two years into the future.

42

Page 44: Market Analysis

0

0.02

0.04

0.06

0.08

0.1

0.12

1/5

/19

98

5/5

/19

98

9/5

/19

98

1/5

/19

99

5/5

/19

99

9/5

/19

99

1/5

/20

00

5/5

/20

00

9/5

/20

00

1/5

/20

01

5/5

/20

01

9/5

/20

01

1/5

/20

02

5/5

/20

02

9/5

/20

02

1/5

/20

03

5/5

/20

03

9/5

/20

03

1/5

/20

04

5/5

/20

04

9/5

/20

04

1/5

/20

05

5/5

/20

05

9/5

/20

05

Ave

rag

e B

en

zen

e a

nd

Sty

ren

e P

ric

es

pe

r M

ole

(D

oll

ars

)

Benzene

Styrene

Figure D-3. A plot of Benzene and Styrene Prices. Note that the linear fit suggest that the prices of both chemicals is on the rise.

43

Page 45: Market Analysis

Appendix E: Health and Safety Precautions24

Health affects:Styrene is classified in EPA’s Toxic Release Inventory (TRI) as a carcinogen.

OSHA regulates styrene on the basis of avoidance of narcosis in the work place. In 1989, OSHA mandated a permissible exposure limit (PEL) for styrene of 50 parts per million (ppm) over an eight-hour time-weighted average (TWA), with a short-term exposure limit (STEL) of 100 ppm for any 15-minute period. A later court action unrelated to styrene voided the 50 ppm PEL, which reverted back to the pre-1989 standards of 100 ppm TWA and 200 ppm STEL. However, in February 1996, four styrene industry trade associations entered into a precedent-setting arrangement with OSHA to voluntarily adhere to the 50 ppm level set by the 1989 PEL. By 1997, OSHA began enforcement at the lower level.

Unusual Handling Hazards: Inspect tank vents periodically. Styrene vapors may polymerize in vents or flame arrestors of storage tanks.

Table E-1: Breakdown of Safety Information by Chemical

Chemical Safety HazardStyrene Major Health Hazards

Physical Hazards

Potential Health Effects

Environmental Concerns

Respiratory tract irritation, skin irritation, eye irritation, central nervous system depression, suspect cancer hazard (in animals)

Flammable liquid and vapor. Vapor may cause flash fire. May polymerize. Containers may rupture or explode.

Irritation, nausea, vomiting, stomach pain, chest pain, headache, drowsiness, dizziness, disorientation, mood swings, tremors, loss of coordination, unconsciousness, coma, disorientation, pain in extremities, menstrual disorders, nerve damage, brain damage

Several epidemiologic studies suggest there may be an association between styrene exposure and an increased risk of leukemia and lymphoma. However, the evidence is inconclusive due to confounding factors.  EPA's Office of Research and Development has updated previous assessments on the carcinogenic potential of styrene and concluded that styrene is appropriately classified in Group C, "possible human carcinogen."

Butadiene Major Health Hazards

Physical Hazards

Potential Health Effects

Environmental Concerns

Central nervous system depression, cancer hazard (in humans) Flammable gas. May cause flash fire. Flash back hazard. May polymerize. Containers may rupture or explode.

Irritation, nausea, headache, drowsiness, symptoms of drunkenness, digestive disorders, kidney damage, liver enlargement, reproductive effects, cancer

1,3-butadiene is carcinogenic to humans by inhalation. 1,3-Butadiene also causes a variety of reproductive and developmental effects in mice; no human data on these effects are

44

Page 46: Market Analysis

available.

Isobutene Major Health Hazards

Physical Hazards

Potential Health Effects

Environmental Concerns

Central nervous system depression, difficulty breathing

Flammable gas. May cause flash fire. Flash back hazard.

Irritation, nausea, vomiting, headache, symptoms of drunkenness, disorientation, tingling sensation, suffocation, convulsions, coma, blurred vision, frostbite

Isobutene shows little chronic toxicity because rats inhaling high doses (up to 8000 ppm) for 90 days show no evidence of any toxicological effects.

1-Butene Major Health Hazards

Physical Hazards

Potential Health Effects

Environmental Concerns

Central nervous system depression, difficulty breathing Flammable gas. May cause flash fire. Flash back hazard. Electrostatic charges may be generated by flow, agitation, etc. May polymerize. Containers may rupture or explode.

Mild irritation, nausea, vomiting, symptoms of drunkenness, suffocation, convulsions, coma, blisters, frostbite, mild irritation, blurred vision Butylenes are not toxic. They are volatile and asphyxiants. Care should be taken to avoid spills because they are extremely flammable.

N-Butane Major Health Hazards

Physical Hazards

Potential Health Effects

Environmental Concerns

Central nervous system depression, difficulty breathing

Flammable gas. May cause flash fire. Flash back hazard.

Irritation, nausea, vomiting, difficulty breathing, headache, drowsiness, symptoms of drunkenness, tingling sensation, suffocation, convulsions, coma n-Butane and isobutane are nontoxic gases. For n-butane, A threshold limit value (TLV), of 600 ppm has been recommended. Storage should be in a well-ventilated area, which are away from heat and ignition sources. Since butanes are heavier than air, they should not be used near sparking motors or other nonexplosion-proof equipment.

Iso-Butane Major Health Hazards

Physical Hazards

Potential Health Effects

Environmental Concerns

Respiratory tract irritation, central nervous system, depression, difficulty breathing

Flammable gas. May cause flash fire. Flash back hazard.

Irritation, nausea, vomiting, headache, drowsiness, dizziness, mood swings, loss of coordination, suffocation, convulsions, unconsciousness, coma

Isobutane causes drowsiness in a short time in concentrations of 1 vol %; however, there are no apparent injuries from either hydrocarbon after 2 h exposures at concentrations of up to 5%.

45

Page 47: Market Analysis

See n-butane for storage precautions.

46

Page 48: Market Analysis

Appendix F: Equipment Design Parameters

Table F-1: Design Parameters for Process Distillation TowersDistillation Towers

T-101 T-102 T-103 T-104 T-105 T-106Column Diameter (m) 8.2 6.6 5.5 3.8 6.4 4.0Column Height 55.9 55.9 20.3 14.2 30.5 71.2Number of Stages 55 55 20 14 30 70Acetonitrile Feed Stage 2 n/a n/a n/a n/a n/aFeed Stage 15 37 10 6 20 31Reflux Ratio 4 1.75 5 6.49 1.26 35.13Condenser Duty (MJ/hr) -386,187 -195,236 -169,501 -15,847 -166,830 -46,465Reboiler Duty (MJ/hr) 357,105 196,177 236,121 54,517 164,626 50,996Pressure (atm) 4 4.2 4 9 6.96 0.8

Total Energy of Tower Reboiler (MJ/hr): 1,059,541Total Energy of Tower Condensers (MJ/hr): -980,066

Table F-2: Design Parameters for Process PumpsP-101 P-102 P-103 P-104 P-105 P-106 P-107 P-108 P-109

Efficiencies 0.91 0.52 0.85 0.91 0.85 0.72 0.92 0.85 0.85Power (MJ/hr) 0.01 220.07 49.02 44.83 94.74 172.28 37.29 0.07 284.44

P-110 P-111 P-112 P-113 P-115 P-117 P-118 TotalEfficiencies 0.85 0.85 0.85 0.85 0.72 0.91 0.85Power (MJ/hr) 43.38 42.20 41.73 41.50 95.07 4.26 66.34 903

Total Energy of Pumps MJ/hr): 903

Table F-3: Design Parameters for Heat ExchangersHeat Exchangers

E-107 E-108 E-113 E-114 E-115 E-118Inlet Temp (F) 249 252 98.1 306 620 276Outlet Temp (F) 231 248 90 620 204 90Duty (MJ/hr) (36,116) (2,208) (2,272) 400,803 (526,061) (10,597)    Total Energy of Heat Exchangers (MJ/hr): -176,451

Table F-4: Design Parameters for Compressors

47

Page 49: Market Analysis

CompressorsC-101 C-102 C-103 C-104

Pressure Ratio 2.93 2.93 2.93 2.93Power (MJ/hr) 68,919 68,919 68,919 68,919Efficiency 0.8 0.8 0.8 0.8Type Reciprocating Reciprocating Reciprocating Reciprocating

   Total Energy of Pumps (MJ/hr): 275,677

Table F-5: Design Parameters for ReactorsReactors

CSTR PBRR-101 R-102 R-103 R-104 R-105 R-106

Thermal Mode Isothermal Isothermal Isothermal Isothermal Isothermal Isothermal

Temperature (F) 248 248 248 248 248 620

Heat Duty (MJ/hr) -74,293 -19,764 -7,839 -3,928 -2,284 -794,352Conversion (%) 64.47 48.37 37.08 29.39 24.02 95

Pressure (atm) 11.98 11.98 11.98 11.98 11.98 1.5       Total Energy of Towers (MJ/hr): -902,460

48

Page 50: Market Analysis

Appendix G: Sizing of Equipment

Tables G-1 to G-4 show the calculations used to determine the volume of the tanks for the styrene monomer plant. The three phase separator was modeled as a process vessel and was designed to have a residence time of 10 minutes (Shown in Table G-5).

Table G-1: Calculations to Determine Volume of ACN (V-101) Day TankSizing of ACN tank

Total FlowDensity

(Chemcad) Total Vol. Flow Total Vol. FlowVolume (1 day Resident Time)

Volume of Tank Purchased

(kg/hr) kg/m^3 (m^3/hr) (gal/min) (gal) (gal)79.9 772 0.104 0.456 656 700

Sizing of Benzene tank

Inhibitor Tank Size

Table G-2: Calculations to Determine Volume of Crude C4 Tank (V-102) with a Resident Time of 4 hours

Sizing of ACN tank

Total Flow Total Vol. Flow Total Vol. Flow

Total FlowDensity

(Chemcad) Total Vol. Flow Total Vol. FlowVolume (4 hour Resident Time)

Volume of Tank Purchased

(kg/hr) kg/m^3 (m^3/hr) (gal/min) (gal) (gal)274,917 581 473 2,082 499,589 500,000

Sizing of Benzene tank

Inhibitor Tank Size

Table G-3: Calculations to Determine Volume of Benzene Tank (V-103)

Sizing of ACN tank

Total Flow Total Vol. Flow Total Vol. Flow

Sizing of Benzene tank

Total FlowDensity

(Chemcad) Total Vol. Flow Total Vol. FlowVolume (1 day Resident Time)

Volume of Tank Purchased

(kg/hr) kg/m^3 (m^3/hr) (gal/min) (gal) (gal)103 873 0.118 0.52 751 800

Inhibitor Tank Size

Table G-4: Calculations to Determine Volume of Inhibitor Tank (V-109)

Total Flow of Styrene

Density (Chemcad)

Total Vol. Flow Total Vol. Flow Total Volume Flow

gal of inhib/wk with 35 ppm

gal of inhib/wk with 50 ppm

Volume of Tank Purchased

(kg/hr) kg/m^3 (m^3/hr) (gal/min) (gal/wk) (gal/wk) (gal/wk) (gal)58,001 834 70 306.13 3,085,831 108 154 160

Table G-5: Calculations to Determine Volume of Slurry Tank (V-112)

Total FlowDensity

(Chemcad)Total Vol.

Flow Total Vol. FlowVolume (15 min Resident Time)

Volume (20 min Resident Time)

Volume of Tank Purchased

(kg/hr) kg/m^3 (m^3/hr) (gal/min) (gal) (gal) (gal)300,568 751 400 1,763.05 26,446 35,261 40,000

Table G-6: Calculations to Determine Volume of Three Phase Separator (V-104)

Total Liquid FlowDensity

(Chemcad)Total Vol.

Flow Total Vol. FlowVolume (10 min Resident Time)

Volume of Process Vessel Purchased

(kg/hr) kg/m^3 (m^3/hr) (gal/min) (gal) (gal)95,200 875 109 479.27 4,793 5,000

49

Page 51: Market Analysis

Appendix H: CSTR Design and Optimization

Material Balance for CSTR:Input – Output + Generation = Accumulation

[H-1]

Where:F = Butadiene Flow xf = 1 densityV= Volume of the reactor

Therefore:

[H-2]

Where: M = V= Reactor Capacity And k1=7.45x1011exp(-19600/RT)

Solve for xa:

(Fraction out of the first reactor) [H-3]

If multiple CSTR’s in series:

[H-4]

With equations H-3 and H-4 the conversion within each CSTR were determined. These conversions were used within the ChemCAD stoichiometric reactor to represent actual reactors.

CSTR Configuration Optimization (Excel Modeling)

To optimize the CSTR configuration, a material balance was carried out (governed by Eqs. [H-1] to [H-5]) to determine the conversion of butadiene to vinylcyclohexene. Table H-1 shows the per pass conversion based on alternative CSTR configurations: in series or multiple splits in parallel.

Table H-1: Overall conversion for various CSTR arrangements

Split 1 2 3 4 5 6 71 0.6741 0.8389 0.9010 0.9311 0.9482 0.9589 0.96622 0.7560 0.8953 0.9404 0.9603 0.9710 0.9775 0.98173 0.7956 0.9194 0.9561 0.9715 0.9795 0.9842 0.98734 0.8203 0.9333 0.9648 0.9776 0.9840 0.9878 0.99025 0.8376 0.9425 0.9704 0.9814 0.9869 0.9900 0.9920

Number of CSTRs

Table H-1 indicates that CSTRs in series yielded a better conversion than an equal number of CSTRs in parallel. The optimal configuration occurred with five CSTRs in series, which gave a 95% per pass conversion. Using additional CSTRs would not be justified since the incremental increase in conversion would be less than 1%.

Excel backup calculations are shown in Table H-2.

50

Page 52: Market Analysis

Table H-2: CSTR arrangement calculations

F 79,248.21 kg/hr 42.15 m3/hr Total Flow of stream: 542,028.20 lb/hr 64,040.67 gal/hrpbd 1,880.00 kg/m^3 1.88 g/cm^3 1 gal =0.00379 m^3 Total flow of BD: 134,899.80 lb/hrpbz 878.60 kg/m^3 .867 g/cm^3 Total flow EB 406,600.00 lb/hr

Impurities 528.40 lb/hr

T (K) k1 (hr^-1) V (m^3) V (gal) density M = rho*V x1 (wt frac BD) residence time (hr) CONV. V (m^3) x2 CONV. V (m^3) x3 CONV.393.15 9.46 18.95 5,000 1,129 21,394 0.46 20.60 0.5401 18.9500 0.2716 0.7284 18.9500 0.1846 0.8154393.15 9.46 37.90 10,000 1,129 42,787 0.36 41.20 0.6447 37.9000 0.1835 0.8165 37.9000 0.1154 0.8846393.15 9.46 56.85 15,000 1,129 64,181 0.30 61.80 0.6981 56.8500 0.1437 0.8563 56.8500 0.0865 0.9135

V (m^3) x4 CONV. V (m^3) x5 CONV. V (m^3) x6 CONV. V (m^3) x7 CONV.18.9500 0.1368 0.8632 18.9500 0.1074 0.8926 18.9300 0.0877 0.9123 18.9300 0.0738 0.926237.9000 0.0815 0.9185 37.9000 0.0619 0.9381 37.8500 0.0494 0.9506 37.8500 0.0409 0.959156.8500 0.0594 0.9406 56.8500 0.0444 0.9556 56.7700 0.0350 0.9650 56.7700 0.0287 0.9713

0% feed addedT (K) k1 (hr^-1) V (m^3) V (gal) density M = rho*V x1 (wt frac BD) residence time (hr) CONV. V (m^3) x2 CONV. new x2 V (m^3) x3 CONV.

393.15 9.46 18.95 5,000 1,129 21,394 0.46 20.60 0.5401 18.9500 0.2716 0.7284 0.2716 18.9500 0.1846 0.8154393.15 9.46 37.90 10,000 1,129 42,787 0.36 41.20 0.6447 37.9000 0.1835 0.8165 0.1835 37.9000 0.1154 0.8846393.15 9.46 56.85 15,000 1,129 64,181 0.30 61.80 0.6981 56.8500 0.1437 0.8563 0.1437 56.8500 0.0865 0.9135393.15 9.46 75.80 20,000 1,129 85,574 0.27 82.40 0.7322 75.8000 0.1202 0.8798 0.1202 75.8000 0.0701 0.9299393.15 9.46 94.75 25,000 1,129 106,968 0.24 103.00 0.7565 94.7500 0.1044 0.8956 0.1044 94.7500 0.0594 0.9406393.15 9.46 113.70 30,000 1,129 128,362 0.22 123.60 0.7751 113.7000 0.0929 0.9071 0.0929 113.7000 0.0518 0.9482393.15 9.46 132.65 35,000 1,129 149,755 0.21 144.20 0.7898 132.6500 0.0840 0.9160 0.0840 132.6500 0.0461 0.9539393.15 9.46 151.60 40,000 1,129 171,149 0.20 164.80 0.8019 151.6000 0.0770 0.9230 0.0770 151.6000 0.0416 0.9584393.15 9.46 170.55 45,000 1,129 192,542 0.19 185.40 0.8120 170.5500 0.0713 0.9287 0.0713 170.5500 0.0380 0.9620393.15 9.46 189.50 50,000 1,129 213,936 0.18 206.00 0.8207 189.5000 0.0665 0.9335 0.0665 189.5000 0.0351 0.9649

V (m^3) x4 CONV. V (m^3) x5 CONV.18.9500 0.1368 0.8632 18.95 0.11 0.8937.9000 0.0815 0.9185 37.90 0.06 0.9456.8500 0.0594 0.9406 56.85 0.04 0.9675.8000 0.0473 0.952794.7500 0.0395 0.9605

113.7000 0.0340 0.9660132.6500 0.0300 0.9700151.6000 0.0269 0.9731170.5500 0.0244 0.9756189.5000 0.0223 0.9777

The percent bypassed number was varied to see the affect on conversion. It was found that bypassing feed in an attempt to drive reaction decreased overall conversion. Note that conversions seen in the bypass section here match that of the original calculation at the top of the page since the percent bypass is set at zero. As shaded, it was decided to use the 10,000 gallon volume reactor.

CSTR's in series

bypasses first two reactorsAdding intermediate feed

51

Page 53: Market Analysis

Sizing of CSTR Cooling Coils

Internal cooling coils were used in the CSTRs to cool the exothermic reaction. The cooling coils were sized to determine if the coils would fit into the CSTRs.

The total volume of the CSTRs was 50,000 gallons (189.27 m3). The ideal ratio of height to radius for a process vessel (from design heuristics) was 6:1. The CSTR radius was determined to be 2.16 m, with a height of 12.94 m.

To determine the area of the coils, the following calculations were carried out.

To find the heat exchange area, use Q = UAFTlm The cooling duty is 74,292.6 MJ/h = 2.06 x 107 W.U = 850 W/m2*KF = 0.9 for a shell-and-tube exchanger with no phase change.Tlm = [(120-35)-(120-29.4)] / ln[(120-35)/(120-29.4)] = 87.7oC

Therefore, A = 2.06x107 / (850*0.9*87.7) = 307 m2

According to Analysis, Synthesis, and Design of Chemical Processes, 100 m2 of heat exchanger area can be contained in a shell that is 4.9 m long and 90 cm in diameter. Since shells are not needed for the CSTRs, it was assumed that the internal cooling coils would fit into a vessel of 12.94 m x 2.16 m.

52

Page 54: Market Analysis

Appendix I: PBR Design and Optimization

Material Balance for PBR:Input - Output + Generation = Accumulation

[I-1]

Where:G = Superficial mass flow velocity of reactantsNAo = Inlet mole fraction of vinylcyclohexene (VCH)Mm = Mean Molecular weight of reactant gasA = Cross sectional area of tubex = The fraction of VCH turned to Styrenerb = g moles/(hr)(gm cat) of VCH disappearingB = Catalyst Bulk DensityL = distance along tube

Therefore:

[I-2]

So:

[I-3]

Let:

[I-4]

So:

[I-4b]

[I-5]

Let:

[I-6]

[I-7]

Also:

[I-8]

53

Page 55: Market Analysis

Since:y = x + w [I-9]

[I-10]

[I-11]

[I-12]

Where k1, k2 and k3 are given by:

[I-13]

[I-14]

[I-15]

Heat Balance on System:

Input – Output + Generation= Accumulation

[I-16]Where:

Cp = Specific HeatT = Temp in the reactorT0 = Tw= Temp at entrance (Wall temp)U = Overall Heat Transfer Coefficientdt = tube diameter-H1 = Heat of reaction (VCH to Styrene)-H3 = Heat of reaction (VCH to Waste)

Simplifies to:

[I-17]

Since:

[I-18]

54

Page 56: Market Analysis

Let:

[I-19]

[I-20]

[I-21]

Therefore:

[I-22]

Equations I-1 to I-22 can be used to take differential steps down the reactor until optimal conversion at a given length is obtained.

PBR Optimization

Excel was used to model the styrene packed bed reactor (PBR). Energy and material balances were performed on the system in order to take incremental steps through the length of the pipe.

At each incremental step through the length of the pipe, the following parameters were determined: the temperature, the specific reaction rate (k), styrene and waste conversions and selectivity. Parameters were adjusted in Excel to determine the configuration that would produce the highest conversion and selectivity at the smallest length that was within the specified temperature range. The adjusted parameters were as follows: the diameter of the tubes, the amount of hydrocarbon fed into the reactor, wall temperature, and the overall heat transfer coefficient (U).

The diameter of the tube was varied at standard dimensions between ¾” and 1 ¼”. The amount of hydrocarbon fed into the reactor was varied and was maintained at a VCH level below the explosive limit of 1%. The wall temperature and overall heat transfer coefficient (U) was varied to remain within the specified temperature range.

Results from varying these parameters with different number of tubes indicated that the optimal configuration (best conversion, selectivity, and length) for the PBR occurred when there were 150,000 tubes with an inner diameter of 0.0254 m. The styrene conversion was 75% with a reactor length of 5.88 m and a selectivity of 79%. Graph I-1 shows a graphical representation of these results. At these conditions and a heat transfer coefficient (U) of 300 kJ/(hr.m2.K) and a wall temperature of 600 K, the highest temperature difference between the catalyst bed temperature and inlet temperature was 3.8 K, as shown in Graph I-2.

The output generated in Excel is shown in Table I-1. The shaded values were the final parameters for the PBR reactor. The total length was 5.8815 m, with a selectivity of 75%.

55

Page 57: Market Analysis

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

Reactor Length (m)

Per

cen

t C

on

vers

ion

styrene + waste

waste

styrene

selectivity

Graph I-1: Plots various reaction characteristics against reactor length. Length was chosen based on maximum conversion and selectivity.

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8 9 10

Reactor Length (m)

Ch

an

ge

in

Te

mp

era

ture

(K

)

Graph I-2: Plot of the change in reactor temperature as a function of reactor length.

56

Page 58: Market Analysis

Table I-1: Excel output for PBR design.Flow 78,251 G 1029.53168 Kg/m2-hr Mm 29.48 kg/kmol -DeltaH1 401,340 KJ/kg A dt

No. Tubes 150,000 Nao 0.00924 pb 1300 kg/m3-DeltaH2 4,262,800 KJ/kg B b2

dp 0.003 m b1 12.085939 g hr/mol -DeltaH3 4,664,180 KJ/kg C b3

No 0.208 Cp 1.047 KJ/KgoC U 300 kJ/(hr-m2-K) b4

Total Flow 8468691.56 kg/hr Dz 0.5 T0

Air flow 8390440.85

0 0 0.0555611 0.0038068 0.0060720 0.0001185 0.0001068 0.0000117 0.0000000 0.0006453 0 0.0000705 0 0.17600 600.000.0015 0.5 0.0559326 0.0038364 0.0061150 0.0001192 0.0001074 0.0000117 0.0006453 0.0006491 0.0000705 0.0000710 0.1760 0.16555 600.18

0.003 1 0.0562841 0.0038644 0.0061557 0.0001198 0.0001080 0.0000118 0.0012944 0.0006527 0.0001415 0.0000714 0.3415 0.15573 600.340.0045 1.5 0.0566166 0.0038910 0.0061942 0.0001205 0.0001086 0.0000119 0.0019471 0.0006560 0.0002130 0.0000719 0.4973 0.14648 600.50

0.006 2 0.0569311 0.0039161 0.0062307 0.0001210 0.0001091 0.0000120 0.0026031 0.0006592 0.0002848 0.0000723 0.6438 0.13779 600.640.0075 2.5 0.0572283 0.0039399 0.0062651 0.0001216 0.0001096 0.0000120 0.0032623 0.0006621 0.0003571 0.0000726 0.7815 0.12961 600.78

0.009 3 0.0575091 0.0039624 0.0062977 0.0001221 0.0001100 0.0000121 0.0039244 0.0006648 0.0004298 0.0000730 0.9112 0.12191 600.910.0105 3.5 0.0577744 0.0039837 0.0063285 0.0001226 0.0001104 0.0000121 0.0045892 0.0006674 0.0005028 0.0000733 1.0331 0.11467 601.03

0.012 4 0.0580250 0.0040038 0.0063576 0.0001230 0.0001108 0.0000122 0.0052566 0.0006697 0.0005761 0.0000737 1.1477 0.10785 601.150.0135 4.5 0.0582616 0.0040228 0.0063850 0.0001234 0.0001112 0.0000122 0.0059263 0.0006719 0.0006498 0.0000739 1.2556 0.10143 601.26

0.015 5 0.0584849 0.0040407 0.0064109 0.0001238 0.0001115 0.0000123 0.0065983 0.0006740 0.0007237 0.0000742 1.3570 0.09539 601.360.0165 5.5 0.0586956 0.0040577 0.0064354 0.0001242 0.0001118 0.0000123 0.0072722 0.0006759 0.0007979 0.0000745 1.4524 0.08971 601.45

5.8665 1955.5 0.0572940 0.0039452 0.0062727 0.0000063 0.000000039 0.0000063 0.7495369 0.0000002 0.1984944 0.0000381 0.8119 -0.00011 600.815.868 1956 0.0572938 0.0039452 0.0062727 0.0000063 0.000000035 0.0000063 0.7495371 0.0000002 0.1985326 0.0000381 0.8118 -0.00011 600.81

5.8695 1956.5 0.0572935 0.0039452 0.0062727 0.0000063 0.000000031 0.0000063 0.7495373 0.0000002 0.1985707 0.0000381 0.8117 -0.00011 600.815.871 1957 0.0572933 0.0039451 0.0062727 0.0000063 0.000000027 0.0000063 0.7495375 0.0000002 0.1986088 0.0000381 0.8116 -0.00011 600.81

5.8725 1957.5 0.0572930 0.0039451 0.0062726 0.0000063 0.000000022 0.0000063 0.7495377 0.0000001 0.1986469 0.0000381 0.8115 -0.00011 600.815.874 1958 0.0572928 0.0039451 0.0062726 0.0000063 0.000000018 0.0000063 0.7495378 0.0000001 0.1986850 0.0000381 0.8114 -0.00011 600.81

5.8755 1958.5 0.0572926 0.0039451 0.0062726 0.0000063 0.000000014 0.0000063 0.7495379 0.0000001 0.1987232 0.0000381 0.8113 -0.00011 600.815.877 1959 0.0572923 0.0039451 0.0062726 0.0000063 0.000000010 0.0000063 0.7495380 0.0000001 0.1987613 0.0000381 0.8112 -0.00011 600.81

5.8785 1959.5 0.0572921 0.0039450 0.0062725 0.0000063 0.000000006 0.0000063 0.7495380 0.0000000 0.1987994 0.0000381 0.8110 -0.00011 600.815.88 1960 0.0572918 0.0039450 0.0062725 0.0000063 0.000000001 0.0000063 0.7495381 0.0000000 0.1988375 0.0000381 0.8109 -0.00011 600.81

5.8815 1960.5 0.0572916 0.0039450 0.0062725 0.0000063 -0.000000003 0.0000063 0.7495381 0.0000000 0.1988756 0.0000381 0.8108 -0.00011 600.815.883 1961 0.0572914 0.0039450 0.0062724 0.0000063 -0.000000007 0.0000063 0.7495381 0.0000000 0.1989137 0.0000381 0.8107 -0.00011 600.81

5.8845 1961.5 0.0572911 0.0039450 0.0062724 0.0000063 -0.000000011 0.0000063 0.7495380 -0.0000001 0.1989518 0.0000381 0.8106 -0.00011 600.815.886 1962 0.0572909 0.0039449 0.0062724 0.0000063 -0.000000015 0.0000063 0.7495380 -0.0000001 0.1989899 0.0000381 0.8105 -0.00011 600.81

5.8875 1962.5 0.0572907 0.0039449 0.0062724 0.0000063 -0.000000020 0.0000063 0.7495379 -0.0000001 0.1990280 0.0000381 0.8104 -0.00011 600.815.889 1963 0.0572904 0.0039449 0.0062723 0.0000063 -0.000000024 0.0000063 0.7495378 -0.0000001 0.1990661 0.0000381 0.8103 -0.00011 600.81

5.8905 1963.5 0.0572902 0.0039449 0.0062723 0.0000063 -0.000000028 0.0000063 0.7495376 -0.0000002 0.1991041 0.0000381 0.8102 -0.00011 600.815.892 1964 0.0572899 0.0039449 0.0062723 0.0000063 -0.000000032 0.0000063 0.7495374 -0.0000002 0.1991422 0.0000381 0.8101 -0.00011 600.81

5.8935 1964.5 0.0572897 0.0039448 0.0062723 0.0000063 -0.000000036 0.0000063 0.7495372 -0.0000002 0.1991803 0.0000381 0.8099 -0.00011 600.815.895 1965 0.0572895 0.0039448 0.0062722 0.0000063 -0.000000040 0.0000063 0.7495370 -0.0000002 0.1992184 0.0000381 0.8098 -0.00011 600.81

5.8965 1965.5 0.0572892 0.0039448 0.0062722 0.0000063 -0.000000045 0.0000063 0.7495368 -0.0000003 0.1992565 0.0000381 0.8097 -0.00011 600.81

k1 (g-mole/g-hr)

k2 (g-mole/g-hr)

k3 (g-mole/g-hr) ra (VCH disappearing)

rb (styrene appearing)

rc (waste appearing)

x (STYRENE) DxL (m) z

Iterations 13 through 3911are omitted in this document in order to reduce the length of this report. General trends of calculations are still well represented. Selected parameters are shaded. tComplete Spreadsheets are available upon request.

Tactualw (WASTE) Dw T DT

57

Page 59: Market Analysis

Steam GenerationDowtherm was chosen as the reactor coolant for the PBR reactor. Heat gained by the Dowtherm coolant was used to generate steam. Table I-1 shows the calculations used to determine the amount of steam that was generated within the system.

Table I-1: Steam Generation from Energy Obtained from PBR

Heat of vaporization of water 1699.33 kJ/kg Assumed constantHeat capacity of water 4.18 kJ/kgK Assumed constant

  VCH to styrene (PBR)   Butadiene to VCH (CSTR)Heat of reaction -1.17E+06 kJ/kmol   -77620 kJ/kmolAmount reacted 679.56 kmol/h   680.56 kmol/hAmount of heat produced 7.96E+08 kJ/h   5.28E+07 kJ/h     Pressure desired 59.61 bar   59.61 barTemperature desired 205 °C   205 °CTheoretical steam factor* 4 kg/kWh   4 kg/kWh     Temperature increase from cw 175.56 °C   175.56 °CAmount of steam possible 326,970.50 kg/h   21,710.57 kg/h     Total energy possible 81,742.62 kW 5,427.64 kWPossible energy at 97% efficiency 79,290.35 kW 5,264.81 kW

Total Energy Recovered 84,555 kWEach compressor requires 19,144 kWFour compressors require 76,576 kWRemaining energy 7,979 kW

*Theoretical steam factor obtained from Analysis, Synthesis, and Design of Chemical Processes.33

From Table I-1, it was determined that if the water was pumped to the desired pressure and used to generate steam, a total of 84,555 kW could be recovered by running the water through steam turbines. This energy was used to power four compressors and to fully run reboilers of T-104 and T-106, and partially run that of T-103.

58

Page 60: Market Analysis

Appendix J: Environmental Discharge Calculations

Table J-1: Calculations of the yearly VOC amounts discharged into the atmosphere and the parts per million (ppm) of organics in the waste water

ComponentStream 78 (gases) Stream 80 (water) Gases Water

1,3-butadiene 0 0 0 0i-butene 0 0 0 01-butene 0 0 0 0n-butane 0 0 0 0i-butane 0 0 0 0acetonitrile 0 0 0 0VCH 77 76 671,366 665,322benzene 0 0 0 0styrene 664 674 5,819,356 5,900,473oxygen 914,023 0 8,006,841,480 0water 1,687 71,681 14,782,237 627,922,582nitrogen 3,452,607 0 30,244,837,320 0carbon dioxide 95,004 0 832,235,040 0Total 4,464,062 72,430 39,105,186,799 634,488,377

Total VOCs 3,245 tons/yearTotal water organics 10,348 ppm

Flow rate (lb/hr) Flow rate (lb/year)

59

Page 61: Market Analysis

Appendix K: Material Balance and Energy Balance

Table K-1 and K-2 shows the material and energy balances for the styrene monomer plant respectively.

Table K-1: Material Balance for the Styrene Monomer PlantOverall Mass Balance

Input Output Input Output

1,3-Butadiene 3,361.426 365.797 181,826.240 19,786.686

I-Butene 3,240.705 3,240.708 181,826.221 181,826.385

1-Butene 2,160.470 2,160.474 121,217.499 121,217.704

N-Butane 1,147.044 1,146.982 66,669.615 66,666.032

I-Butane 938.490 938.489 54,547.855 54,547.819

Acetonitrile 4.291 4.295 176.160 176.335

Vinylcyclohexene 0.000 0.790 0.000 85.485Benzene 2.919 2.923 228.031 228.312Styrene 0.000 1,227.608 0.000 127,857.870Oxygen 32,761.518 28,560.178 1,048,335.819 913,898.000Water 0.000 4,076.408 0.000 73,436.482Nitrogen 123,245.773 123,245.773 3,452,607.090 3,452,607.090Carbon Dioxide 0.000 2,160.700 0.000 95,092.423Total 166,862.641 167,131.125 5,107,434.500 5,107,426.000

lbmol/h lb/h

Table K-2: Energy Balance for the Styrene Monomer Plant

Equipment Specs Compressors Pumps Heat Exchangers Towers Reactors Decanter

Calc cond duty (MJ/h) -980,066.493Calc rebr duty (MJ/h) 1,059,541.391Calc Ht Duty (MJ/h) -176,451.499 -902,460.000 -98,540.000Power (MJ/hr) 275,677.073 902.754Enthalpy loss (MJ/h)

Energy Balance for Plant Equipment:

-821,396.775Total Energy of Unit Ops (MJ/hr):

Inlet Streams 1 2 32 66 73 78 80 88

Enthalpy (MJ/h) 73.828 -79,976.000 65.516 -474.180 -201,220.000 -240,970.000 -519,000.000 59,808.000821,071.164Tot. Energy of Streams (MJ/hr):

(Inlet Enthalpy – Outlet Enthalpy)

60

Page 62: Market Analysis

Appendix L: Cash Flow Analysis

Table L-1: Discounted Cash Flow Analysis for the Proposed Styrene UnitMACRS Depreciation

Income Tax Rate 0.5MARR 0.2

Year -1 0 1 2 3 4 5 6 7 8 9 10 10

Investment EndFixed Capital Investment (175,789,710)Working Capital (34,644,725) 34,644,725

Operating

Total Styrene Revenue 320,319,369 337,915,639 355,511,910 373,108,180 390,704,450 408,300,721 425,896,991 443,493,262 461,089,532 478,685,803

Cost of Goods Sold (COMd) 97,860,815 119,098,405 96,740,147 83,382,322 83,525,147 73,542,485 63,559,822 63,702,647 63,845,472 63,988,297 Other Costs (General Exp ) 2,776,810 2,783,951 2,791,092 2,798,233 2,805,375 2,812,516 2,819,657 2,826,798 2,833,940 2,841,081

Earnings Before IT & D/A 219,681,744 216,033,283 255,980,671 286,927,624 304,373,929 331,945,720 359,517,512 376,963,816 394,410,120 411,856,425 Depreciation 0 (35,157,942) (56,252,707) (33,751,624) (20,250,975) (20,250,975) (10,125,487) 0 0 0 0

Earnings Before Taxes 0 254,839,686 272,285,991 289,732,295 307,178,599 324,624,903 342,071,208 359,517,512 376,963,816 394,410,120 411,856,425 Income Taxes 0 127,419,843 136,142,995 144,866,147 153,589,300 162,312,452 171,035,604 179,758,756 188,481,908 197,205,060 205,928,212

Net Income = 0 127,419,843 136,142,995 144,866,147 153,589,300 162,312,452 171,035,604 179,758,756 188,481,908 197,205,060 205,928,212

Net Cash Flow = NI+CI+WC (175,789,710) (34,644,725) 92,261,901 79,890,288 111,114,523 133,338,325 142,061,477 160,910,116 179,758,756 188,481,908 197,205,060 205,928,212 34,644,725 Discount Factor 1.20 1 0.833 0.694 0.579 0.482 0.402 0.335 0.279 0.233 0.194 0.162 0.162 PV @ 20% (210,947,652) (34,644,725) 76,884,918 55,479,367 64,302,386 64,302,819 57,091,321 53,888,472 50,167,370 43,834,868 38,219,662 33,258,556 5,595,317 NPV (210,947,652) (245,592,377) (168,707,459) (113,228,092) (48,925,706) 15,377,113 72,468,434 126,356,907 176,524,276 220,359,144 258,578,806 291,837,362 297,432,678 NPV ($*10^6) (211) (246) (169) (113) (49) 15 72 126 177 220 259 292 297

IRR 39.64%

Payback Period 3.76

Yr: Book Value Deprec. Factor Depreciation

0 -175,789,7101 -140,631,768 0.2 -35,157,9422 -84,379,061 0.32 -56,252,7073 -50,627,436 0.192 -33,751,6244 -30,376,462 0.1152 -20,250,9755 -10,125,487 0.1152 -20,250,9756 0 0.0576 -10,125,4877 0 0 08 0 0 09 0 0 010 0 0 011 0 0 0

Depreciation Schedule: (5 yr MACRS)

61

Page 63: Market Analysis

Appendix M: Sensitivity Analysis PlotsRepresented below are the effects of Capital Investment, Cost of Goods Sold and Selling prices on Net Present Value, IRR and Payback Period. These sensitivity plots show that the styrene monomer unit is most affected by the change in selling price.

Graph M-1: Sensitivity plot of NPV

Graph M-2: Sensitivity plot of Payback Period

62

Capital Investmenty = -265.54x + 297.43

COGSy = -186.96x + 297.43

Selling Pricey = 784.85x + 297.43

0

50

100

150

200

250

300

350

400

450

500

-50% -30% -10% 10% 30% 50%

% Change

NP

V (

$*1

06)

Capital Investmenty = 4.0245x + 3.7812

COGSy = 1.9561x + 3.7711

Selling Pricey = -6.9712x + 3.9234

0.00

1.00

2.00

3.00

4.00

5.00

6.00

-60% -40% -20% 0% 20% 40% 60%

% Change

Pay

bac

k P

erio

d (

year

s)

Page 64: Market Analysis

Graph M-3: Sensitivity of IRR

Appendix N: ChemCAD Output

63

Capital Investmenty = -0.3224x + 0.4115

COGSy = -0.1218x + 0.3963

Selling Pricey = 0.4633x + 0.3944

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

-60% -40% -20% 0% 20% 40% 60%

% Change

Inte

rnal

Rat

e o

f R

etu

rn

Page 65: Market Analysis

ChemCAD 5.1.0

Job Name: Styrene Production Unit Date: 04/28/2003

FLOWSHEET SUMMARY

Equipment Label Stream Numbers

1 TOWR T-101 11 8 -12 -13 2 TOWR T-103 17 -23 -24 3 VALV 1 -3 4 PUMP P-115 A/B 70 -71 5 MIXE 31 7 -9 6 MIXE 30 28 -31 7 TOWR T-102 18 -19 -20 8 PUMP P-104 A/B 12 -16 9 HTXR E-107 27 -28 10 PUMP P-102A/B 9 -10 11 VALV LIC 2 -4 12 VALV 10 -11 13 PUMP P-101A/B 3 -5 14 PUMP P-103A/B 4 -6 15 VALV FIC 5 -7 16 VALV 99 -69 17 VALV FIC 6 -8 19 PUMP P-107 A/B 23 -25 20 HTXR E-118 87 -88 21 VALV 15 -17 22 PUMP P-105 A/B 13 -15 23 VALV 20 -30 24 VALV 24 -27 25 VALV 21 -22 26 MIXE 34 26 64 -35 27 PUMP P-109 A/B 35 -36 28 HTXR E-108 36 -37 29 REAC R-101 37 -38 30 REAC R-102 40 -41 31 REAC R-103 43 -44 32 REAC R-104 46 -47 33 REAC R-105 49 -50 34 PUMP P-110 A/B 38 -39 35 VALV 39 -40 36 PUMP P-111 A/B 41 -42 37 VALV 42 -43 38 PUMP P-112 A/ B 44 -45 39 VALV 45 -46 40 PUMP P-113 A/B 47 -48 41 VALV 48 -49 42 VALV 16 -18 43 TOWR T-104 51 -52 -53 44 VALV 53 -55 45 TOWR T-105 59 -60 -61 46 VALV 61 -65 47 MIXE 69 65 -74 48 MIXE 85 55 -57 49 DIVI 54 -56 -58

64

Page 66: Market Analysis

50 VALV 60 -62 51 MIXE 56 62 -63

65

Page 67: Market Analysis

52 VALV 63 -64 53 HTXR E-114 74 -75 54 MIXE 95 96 -68 55 VALV 57 -59 56 VALV 52 -54 57 VALV 25 -26 58 VALV 58 -67 59 HTXR E-115 76 -77 60 CSEP V-104 77 -78 -273 61 CSEP V-104 273 -79 -80 62 VALV 79 -81 63 TOWR T-106 81 -82 -83 64 MIXE 22 67 -70 65 VALV 84 -85 66 MIXE 98 97 -90 67 PUMP P- 118 A/B 83 -86 68 VALV 86 -87 69 VALV 33 -34 70 COMP C-102 92 -96 71 PUMP P-117A/B 82 -84 72 COMP C- 104 94 -98 73 VALV 50 -51 74 PUMP P-106 A/B 19 -21 75 VALV 71 -72 76 HTXR E-113 72 -73 77 COMP C-101 91 -95 78 COMP C-103 93 -97 79 DIVI 66 -29 -89 80 DIVI 29 -91 -92 81 DIVI 89 -94 -93 83 MIXE 90 68 -99 132 PUMP P-108 A/B 32 -33 170 REAC R-106 75 -76

66

Page 68: Market Analysis

COMPONENTS ID # Name 1 28 1,3-Butadiene 2 27 I-Butene 3 24 1-Butene 4 6 N-Butane 5 5 I-Butane 6 125 Acetonitrile 7 828 Vinylcyclohexene 8 40 Benzene 9 178 Styrene 10 47 Oxygen 11 62 Water 12 46 Nitrogen 13 49 Carbon Dioxide

THERMODYNAMICS

K-value model : UNIFAC No corrrection for vapor fugacity Enthalpy model : SRK Liquid density : Library

Overall Mass Balance lbmol/h lb/h Input Output Input Output1,3-Butadiene 3361.426 365.775 181826.240 19785.476I-Butene 3240.705 3240.697 181826.221 181825.7961-Butene 2160.470 2160.463 121217.499 121217.074N-Butane 1147.044 1147.045 66669.615 66669.693I-Butane 938.490 938.490 54547.855 54547.869Acetonitrile 4.291 4.299 176.160 176.470Vinylcyclohexene 0.000 2.183 0.000 236.119Benzene 2.919 2.924 228.031 228.390Styrene 0.000 1226.461 0.000 127738.335Oxygen 32761.518 28564.088 1048335.819 914023.000Water 0.000 4072.613 0.000 73368.121Nitrogen 123245.773 123245.773 3452607.090 3452607.090Carbon Dioxide 0.000 2158.689 0.000 95004.000

Total 166862.641 167129.500 5107434.500 5107426.500

67

Page 69: Market Analysis

EQUIPMENT SUMMARIES

Towr Rigorous Distillation Summary

Equip. No. 1 2 7 43 Name T-101 T-103 T-102 T-104No. of stages 55 20 55 14 1st feed stage 2 10 37 6 2nd feed stage 15 0 0 0 Top pressure atm 4.0000 Condenser mode 1 1 7 7 Condenser spec. 4.0000 5.0000 0.9990 0.4000Cond. comp i 3 1 3 6 Reboiler mode 7 7 7 1 Reboiler spec. 0.9000 1.0000 0.9880 0.6000Rebl. comp i 1 6 6 0 Calc cond duty MJ/h -386186.5000 -169501.4063 -195236.3906 -15846.8408Calc rebr duty MJ/h 357105.0000 236121.0625 196177.2656 54516.7109Est. dist. rate 1581.8344 473.9939 473.9939 286.6010 (lbmol/h)Est. reflux rate 6172.9434 4.4533 2.2046 529.1090 (lbmol/h)Est. stage 1 T F 85.0000 24.0000 100.0000 159.0000Est. bottom T F 115.0000 178.0000 178.0000 356.0000Tray type 3 3 3 3 Column diameter m 8.2296 5.4864 6.5532 3.8100Tray space m 0.6096 0.6096 0.6096 0.6096Thickness (top) m 0.0167 0.0048 0.0143 0.0206Thickness (bot) m 0.0167 0.0048 0.0143 0.0206Install factor 3.0000 3.0000 3.0000 3.0000Column purchase $ 2868224 283897 1317727 203000Column installed $ 8604672 851690 3953182 609001Cost estimation flag 1 1 1 1 Shell weight lb 297272 22403 195820 45485Cost of shell $ 415439 66168 301928 105882Cost of trays $ 1852655 142608 711891 46599Platform & ladder $ 69401 22590 60080 12956No of sections 1 1 1 1 Condenser area m2 15209.6992 7914.0000 7595.8999 113.3000Rebl exchanger type 1 1 1 1 Reboiler area m2 3018.3999 528.3100 3519.2749 100.2600Cond purchase $ 4572845 1821051 1722052 18610Cond installed $ 9145690 3642102 3444103 37221Rebl purchase $ 835694 139438 997854 36988Rebl installed $ 1671387 278876 1995707 73977Total purchase $ 8276763 2244386 4037633 258599Total installed $ 19421748 4772668 9392992 720198Reflux ratio 4.0000 5.0000 1.7573 6.4895Reflux mole lbmol/h 32722.7754 15129.0088 13753.4199 1426.4050Reflux mass lb/h 1.8302e+006 818340.0000 777756.0000 80025.8984

Equip. No. 45 63 Name T-105 T-106No. of stages 30 70 1st feed stage 20 31 Top pressure atm 0.8000

68

Page 70: Market Analysis

69

Page 71: Market Analysis

EQUIPMENT SUMMARIES

Condenser mode 1 7 Condenser spec. 1.2600 0.9900Cond. comp i 0 7 Reboiler mode 7 7 Reboiler spec. 1.0000e-004 0.9999Rebl. comp i 8 9 Calc cond duty MJ/h -166830.0000 -46465.3555Calc rebr duty MJ/h 164625.7656 50995.5859Est. dist. rate 277.7820 81.0000 (lbmol/h)Est. reflux rate 559.9740 1241.0000 (lbmol/h)Est. stage 1 T F 320.0000 251.0000Est. bottom T F 360.0000 290.0000Tray type 3 3 Column diameter m 6.4008 3.9624Tray space m 0.6096 0.6096Column length m 30.5000 71.1667Thickness (top) m 0.0254 Thickness (bot) m 0.0254 Actual no of trays 68.0000Install factor 3.0000 3.0000Column purchase $ 1035558 1019944Column installed $ 3106675 3059832Cost estimation flag 1 1 Shell weight lb 322564 416108Cost of shell $ 442648 540635Cost of trays $ 344773 208302Platform & ladder $ 56520 82279No of sections 1 1 Cond exchanger type 1 0 Condenser area m2 475.5000 475.5000Reboiler area m2 238.7660 238.0000Cond purchase $ 126787 66725Cond installed $ 253575 133450Rebl purchase $ 34912 34812Rebl installed $ 69823 69623Total purchase $ 1197257 1121481Total installed $ 3430073 3262905Reflux ratio 1.2600 35.3829Reflux mole lbmol/h 7873.8291 2734.4900Reflux mass lb/h 614928.0000 295143.3438

Valve Summary

Equip. No. 3 11 12 15 Name LIC FICPressure out atm 2.3710 4.0000 Pressure drop atm 1.0207 1.0207

Equip. No. 16 17 21 23 Name FIC

70

Page 72: Market Analysis

Pressure drop atm 1.0207 1.0207 1.0207 1.0207

71

Page 73: Market Analysis

EQUIPMENT SUMMARIES

Equip. No. 24 25 35 37 Name Pressure drop atm 1.0207 1.0207 1.0207 1.0207

Equip. No. 39 41 42 44 Name Pressure drop atm 1.0207 1.0207 1.0207 1.0207

Equip. No. 46 50 52 55 Name Pressure out atm 1.9083 6.9586 Pressure drop atm 1.0207 1.0207

Equip. No. 56 57 58 62 Name Pressure out atm 9.0000 1.0000Pressure drop atm 1.0207 1.0207

Equip. No. 65 68 69 73 Name Pressure out atm 9.0000Pressure drop atm 1.0207 1.0207 1.0207

Equip. No. 75 Name Pressure drop atm 1.0207

Pump Summary

Equip. No. 4 8 10 13 Name P-115 A/B P-104 A/B P-102A/B P-101A/BOutput pressure atm 10.6152 5.2207 5.0207 Pressure increase atm 1.0207Calculated power MJ/h 95.0658 44.8310 220.0677 0.0107Calculated Pout atm 10.6152 5.2207 5.0207 3.3917Head m 48.0510 22.0109 40.1894 13.6974Vol. flow rate m3/h 355.6914 362.1966 819.1033 0.1038Cost estimation flag 1 1 1 1 Install factor 2.8000 2.8000 2.8000 2.8000Basic pump cost $ 6402 5506 10648 8378Basic motor cost $ 1451 755 3231 3613Total purchase cost $ 7853 6261 13879 11991Total installed cost $ 21990 17530 38861 33575

Equip. No. 14 19 22 27 Name P-103A/B P-107 A/B P-105 A/B P-109 A/BOutput pressure atm 6.9586 12.3844Pressure increase atm 1.0207 1.0207 Calculated power MJ/h 49.0229 37.2926 94.7410 284.4355Calculated Pout atm 5.0207 6.9586 5.0207 12.3844Head m 18.1705 51.1872 15.4378 96.4627Vol. flow rate m3/h 473.6719 124.3099 915.4114 435.1469

72

Page 74: Market Analysis

73

Page 75: Market Analysis

EQUIPMENT SUMMARIES

Cost estimation flag 1 1 1 1 Install factor 2.8000 2.8000 2.8000 2.8000Basic pump cost $ 5894 4384 7571 78023Basic motor cost $ 813 649 1447 4188Total purchase cost $ 6707 5033 9017 82211Total installed cost $ 18780 14091 25248 230190

Equip. No. 34 36 38 40 Name P-110 A/B P-111 A/B P-112 A/ B P-113 A/BPressure increase atm 1.0207 1.0207 1.0207 1.0207Calculated power MJ/h 43.3816 42.1999 41.7321 41.4989Calculated Pout atm 12.9968 12.9968 12.9968 12.9968Head m 14.7123 14.3116 14.1530 14.0739Vol. flow rate m3/h 419.1639 407.7457 403.2264 400.9726Cost estimation flag 1 1 1 1 Install factor 2.8000 2.8000 2.8000 2.8000Basic pump cost $ 5391 5307 5274 5257Basic motor cost $ 734 718 711 708Total purchase cost $ 6125 6025 5985 5965Total installed cost $ 17150 16870 16759 16703

Equip. No. 67 71 74 132 Name P- 118 A/B P-117A/B P-106 A/B P-108 A/BOutput pressure atm 9.9347 9.0000 9.0000 6.9586Calculated power MJ/h 66.3436 4.2631 172.2807 0.0717Calculated Pout atm 9.9347 9.0000 9.0000 6.9586Head m 117.8329 114.8134 87.4444 70.6403Vol. flow rate m3/h 71.6270 5.1273 353.9711 0.1187Cost estimation flag 1 1 1 1 Install factor 2.8000 2.8000 2.8000 2.8000Basic pump cost $ 4204 2701 7287 5525Basic motor cost $ 1053 233 2539 647Total purchase cost $ 5258 2934 9826 6173Total installed cost $ 14721 8215 27512 17284

Mixer Summary

Equip. No. 5 6 26 47 Name

Equip. No. 48 51 54 64 Name

Equip. No. 66 83 Name

74

Page 76: Market Analysis

EQUIPMENT SUMMARIES

Heat Exchanger Summary

Equip. No. 9 20 28 53 Name E-107 E-118 E-108 E-114Pressure drop 1 atm 0.4083 0.4083 0.4083 0.4083T Out Str 1 F 231.0000 90.0000 248.0000 620.3300Calc Ht Duty MJ/h -36115.8008 -10596.9678 -2208.2322 400803.0000LMTD (End points) F 0.0010 LMTD Corr Factor 1.0000 Calc U W/m2-K 2.0660e+007 Calc Area m2 157.3000 116.3000 9.7000 561.1400Str1 Pout atm 2.5710 8.5057 11.9761 1.5000Cost estimation 1 1 1 1 Install factor 2.0000 2.0000 2.0000 2.0000Material factor 1.0000 1.0000 1.0000 1.0000Pressure factor 1.1474 1.1324 1.0086 1.2108Type factor 0.6427 0.6254 0.4993 0.7212Basic cost $ 29448 23957 7029 80484Total purchase cost $ 24323 19001 3965 78713Total installed cost $ 48646 38003 7930 157427

Equip. No. 59 76 Name E-115 E-113Pressure drop 1 atm 0.4083 0.4083T Out Str 1 F 204.0000 90.0000Calc Ht Duty MJ/h -526061.0000 -2272.4980Calc Area m2 1256.6000 164.8000Str1 Pout atm 1.0917 9.1862Cost estimation 1 1 Install factor 2.0000 2.0000Material factor 1.0000 1.0000Pressure factor 1.2509 1.1497Type factor 0.7759 0.6454Basic cost $ 170626 30434Total purchase cost $ 185471 25295Total installed cost $ 370942 50590

Reactor Summary

Equip. No. 29 30 31 32 Name R-101 R-102 R-103 R-104Thermal mode 2 2 2 2 Temperature F 248.0000 248.0000 248.0000 248.0000Heat duty MJ/h -74293.0234 -19764.0215 -7838.7612 -3928.1899Key Component 1 1 1 1 Frac. Conversion 0.6447 0.4837 0.3708 0.2939Reactor Pressure atm 11.9761 11.9761 11.9761 11.9761Calc H of Reac. -77620.0000 -77620.0000 -77620.0000 -77620.0000 (kJ/kmol)

Stoichiometrics: 1,3-Butadiene -2.000 -2.000 -2.000 -2.000

75

Page 77: Market Analysis

76

Page 78: Market Analysis

EQUIPMENT SUMMARIES

Vinylcyclohexen 1.000 1.000 1.000 1.000

Equip. No. 33 170 Name R-105 R-106Thermal mode 2 2 Temperature F 248.0000 620.3300Heat duty MJ/h -2283.7871 -793613.0000Key Component 1 7 Frac. Conversion 0.2402 0.9500Reactor Pressure atm 11.9761 1.5000Calc H of Reac. -77620.0000 -1.1707e+006 (kJ/kmol)Mass base flag 0 1

Stoichiometrics: 1,3-Butadiene -2.000 0.000E+000 Vinylcyclohexen 1.000 -0.950 Styrene 0.000E+000 0.750 Oxygen 0.000E+000 -0.789 Water 0.000E+000 0.431 Carbon Dioxide 0.000E+000 0.558

Divider Summary

Equip. No. 49 79 80 81 Name Output stream #1 0.8495 0.5000 0.5000 0.5000Output stream #2 0.1505 0.5000 0.5000 0.5000

Component Separator Summary

Equip. No. 60 61 Name V-104 V-104Component No. 7 0.0090 0.9910Component No. 8 1.0000Component No. 9 0.0052 0.9947Component No. 10 1.0000 Component No. 11 0.0230 Component No. 12 1.0000 Component No. 13 1.0000

77

Page 79: Market Analysis

EQUIPMENT SUMMARIES

Compressor Summary

Equip. No. 70 72 77 78 Name C-102 C- 104 C-101 C-103Mode of Operation 2 2 2 2 Pressure out atm 2.9289 Type of Compressor 1 1 1 1 Efficiency 0.8000 0.8000 0.8000 0.8000Actual power MJ/h 68919.3438 68919.2500 68919.3438 68919.3438Cp/Cv 1.3988 1.3988 1.3988 1.3988Theoretical power 55135.4727 55135.4023 55135.4727 55135.4727 (MJ/h)Ideal Cp/Cv 1.3964 1.3964 1.3964 1.3964Pressure ratio 2.9290 2.9290 2.9290 2.9290Calc Pout atm 2.9290 2.9290 2.9290 2.9290Compressor type 1 1 1 1 Motor type 1 1 1 1 Driver type 1 1 1 1 Install factor 1.3000 1.3000 1.3000 1.3000Basic compressor $ 4227676 4227673 4227676 4227676Basic motor cost $ 60705 60705 60705 60705Basic driver cost $ 60328 60328 60328 60328Total purchase cost $ 4348709 4348706 4348709 4348709Total installed cost $ 5653322 5653317 5653322 5653322Cost estimation flag 1 1 1 1

78

Page 80: Market Analysis

STREAM PROPERTIES

Stream No. 1 2 3 4 Name Acetonitrile Crude C4 3 - - Overall - -Molar flow lbmol/h 4.29 10848.14 4.29 10848.14 Mass flow lb/h 176.16 606088.00 176.16 606088.00 Temp F 90.00 90.00 90.76 90.14 Pres atm 9.17 9.17 2.37 4.00 Vapor mole fraction 0.0000 0.0000 0.0000 0.0000 Enth MJ/h 73.828 -79976. 73.828 -79976. Tc F 522.23 296.84 522.23 296.84 Pc atm 47.70 39.88 47.70 39.88 Std. sp gr. wtr = 1 0.787 0.603 0.787 0.603 Std. sp gr. air = 1 1.417 1.929 1.417 1.929 Degree API 48.25 103.02 48.25 103.02 Average mol wt 41.05 55.87 41.05 55.87 Actual dens kg/m3 770.38 580.50 769.93 580.39 Actual vol m3/h 0.10 473.59 0.10 473.67 Std liq m3/h 0.10 456.06 0.10 456.06 Std vap 60F m3/h 46.11 116570.14 46.11 116570.14 - - Liquid only - -Molar flow lbmol/h 4.29 10848.14 4.29 10848.14 Mass flow lb/h 176.16 606088.00 176.16 606088.00 Average mol wt 41.05 55.87 41.05 55.87 Actual dens kg/m3 770.38 580.50 769.93 580.39 Actual vol m3/h 0.10 473.59 0.10 473.67 Std liq m3/h 0.10 456.06 0.10 456.06 Std vap 60F m3/h 46.11 116570.14 46.11 116570.14 Cp kJ/kg-K 2.57 2.45 2.57 2.46 Z factor 0.0353 0.0381 0.0091 0.0167 Visc N-s/m2 0.0003288 0.0001412 0.0003254 0.0001401 Th cond W/m-K 0.1848 0.1032 0.1847 0.1032 Surf tens N/m 0.03 0.01 0.03 0.01

79

Page 81: Market Analysis

STREAM PROPERTIES

Stream No. 5 6 7 8 Name - - Overall - -Molar flow lbmol/h 4.29 10848.14 4.29 10848.14 Mass flow lb/h 176.16 606088.00 176.16 606088.00 Temp F 90.74 90.25 90.85 90.27 Pres atm 3.39 5.02 2.37 4.00 Vapor mole fraction 0.0000 0.0000 0.0000 0.0000 Enth MJ/h 73.839 -79927. 73.839 -79927. Tc F 522.23 296.84 522.23 296.84 Pc atm 47.70 39.88 47.70 39.88 Std. sp gr. wtr = 1 0.787 0.603 0.787 0.603 Std. sp gr. air = 1 1.417 1.929 1.417 1.929 Degree API 48.25 103.02 48.25 103.02 Average mol wt 41.05 55.87 41.05 55.87 Actual dens kg/m3 769.94 580.32 769.88 580.30 Actual vol m3/h 0.10 473.73 0.10 473.75 Std liq m3/h 0.10 456.06 0.10 456.06 Std vap 60F m3/h 46.11 116570.14 46.11 116570.14 - - Liquid only - -Molar flow lbmol/h 4.29 10848.14 4.29 10848.14 Mass flow lb/h 176.16 606088.00 176.16 606088.00 Average mol wt 41.05 55.87 41.05 55.87 Actual dens kg/m3 769.94 580.32 769.88 580.30 Actual vol m3/h 0.10 473.73 0.10 473.75 Std liq m3/h 0.10 456.06 0.10 456.06 Std vap 60F m3/h 46.11 116570.14 46.11 116570.14 Cp kJ/kg-K 2.57 2.46 2.57 2.46 Z factor 0.0131 0.0209 0.0091 0.0167 Visc N-s/m2 0.0003258 0.0001403 0.0003253 0.0001401 Th cond W/m-K 0.1847 0.1031 0.1846 0.1031 Surf tens N/m 0.03 0.01 0.03 0.01

80

Page 82: Market Analysis

STREAM PROPERTIES

Stream No. 9 10 11 12 Name Cut 1 - - Overall - -Molar flow lbmol/h 29953.81 29953.81 29953.81 8180.69 Mass flow lb/h 1230117.38 1230117.38 1230117.38 457555.41 Temp F 229.47 230.12 230.17 94.96 Pres atm 2.37 5.02 4.00 4.00 Vapor mole fraction 0.001134 0.0000 0.0000 0.0000 Enth MJ/h 6.3019E+005 6.3041E+005 6.3041E+005 -1.9679E+005 Tc F 521.96 521.96 521.96 300.34 Pc atm 47.66 47.66 47.66 38.35 Std. sp gr. wtr = 1 0.787 0.787 0.787 0.599 Std. sp gr. air = 1 1.418 1.418 1.418 1.931 Degree API 48.33 48.33 48.33 104.66 Average mol wt 41.07 41.07 41.07 55.93 Actual dens kg/m3 551.65 680.75 680.71 573.01 Actual vol m3/h 1011.46 819.64 819.69 362.20 Std liq m3/h 709.75 709.75 709.75 346.70 Std vap 60F m3/h 321872.75 321872.75 321872.75 87906.78 - - Vapor only - -Molar flow lbmol/h 33.98 Mass flow lb/h 1424.84 Average mol wt 41.93 Actual dens kg/m3 3.34 Actual vol m3/h 193.34 Std liq m3/h 0.84 Std vap 60F m3/h 365.13 Cp kJ/kg-K 1.54 Z factor 0.9469 Visc N-s/m2 9.260e-006 Th cond W/m-K 0.0157 - - Liquid only - -Molar flow lbmol/h 29919.83 29953.81 29953.81 8180.69 Mass flow lb/h 1228692.53 1230117.38 1230117.38 457555.41 Average mol wt 41.07 41.07 41.07 55.93 Actual dens kg/m3 681.23 680.75 680.71 573.01 Actual vol m3/h 818.12 819.64 819.69 362.20 Std liq m3/h 708.91 709.75 709.75 346.70 Std vap 60F m3/h 321507.61 321872.75 321872.75 87906.78 Cp kJ/kg-K 2.87 2.87 2.87 2.50 Z factor 0.0081 0.0172 0.0137 0.0169 Visc N-s/m2 0.0001871 0.0001871 0.0001869 0.0001468 Th cond W/m-K 0.1536 0.1534 0.1534 0.1010 Surf tens N/m 0.02 0.02 0.02 0.01

81

Page 83: Market Analysis

STREAM PROPERTIES

Stream No. 13 15 16 17 Name - - Overall - -Molar flow lbmol/h 32621.25 32621.25 8180.69 32621.25 Mass flow lb/h 1378649.38 1378649.38 457555.41 1378649.50 Temp F 184.54 184.57 95.08 184.59 Pres atm 4.00 5.02 5.22 4.00 Vapor mole fraction 0.0000 0.0000 0.0000 0.0001463 Enth MJ/h 7.1819E+005 7.1828E+005 -1.9674E+005 7.1828E+005 Tc F 497.27 497.27 300.34 497.27 Pc atm 45.45 45.45 38.35 45.45 Std. sp gr. wtr = 1 0.764 0.764 0.599 0.764 Std. sp gr. air = 1 1.459 1.459 1.931 1.459 Degree API 53.68 53.68 104.66 53.68 Average mol wt 42.26 42.26 55.93 42.26 Actual dens kg/m3 683.13 683.11 572.92 672.38 Actual vol m3/h 915.41 915.44 362.25 930.05 Std liq m3/h 819.11 819.11 346.70 819.11 Std vap 60F m3/h 350536.14 350536.14 87906.78 350536.17 - - Vapor only - -Molar flow lbmol/h 4.77 Mass flow lb/h 242.48 Average mol wt 50.79 Actual dens kg/m3 7.44 Actual vol m3/h 14.78 Std liq m3/h 0.17 Std vap 60F m3/h 51.30 Cp kJ/kg-K 1.71 Z factor 0.9299 Visc N-s/m2 9.913e-006 Th cond W/m-K 0.0205 - - Liquid only - -Molar flow lbmol/h 32621.25 32621.25 8180.69 32616.48 Mass flow lb/h 1378649.38 1378649.38 457555.41 1378407.02 Average mol wt 42.26 42.26 55.93 42.26 Actual dens kg/m3 683.13 683.11 572.92 683.12 Actual vol m3/h 915.41 915.44 362.25 915.26 Std liq m3/h 819.11 819.11 346.70 818.95 Std vap 60F m3/h 350536.14 350536.14 87906.78 350484.89 Cp kJ/kg-K 2.73 2.73 2.50 2.73 Z factor 0.0141 0.0177 0.0220 0.0141 Visc N-s/m2 0.0002011 0.0002012 0.0001470 0.0002010 Th cond W/m-K 0.1499 0.1499 0.1010 0.1499 Surf tens N/m 0.02 0.02 0.01 0.02

82

Page 84: Market Analysis

STREAM PROPERTIES

Stream No. 18 19 20 21 Name - - Overall - -Molar flow lbmol/h 8180.69 7826.62 354.03 7826.62 Mass flow lb/h 457555.41 442595.28 14957.70 442595.28 Temp F 95.11 97.01 147.06 97.53 Pres atm 4.20 4.20 4.20 9.00 Vapor mole fraction 0.0000 0.0000 0.0000 0.0000 Enth MJ/h -1.9674E+005 -2.0058E+005 4773.1 -2.0041E+005 Tc F 300.34 293.71 500.19 293.71 Pc atm 38.35 38.90 44.68 38.90 Std. sp gr. wtr = 1 0.599 0.595 0.762 0.595 Std. sp gr. air = 1 1.931 1.953 1.459 1.953 Degree API 104.66 106.36 54.23 106.36 Average mol wt 55.93 56.55 42.25 56.55 Actual dens kg/m3 572.90 567.16 707.69 566.78 Actual vol m3/h 362.27 353.97 9.59 354.21 Std liq m3/h 346.70 337.78 8.91 337.78 Std vap 60F m3/h 87906.78 84102.00 3804.26 84102.00 - - Liquid only - -Molar flow lbmol/h 8180.69 7826.62 354.03 7826.62 Mass flow lb/h 457555.41 442595.28 14957.70 442595.28 Average mol wt 55.93 56.55 42.25 56.55 Actual dens kg/m3 572.90 567.16 707.69 566.78 Actual vol m3/h 362.27 353.97 9.59 354.21 Std liq m3/h 346.70 337.78 8.91 337.78 Std vap 60F m3/h 87906.78 84102.00 3804.26 84102.00 Cp kJ/kg-K 2.50 2.52 2.66 2.51 Z factor 0.0177 0.0179 0.0153 0.0382 Visc N-s/m2 0.0001468 0.0001411 0.0002438 0.0001418 Th cond W/m-K 0.1010 0.0993 0.1577 0.0992 Surf tens N/m 0.01 0.01 0.02 0.01

83

Page 85: Market Analysis

STREAM PROPERTIES

Stream No. 22 23 24 25 Name - - Overall - -Molar flow lbmol/h 7826.62 3025.80 29595.49 3025.80 Mass flow lb/h 442595.28 163667.81 1214983.50 163667.81 Temp F 97.55 99.45 271.03 99.61 Pres atm 7.98 4.00 4.00 6.96 Vapor mole fraction 0.0000 0.0000 0.0000 0.0000 Enth MJ/h -2.0041E+005 1.2344E+005 6.6146E+005 1.2348E+005 Tc F 293.71 306.01 522.23 306.01 Pc atm 38.90 42.70 47.70 42.70 Std. sp gr. wtr = 1 0.595 0.628 0.787 0.628 Std. sp gr. air = 1 1.953 1.868 1.417 1.868 Degree API 106.36 93.94 48.25 93.94 Average mol wt 56.55 54.09 41.05 54.09 Actual dens kg/m3 566.76 597.21 651.93 597.09 Actual vol m3/h 354.22 124.31 845.35 124.33 Std liq m3/h 337.78 118.38 700.73 118.38 Std vap 60F m3/h 84102.00 32514.17 318022.37 32514.17 - - Liquid only - -Molar flow lbmol/h 7826.62 3025.80 29595.49 3025.80 Mass flow lb/h 442595.28 163667.81 1214983.50 163667.81 Average mol wt 56.55 54.09 41.05 54.09 Actual dens kg/m3 566.76 597.21 651.93 597.09 Actual vol m3/h 354.22 124.31 845.35 124.33 Std liq m3/h 337.78 118.38 700.73 118.38 Std vap 60F m3/h 84102.00 32514.17 318022.37 32514.17 Cp kJ/kg-K 2.51 2.42 3.01 2.41 Z factor 0.0339 0.0155 0.0135 0.0270 Visc N-s/m2 0.0001415 0.0001220 0.0001606 0.0001223 Th cond W/m-K 0.0992 0.1085 0.1446 0.1085 Surf tens N/m 0.01 0.01 0.02 0.01

84

Page 86: Market Analysis

STREAM PROPERTIES

Stream No. 26 27 28 29 Name Air feed - - Overall - -Molar flow lbmol/h 3025.80 29595.49 29595.49 78003.65 Mass flow lb/h 163667.81 1214983.50 1214983.50 2250471.50 Temp F 99.63 249.15 231.00 77.00 Pres atm 5.94 2.98 2.57 1.00 Vapor mole fraction 0.0000 0.04795 0.0000 1.000 Enth MJ/h 1.2348E+005 6.6146E+005 6.2534E+005 -237.09 Tc F 306.01 522.23 522.23 -223.29 Pc atm 42.70 47.70 47.70 35.57 Std. sp gr. wtr = 1 0.628 0.787 0.787 0.866 Std. sp gr. air = 1 1.868 1.417 1.417 0.996 Degree API 93.94 48.25 48.25 31.93 Average mol wt 54.09 41.05 41.05 28.85 Actual dens kg/m3 597.07 75.27 680.57 1.18 Actual vol m3/h 124.34 7322.02 809.78 865377.95 Std liq m3/h 118.38 700.73 700.73 1180.05 Std vap 60F m3/h 32514.17 318022.37 318022.37 838198.99 - - Vapor only - -Molar flow lbmol/h 1419.11 78003.65 Mass flow lb/h 58258.68 2250471.50 Average mol wt 41.05 28.85 Actual dens kg/m3 4.04 1.18 Actual vol m3/h 6536.34 865377.95 Std liq m3/h 33.60 1180.05 Std vap 60F m3/h 15249.23 838198.99 Cp kJ/kg-K 1.54 1.02 Z factor 0.9364 0.9999 Visc N-s/m2 9.489e-006 1.831e-005 Th cond W/m-K 0.0159 0.0255 - - Liquid only - -Molar flow lbmol/h 3025.80 28176.38 29595.49 Mass flow lb/h 163667.81 1156724.82 1214983.50 Average mol wt 54.09 41.05 41.05 Actual dens kg/m3 597.07 667.81 680.57 Actual vol m3/h 124.34 785.68 809.78 Std liq m3/h 118.38 667.13 700.73 Std vap 60F m3/h 32514.17 302773.15 318022.37 Cp kJ/kg-K 2.41 2.93 2.87 Z factor 0.0230 0.0101 0.0088 Visc N-s/m2 0.0001222 0.0001740 0.0001862 Th cond W/m-K 0.1085 0.1494 0.1535 Surf tens N/m 0.01 0.02 0.02

85

Page 87: Market Analysis

STREAM PROPERTIES

Stream No. 30 31 32 33 Name Benzene Feed - - Overall - -Molar flow lbmol/h 354.03 29949.52 2.92 2.92 Mass flow lb/h 14957.70 1229941.25 228.03 228.03 Temp F 139.78 230.02 77.00 77.19 Pres atm 3.18 2.57 1.00 6.96 Vapor mole fraction 0.02201 0.0000 0.0000 0.0000 Enth MJ/h 4773.1 6.3011E+005 65.519 65.591 Tc F 500.19 521.96 552.02 552.02 Pc atm 44.68 47.66 48.31 48.31 Std. sp gr. wtr = 1 0.762 0.787 0.885 0.885 Std. sp gr. air = 1 1.459 1.418 2.697 2.697 Degree API 54.23 48.33 28.38 28.38 Average mol wt 42.25 41.07 78.11 78.11 Actual dens kg/m3 181.29 680.82 871.54 871.44 Actual vol m3/h 37.42 819.44 0.12 0.12 Std liq m3/h 8.91 709.65 0.12 0.12 Std vap 60F m3/h 3804.26 321826.65 31.37 31.37 - - Vapor only - -Molar flow lbmol/h 7.79 Mass flow lb/h 431.86 Average mol wt 55.41 Actual dens kg/m3 6.93 Actual vol m3/h 28.26 Std liq m3/h 0.32 Std vap 60F m3/h 83.75 Cp kJ/kg-K 1.85 Z factor 0.9301 Visc N-s/m2 8.581e-006 Th cond W/m-K 0.0191 - - Liquid only - -Molar flow lbmol/h 346.23 29949.52 2.92 2.92 Mass flow lb/h 14525.85 1229941.25 228.03 228.03 Average mol wt 41.95 41.07 78.11 78.11 Actual dens kg/m3 719.02 680.82 871.54 871.44 Actual vol m3/h 9.16 819.44 0.12 0.12 Std liq m3/h 8.59 709.65 0.12 0.12 Std vap 60F m3/h 3720.51 321826.65 31.37 31.37 Cp kJ/kg-K 2.65 2.87 1.58 1.58 Z factor 0.0117 0.0088 0.0040 0.0279 Visc N-s/m2 0.0002546 0.0001867 0.0005997 0.0006022 Th cond W/m-K 0.1627 0.1535 0.1433 0.1433 Surf tens N/m 0.02 0.02 0.03 0.03

86

Page 88: Market Analysis

STREAM PROPERTIES

Stream No. 34 35 36 37 Name Cut 2 - - Overall - -Molar flow lbmol/h 2.92 9464.51 9464.51 9464.51 Mass flow lb/h 228.03 662410.00 662410.00 662410.00 Temp F 77.29 206.77 252.34 248.00 Pres atm 5.94 5.94 12.38 11.98 Vapor mole fraction 0.0000 0.1959 0.007734 0.0000 Enth MJ/h 65.591 3.2731E+005 3.2760E+005 3.2539E+005 Tc F 552.02 476.90 476.90 476.90 Pc atm 48.31 49.11 49.11 49.11 Std. sp gr. wtr = 1 0.885 0.800 0.800 0.800 Std. sp gr. air = 1 2.697 2.417 2.417 2.417 Degree API 28.38 45.48 45.48 45.48 Average mol wt 78.11 69.99 69.99 69.99 Actual dens kg/m3 871.38 70.75 562.33 650.36 Actual vol m3/h 0.12 4246.60 534.32 462.00 Std liq m3/h 0.12 376.15 376.15 376.15 Std vap 60F m3/h 31.37 101702.24 101702.24 101702.24 - - Vapor only - -Molar flow lbmol/h 1854.23 73.20 Mass flow lb/h 109946.86 4266.81 Average mol wt 59.29 58.29 Actual dens kg/m3 12.79 26.61 Actual vol m3/h 3900.13 72.73 Std liq m3/h 72.92 2.88 Std vap 60F m3/h 19925.63 786.60 Cp kJ/kg-K 1.71 1.91 Z factor 0.9064 0.8359 Visc N-s/m2 1.044e-005 1.146e-005 Th cond W/m-K 0.0227 0.0268 - - Liquid only - -Molar flow lbmol/h 2.92 7610.29 9391.31 9464.51 Mass flow lb/h 228.03 552463.00 658143.00 662410.00 Average mol wt 78.11 72.59 70.08 69.99 Actual dens kg/m3 871.38 723.27 646.74 650.36 Actual vol m3/h 0.12 346.47 461.59 462.00 Std liq m3/h 0.12 303.23 373.28 376.15 Std vap 60F m3/h 31.37 81776.60 100915.64 101702.24 Cp kJ/kg-K 1.58 2.02 2.26 2.25 Z factor 0.0238 0.0211 0.0436 0.0422 Visc N-s/m2 0.0006012 0.0001954 0.0001331 0.0001353 Th cond W/m-K 0.1432 0.1117 0.0985 0.0992 Surf tens N/m 0.03 0.01 0.01 0.01

87

Page 89: Market Analysis

STREAM PROPERTIES

Stream No. 38 39 40 41 Name - - Overall - -Molar flow lbmol/h 8435.12 8435.12 8435.12 8160.72 Mass flow lb/h 662409.00 662409.00 662409.00 662408.13 Temp F 248.00 248.09 248.12 248.00 Pres atm 11.98 13.00 11.98 11.98 Vapor mole fraction 0.0000 0.0000 0.0000 0.0000 Enth MJ/h 2.5110E+005 2.5114E+005 2.5114E+005 2.3137E+005 Tc F 536.10 536.10 536.10 552.46 Pc atm 48.70 48.70 48.70 47.96 Std. sp gr. wtr = 1 0.845 0.845 0.845 0.858 Std. sp gr. air = 1 2.711 2.711 2.711 2.803 Degree API 36.00 36.00 36.00 33.48 Average mol wt 78.53 78.53 78.53 81.17 Actual dens kg/m3 716.82 716.74 716.71 736.89 Actual vol m3/h 419.16 419.21 419.22 407.75 Std liq m3/h 356.00 356.00 356.00 350.63 Std vap 60F m3/h 90640.78 90640.78 90640.78 87692.11 - - Liquid only - -Molar flow lbmol/h 8435.12 8435.12 8435.12 8160.72 Mass flow lb/h 662409.00 662409.00 662409.00 662408.13 Average mol wt 78.53 78.53 78.53 81.17 Actual dens kg/m3 716.82 716.74 716.71 736.89 Actual vol m3/h 419.16 419.21 419.22 407.75 Std liq m3/h 356.00 356.00 356.00 350.63 Std vap 60F m3/h 90640.78 90640.78 90640.78 87692.11 Cp kJ/kg-K 2.11 2.11 2.11 2.07 Z factor 0.0438 0.0475 0.0438 0.0444 Visc N-s/m2 0.0001723 0.0001723 0.0001722 0.0001856 Th cond W/m-K 0.1063 0.1063 0.1063 0.1086 Surf tens N/m 0.01 0.01 0.01 0.01

88

Page 90: Market Analysis

STREAM PROPERTIES

Stream No. 42 43 44 45 Name - - Overall - -Molar flow lbmol/h 8160.72 8160.72 8052.11 8052.11 Mass flow lb/h 662408.13 662408.13 662408.06 662408.06 Temp F 248.08 248.12 248.00 248.08 Pres atm 13.00 11.98 11.98 13.00 Vapor mole fraction 0.0000 0.0000 0.0000 0.0000 Enth MJ/h 2.3142E+005 2.3142E+005 2.2358E+005 2.2362E+005 Tc F 552.46 552.46 559.01 559.01 Pc atm 47.96 47.96 47.58 47.58 Std. sp gr. wtr = 1 0.858 0.858 0.863 0.863 Std. sp gr. air = 1 2.803 2.803 2.840 2.840 Degree API 33.48 33.48 32.48 32.48 Average mol wt 81.17 81.17 82.27 82.27 Actual dens kg/m3 736.83 736.80 745.15 745.09 Actual vol m3/h 407.78 407.80 403.23 403.26 Std liq m3/h 350.63 350.63 348.50 348.50 Std vap 60F m3/h 87692.11 87692.11 86525.06 86525.06 - - Liquid only - -Molar flow lbmol/h 8160.72 8160.72 8052.11 8052.11 Mass flow lb/h 662408.13 662408.13 662408.06 662408.06 Average mol wt 81.17 81.17 82.27 82.27 Actual dens kg/m3 736.83 736.80 745.15 745.09 Actual vol m3/h 407.78 407.80 403.23 403.26 Std liq m3/h 350.63 350.63 348.50 348.50 Std vap 60F m3/h 87692.11 87692.11 86525.06 86525.06 Cp kJ/kg-K 2.07 2.08 2.06 2.06 Z factor 0.0481 0.0444 0.0446 0.0484 Visc N-s/m2 0.0001857 0.0001855 0.0001915 0.0001916 Th cond W/m-K 0.1085 0.1085 0.1095 0.1095 Surf tens N/m 0.01 0.01 0.02 0.02

89

Page 91: Market Analysis

STREAM PROPERTIES

Stream No. 46 47 48 49 Name - - Overall - -Molar flow lbmol/h 8052.11 7997.95 7997.95 7997.95 Mass flow lb/h 662408.06 662408.00 662408.00 662408.00 Temp F 248.12 248.00 248.08 248.12 Pres atm 11.98 11.98 13.00 11.98 Vapor mole fraction 0.0000 0.0000 0.0000 0.0000 Enth MJ/h 2.2362E+005 2.1969E+005 2.1973E+005 2.1973E+005 Tc F 559.01 562.29 562.29 562.29 Pc atm 47.58 47.38 47.38 47.38 Std. sp gr. wtr = 1 0.863 0.866 0.866 0.866 Std. sp gr. air = 1 2.840 2.860 2.860 2.860 Degree API 32.48 31.98 31.98 31.98 Average mol wt 82.27 82.82 82.82 82.82 Actual dens kg/m3 745.06 749.34 749.28 749.25 Actual vol m3/h 403.27 400.97 401.00 401.02 Std liq m3/h 348.50 347.44 347.44 347.44 Std vap 60F m3/h 86525.06 85943.02 85943.02 85943.02 - - Liquid only - -Molar flow lbmol/h 8052.11 7997.95 7997.95 7997.95 Mass flow lb/h 662408.06 662408.00 662408.00 662408.00 Average mol wt 82.27 82.82 82.82 82.82 Actual dens kg/m3 745.06 749.34 749.28 749.25 Actual vol m3/h 403.27 400.97 401.00 401.02 Std liq m3/h 348.50 347.44 347.44 347.44 Std vap 60F m3/h 86525.06 85943.02 85943.02 85943.02 Cp kJ/kg-K 2.06 2.06 2.06 2.06 Z factor 0.0446 0.0448 0.0486 0.0448 Visc N-s/m2 0.0001914 0.0001945 0.0001946 0.0001944 Th cond W/m-K 0.1095 0.1100 0.1099 0.1099 Surf tens N/m 0.02 0.02 0.02 0.02

90

Page 92: Market Analysis

STREAM PROPERTIES

Stream No. 50 51 52 53 Name - - Overall - -Molar flow lbmol/h 7966.69 7966.69 219.80 7746.89 Mass flow lb/h 662408.00 662408.00 12331.51 650077.00 Temp F 248.00 248.13 163.70 356.63 Pres atm 11.98 9.00 9.00 9.00 Vapor mole fraction 0.0000 0.0000 0.0000 0.0000 Enth MJ/h 2.1745E+005 2.1745E+005 9034.4 2.4709E+005 Tc F 564.18 564.18 332.45 569.44 Pc atm 47.25 47.25 44.24 46.93 Std. sp gr. wtr = 1 0.867 0.867 0.652 0.873 Std. sp gr. air = 1 2.871 2.871 1.937 2.897 Degree API 31.69 31.69 85.58 30.67 Average mol wt 83.15 83.15 56.10 83.91 Actual dens kg/m3 751.77 751.69 569.59 683.55 Actual vol m3/h 399.67 399.72 9.82 431.38 Std liq m3/h 346.83 346.83 8.59 338.24 Std vap 60F m3/h 85607.15 85607.15 2361.90 83245.31 - - Liquid only - -Molar flow lbmol/h 7966.69 7966.69 219.80 7746.89 Mass flow lb/h 662408.00 662408.00 12331.51 650077.00 Average mol wt 83.15 83.15 56.10 83.91 Actual dens kg/m3 751.77 751.69 569.59 683.55 Actual vol m3/h 399.67 399.72 9.82 431.38 Std liq m3/h 346.83 346.83 8.59 338.24 Std vap 60F m3/h 85607.15 85607.15 2361.90 83245.31 Cp kJ/kg-K 2.05 2.06 2.60 2.40 Z factor 0.0449 0.0337 0.0343 0.0333 Visc N-s/m2 0.0001963 0.0001956 9.499e-005 0.0001255 Th cond W/m-K 0.1102 0.1102 0.0981 0.0942 Surf tens N/m 0.02 0.02 0.01 0.01

91

Page 93: Market Analysis

STREAM PROPERTIES

Stream No. 54 55 56 57 Name - - Overall - -Molar flow lbmol/h 219.80 7746.89 186.72 7824.18 Mass flow lb/h 12331.51 650077.00 10475.83 658418.25 Temp F 163.70 344.99 163.70 345.48 Pres atm 9.00 7.98 9.00 7.98 Vapor mole fraction 0.0000 0.05041 0.0000 0.04246 Enth MJ/h 9034.4 2.4709E+005 7674.9 2.4864E+005 Tc F 332.45 569.44 332.45 570.09 Pc atm 44.24 46.93 44.24 46.85 Std. sp gr. wtr = 1 0.652 0.873 0.652 0.872 Std. sp gr. air = 1 1.937 2.897 1.937 2.906 Degree API 85.58 30.67 85.58 30.75 Average mol wt 56.10 83.91 56.10 84.15 Actual dens kg/m3 569.59 265.75 569.59 294.67 Actual vol m3/h 9.82 1109.58 8.34 1013.52 Std liq m3/h 8.59 338.24 7.30 342.77 Std vap 60F m3/h 2361.90 83245.31 2006.47 84075.75 - - Vapor only - -Molar flow lbmol/h 390.55 332.20 Mass flow lb/h 31440.86 26775.45 Average mol wt 80.50 80.60 Actual dens kg/m3 20.25 20.26 Actual vol m3/h 704.31 599.43 Std liq m3/h 16.23 13.82 Std vap 60F m3/h 4196.68 3569.78 Cp kJ/kg-K 1.70 1.70 Z factor 0.8650 0.8649 Visc N-s/m2 1.160e-005 1.160e-005 Th cond W/m-K 0.0243 0.0243 - - Liquid only - -Molar flow lbmol/h 219.80 7356.35 186.72 7491.98 Mass flow lb/h 12331.51 618636.02 10475.83 631643.00 Average mol wt 56.10 84.10 56.10 84.31 Actual dens kg/m3 569.59 692.40 569.59 691.90 Actual vol m3/h 9.82 405.27 8.34 414.09 Std liq m3/h 8.59 322.01 7.30 328.94 Std vap 60F m3/h 2361.90 79048.63 2006.47 80505.97 Cp kJ/kg-K 2.60 2.36 2.60 2.36 Z factor 0.0343 0.0295 0.0343 0.0296 Visc N-s/m2 9.499e-005 0.0001313 9.499e-005 0.0001307 Th cond W/m-K 0.0981 0.0960 0.0981 0.0959 Surf tens N/m 0.01 0.01 0.01 0.01

92

Page 94: Market Analysis

STREAM PROPERTIES

Stream No. 58 59 60 61 Name Cut 3 - - Overall - -Molar flow lbmol/h 33.08 7824.17 6249.07 1575.11 Mass flow lb/h 1855.68 658418.25 488038.00 170380.45 Temp F 163.70 332.67 319.47 426.31 Pres atm 9.00 6.96 6.96 6.96 Vapor mole fraction 0.0000 0.09499 0.0000 0.0000 Enth MJ/h 1359.5 2.4864E+005 1.9605E+005 50378. Tc F 332.45 570.09 552.02 618.52 Pc atm 44.24 46.85 48.31 33.86 Std. sp gr. wtr = 1 0.652 0.872 0.885 0.837 Std. sp gr. air = 1 1.937 2.906 2.697 3.735 Degree API 85.58 30.75 28.38 37.54 Average mol wt 56.10 84.15 78.10 108.17 Actual dens kg/m3 569.59 155.32 716.56 624.73 Actual vol m3/h 1.48 1922.79 308.93 123.71 Std liq m3/h 1.29 342.77 250.36 92.41 Std vap 60F m3/h 355.43 84075.75 67150.22 16925.52 - - Vapor only - -Molar flow lbmol/h 743.23 Mass flow lb/h 59937.88 Average mol wt 80.65 Actual dens kg/m3 17.70 Actual vol m3/h 1535.73 Std liq m3/h 30.95 Std vap 60F m3/h 7985.99 Cp kJ/kg-K 1.66 Z factor 0.8778 Visc N-s/m2 1.136e-005 Th cond W/m-K 0.0236 - - Liquid only - -Molar flow lbmol/h 33.08 7080.94 6249.07 1575.11 Mass flow lb/h 1855.68 598480.37 488038.00 170380.45 Average mol wt 56.10 84.52 78.10 108.17 Actual dens kg/m3 569.59 701.34 716.56 624.73 Actual vol m3/h 1.48 387.07 308.93 123.71 Std liq m3/h 1.29 311.82 250.36 92.41 Std vap 60F m3/h 355.43 76089.76 67150.22 16925.52 Cp kJ/kg-K 2.60 2.32 2.21 2.79 Z factor 0.0343 0.0258 0.0237 0.0334 Visc N-s/m2 9.499e-005 0.0001374 0.0001556 8.186e-005 Th cond W/m-K 0.0981 0.0978 0.1021 0.0812 Surf tens N/m 0.01 0.01 0.01 0.01

93

Page 95: Market Analysis

STREAM PROPERTIES

Stream No. 62 63 64 65 Name - - Overall - -Molar flow lbmol/h 6249.07 6435.79 6435.79 1575.11 Mass flow lb/h 488038.00 498514.00 498514.00 170380.45 Temp F 319.47 304.62 293.11 309.27 Pres atm 6.96 6.96 5.94 1.91 Vapor mole fraction 0.0000 0.04248 0.08351 0.5325 Enth MJ/h 1.9609E+005 2.0377E+005 2.0377E+005 50378. Tc F 552.02 546.43 546.43 618.52 Pc atm 48.31 48.45 48.45 33.86 Std. sp gr. wtr = 1 0.885 0.878 0.878 0.837 Std. sp gr. air = 1 2.697 2.674 2.674 3.735 Degree API 28.38 29.58 29.58 37.54 Average mol wt 78.10 77.46 77.46 108.17 Actual dens kg/m3 716.56 264.91 145.96 11.66 Actual vol m3/h 308.94 853.57 1549.23 6626.26 Std liq m3/h 250.36 257.65 257.65 92.41 Std vap 60F m3/h 67150.22 69156.69 69156.69 16925.52 - - Vapor only - -Molar flow lbmol/h 273.37 537.45 838.70 Mass flow lb/h 20243.36 40141.51 90717.68 Average mol wt 74.05 74.69 108.16 Actual dens kg/m3 16.71 14.41 6.26 Actual vol m3/h 549.60 1263.64 6574.83 Std liq m3/h 10.91 21.45 49.20 Std vap 60F m3/h 2937.60 5775.30 9012.37 Cp kJ/kg-K 1.63 1.59 1.88 Z factor 0.8853 0.8970 0.9410 Visc N-s/m2 1.126e-005 1.102e-005 9.340e-006 Th cond W/m-K 0.0235 0.0225 0.0222 - - Liquid only - -Molar flow lbmol/h 6249.07 6162.42 5898.34 736.41 Mass flow lb/h 488038.00 478270.17 458372.02 79662.77 Average mol wt 78.10 77.61 77.71 108.18 Actual dens kg/m3 716.56 713.70 728.00 702.59 Actual vol m3/h 308.94 303.97 285.59 51.43 Std liq m3/h 250.36 246.75 236.20 43.21 Std vap 60F m3/h 67150.22 66219.09 63381.39 7913.16 Cp kJ/kg-K 2.21 2.18 2.14 2.40 Z factor 0.0237 0.0237 0.0203 0.0092 Visc N-s/m2 0.0001556 0.0001618 0.0001716 0.0001155 Th cond W/m-K 0.1021 0.1031 0.1056 0.0955 Surf tens N/m 0.01 0.01 0.01 0.01

94

Page 96: Market Analysis

STREAM PROPERTIES

Stream No. 66 67 68 69 Name Air feed - - Overall - -Molar flow lbmol/h 156007.30 33.08 78003.65 156007.30 Mass flow lb/h 4500943.00 1855.68 2250471.50 4500943.00 Temp F 77.00 154.47 315.63 315.51 Pres atm 1.00 7.98 2.93 1.91 Vapor mole fraction 1.000 0.03970 1.000 1.000 Enth MJ/h -474.18 1359.5 1.3760E+005 2.7520E+005 Tc F -223.29 332.45 -223.29 -223.29 Pc atm 35.57 44.24 35.57 35.57 Std. sp gr. wtr = 1 0.866 0.652 0.866 0.866 Std. sp gr. air = 1 0.996 1.937 0.996 0.996 Degree API 31.93 85.58 31.93 31.93 Average mol wt 28.85 56.10 28.85 28.85 Actual dens kg/m3 1.18 263.90 2.39 1.56 Actual vol m3/h 1730755.91 3.19 427376.91 1311214.19 Std liq m3/h 2360.10 1.29 1180.05 2360.10 Std vap 60F m3/h 1676397.98 355.43 838198.99 1676397.98 - - Vapor only - -Molar flow lbmol/h 156007.30 1.31 78003.65 156007.30 Mass flow lb/h 4500943.00 71.33 2250471.50 4500943.00 Average mol wt 28.85 54.32 28.85 28.85 Actual dens kg/m3 1.18 18.07 2.39 1.56 Actual vol m3/h 1730755.91 1.79 427376.91 1311214.19 Std liq m3/h 2360.10 0.05 1180.05 2360.10 Std vap 60F m3/h 1676397.98 14.11 838198.99 1676397.98 Cp kJ/kg-K 1.02 1.78 1.03 1.03 Z factor 0.9999 0.8570 1.0011 1.0007 Visc N-s/m2 1.831e-005 1.011e-005 2.415e-005 2.415e-005 Th cond W/m-K 0.0255 0.0212 0.0349 0.0348 - - Liquid only - -Molar flow lbmol/h 31.76 Mass flow lb/h 1784.36 Average mol wt 56.18 Actual dens kg/m3 578.51 Actual vol m3/h 1.40 Std liq m3/h 1.24 Std vap 60F m3/h 341.32 Cp kJ/kg-K 2.54 Z factor 0.0303 Visc N-s/m2 0.0001007 Th cond W/m-K 0.1001 Surf tens N/m 0.01

95

Page 97: Market Analysis

STREAM PROPERTIES

Stream No. 70 71 72 73 Name - - Overall - -Molar flow lbmol/h 7859.69 7859.69 7859.69 7859.69 Mass flow lb/h 444451.00 444451.00 444451.00 444451.00 Temp F 97.81 98.10 98.12 90.00 Pres atm 7.98 10.62 9.59 9.19 Vapor mole fraction 0.0000 0.0000 0.0000 0.0000 Enth MJ/h -1.9905E+005 -1.9895E+005 -1.9895E+005 -2.0122E+005 Tc F 293.86 293.86 293.86 293.86 Pc atm 38.92 38.92 38.92 38.92 Std. sp gr. wtr = 1 0.595 0.595 0.595 0.595 Std. sp gr. air = 1 1.952 1.952 1.952 1.952 Degree API 106.28 106.28 106.28 106.28 Average mol wt 56.55 56.55 56.55 56.55 Actual dens kg/m3 566.78 566.57 566.56 572.47 Actual vol m3/h 355.69 355.82 355.83 352.16 Std liq m3/h 339.08 339.08 339.08 339.08 Std vap 60F m3/h 84457.43 84457.43 84457.43 84457.43 - - Liquid only - -Molar flow lbmol/h 7859.69 7859.69 7859.69 7859.69 Mass flow lb/h 444451.00 444451.00 444451.00 444451.00 Average mol wt 56.55 56.55 56.55 56.55 Actual dens kg/m3 566.78 566.57 566.56 572.47 Actual vol m3/h 355.69 355.82 355.83 352.16 Std liq m3/h 339.08 339.08 339.08 339.08 Std vap 60F m3/h 84457.43 84457.43 84457.43 84457.43 Cp kJ/kg-K 2.51 2.51 2.51 2.48 Z factor 0.0339 0.0450 0.0407 0.0391 Visc N-s/m2 0.0001414 0.0001418 0.0001416 0.0001457 Th cond W/m-K 0.0992 0.0991 0.0991 0.1008 Surf tens N/m 0.01 0.01 0.01 0.01

96

Page 98: Market Analysis

STREAM PROPERTIES

Stream No. 74 75 76 77 Name - - Overall - -Molar flow lbmol/h 157582.41 157582.41 159347.09 159347.09 Mass flow lb/h 4671323.50 4671323.50 4671318.00 4671318.00 Temp F 305.66 620.33 620.33 204.00 Pres atm 1.91 1.50 1.50 1.09 Vapor mole fraction 1.000 1.000 1.000 1.000 Enth MJ/h 3.2558E+005 7.2638E+005 -67229. -5.9329E+005 Tc F -187.20 -187.20 -171.93 -171.93 Pc atm 60.59 60.59 56.16 56.16 Std. sp gr. wtr = 1 0.865 0.865 0.862 0.862 Std. sp gr. air = 1 1.024 1.024 1.012 1.012 Degree API 32.13 32.13 32.61 32.61 Average mol wt 29.64 29.64 29.32 29.32 Actual dens kg/m3 1.62 0.90 0.89 1.06 Actual vol m3/h 1307516.12 2347334.06 2373527.14 2002937.32 Std liq m3/h 2452.51 2452.51 2459.72 2459.72 Std vap 60F m3/h 1693323.53 1693323.53 1712286.19 1712286.19 - - Vapor only - -Molar flow lbmol/h 157582.41 157582.41 159347.09 159347.09 Mass flow lb/h 4671323.50 4671323.50 4671318.00 4671318.00 Average mol wt 29.64 29.64 29.32 29.32 Actual dens kg/m3 1.62 0.90 0.89 1.06 Actual vol m3/h 1307516.12 2347334.06 2373527.14 2002937.32 Std liq m3/h 2452.51 2452.51 2459.72 2459.72 Std vap 60F m3/h 1693323.53 1693323.53 1712286.19 1712286.19 Cp kJ/kg-K 1.06 1.11 1.11 1.05 Z factor 1.0007 1.0007 1.0006 1.0001 Visc N-s/m2 2.342e-005 2.997e-005 2.975e-005 2.077e-005 Th cond W/m-K 0.0341 0.0455 0.0454 0.0300

97

Page 99: Market Analysis

STREAM PROPERTIES

Stream No. 78 79 80 81 Name - - Overall - -Molar flow lbmol/h 154069.31 1291.68 3986.11 1291.68 Mass flow lb/h 4464061.50 134826.20 72430.17 134826.20 Temp F 204.00 204.00 204.00 204.01 Pres atm 1.09 1.09 1.09 1.00 Vapor mole fraction 1.000 0.0000 0.0000 0.0000 Enth MJ/h -2.5031E+005 66671. -5.0623E+005 66671. Tc F -218.96 699.60 705.47 699.60 Pc atm 36.29 39.08 217.86 39.08 Std. sp gr. wtr = 1 0.859 0.907 1.000 0.907 Std. sp gr. air = 1 1.000 3.604 0.627 3.604 Degree API 33.22 24.57 10.05 24.57 Average mol wt 28.97 104.38 18.17 104.38 Actual dens kg/m3 1.05 832.81 959.42 832.81 Actual vol m3/h 1936934.15 73.43 34.24 73.43 Std liq m3/h 2359.31 67.51 32.90 67.51 Std vap 60F m3/h 1655573.09 13879.90 42833.32 13879.90 - - Vapor only - -Molar flow lbmol/h 154069.31 Mass flow lb/h 4464061.50 Average mol wt 28.97 Actual dens kg/m3 1.05 Actual vol m3/h 1936934.15 Std liq m3/h 2359.31 Std vap 60F m3/h 1655573.09 Cp kJ/kg-K 1.02 Z factor 1.0003 Visc N-s/m2 2.140e-005 Th cond W/m-K 0.0304 - - Liquid only - -Molar flow lbmol/h 1291.68 3986.11 1291.68 Mass flow lb/h 134826.20 72430.17 134826.20 Average mol wt 104.38 18.17 104.38 Actual dens kg/m3 832.81 959.42 832.81 Actual vol m3/h 73.43 34.24 73.43 Std liq m3/h 67.51 32.90 67.51 Std vap 60F m3/h 13879.90 42833.32 13879.90 Cp kJ/kg-K 1.84 4.20 1.84 Z factor 0.0051 0.0009 0.0047 Visc N-s/m2 0.0003113 0.0002950 0.0003112 Th cond W/m-K 0.1201 0.6626 0.1201 Surf tens N/m 0.03 0.06 0.03

98

Page 100: Market Analysis

STREAM PROPERTIES

Stream No. 82 83 84 85 Name - - Overall - -Molar flow lbmol/h 77.28 1214.39 77.28 77.28 Mass flow lb/h 8341.42 126483.77 8341.42 8341.42 Temp F 248.38 275.65 248.83 248.88 Pres atm 0.80 0.80 9.00 7.98 Vapor mole fraction 0.0000 0.0000 0.0000 0.0000 Enth MJ/h 1547.5 69657. 1551.7 1551.7 Tc F 618.29 705.16 618.29 618.29 Pc atm 34.02 39.50 34.02 34.02 Std. sp gr. wtr = 1 0.837 0.912 0.837 0.837 Std. sp gr. air = 1 3.727 3.596 3.727 3.727 Degree API 37.47 23.72 37.47 37.47 Average mol wt 107.93 104.15 107.93 107.93 Actual dens kg/m3 737.93 800.98 737.68 737.65 Actual vol m3/h 5.13 71.63 5.13 5.13 Std liq m3/h 4.52 62.99 4.52 4.52 Std vap 60F m3/h 830.45 13049.35 830.45 830.45 - - Liquid only - -Molar flow lbmol/h 77.28 1214.39 77.28 77.28 Mass flow lb/h 8341.42 126483.77 8341.42 8341.42 Average mol wt 107.93 104.15 107.93 107.93 Actual dens kg/m3 737.93 800.98 737.68 737.65 Actual vol m3/h 5.13 71.63 5.13 5.13 Std liq m3/h 4.52 62.99 4.52 4.52 Std vap 60F m3/h 830.45 13049.35 830.45 830.45 Cp kJ/kg-K 2.22 1.97 2.22 2.22 Z factor 0.0040 0.0035 0.0444 0.0394 Visc N-s/m2 0.0001438 0.0002411 0.0001449 0.0001447 Th cond W/m-K 0.1030 0.1122 0.1030 0.1030 Surf tens N/m 0.02 0.03 0.02 0.02

99

Page 101: Market Analysis

STREAM PROPERTIES

Stream No. 86 87 88 89 Name - - Overall - -Molar flow lbmol/h 1214.39 1214.39 1214.39 78003.65 Mass flow lb/h 126483.77 126483.77 126483.77 2250471.50 Temp F 276.12 276.18 90.00 77.00 Pres atm 9.93 8.91 8.51 1.00 Vapor mole fraction 0.0000 0.0000 0.0000 1.000 Enth MJ/h 69723. 69723. 59126. -237.09 Tc F 705.16 705.16 705.16 -223.29 Pc atm 39.50 39.50 39.50 35.57 Std. sp gr. wtr = 1 0.912 0.912 0.912 0.866 Std. sp gr. air = 1 3.596 3.596 3.596 0.996 Degree API 23.72 23.72 23.72 31.93 Average mol wt 104.15 104.15 104.15 28.85 Actual dens kg/m3 800.74 800.70 892.55 1.18 Actual vol m3/h 71.65 71.65 64.28 865377.95 Std liq m3/h 62.99 62.99 62.99 1180.05 Std vap 60F m3/h 13049.35 13049.35 13049.35 838198.99 - - Vapor only - -Molar flow lbmol/h 78003.65 Mass flow lb/h 2250471.50 Average mol wt 28.85 Actual dens kg/m3 1.18 Actual vol m3/h 865377.95 Std liq m3/h 1180.05 Std vap 60F m3/h 838198.99 Cp kJ/kg-K 1.02 Z factor 0.9999 Visc N-s/m2 1.831e-005 Th cond W/m-K 0.0255 - - Liquid only - -Molar flow lbmol/h 1214.39 1214.39 1214.39 Mass flow lb/h 126483.77 126483.77 126483.77 Average mol wt 104.15 104.15 104.15 Actual dens kg/m3 800.74 800.70 892.55 Actual vol m3/h 71.65 71.65 64.28 Std liq m3/h 62.99 62.99 62.99 Std vap 60F m3/h 13049.35 13049.35 13049.35 Cp kJ/kg-K 1.97 1.97 1.61 Z factor 0.0436 0.0392 0.0454 Visc N-s/m2 0.0002428 0.0002425 0.0006391 Th cond W/m-K 0.1122 0.1122 0.1349 Surf tens N/m 0.03 0.03 0.03

100

Page 102: Market Analysis

STREAM PROPERTIES

Stream No. 90 91 92 93 Name - - Overall - -Molar flow lbmol/h 78003.65 39001.82 39001.82 39001.82 Mass flow lb/h 2250471.50 1125235.75 1125235.75 1125235.75 Temp F 315.63 77.00 77.00 77.00 Pres atm 2.93 1.00 1.00 1.00 Vapor mole fraction 1.000 1.000 1.000 1.000 Enth MJ/h 1.3760E+005 -118.55 -118.55 -118.55 Tc F -223.29 -223.29 -223.29 -223.29 Pc atm 35.57 35.57 35.57 35.57 Std. sp gr. wtr = 1 0.866 0.866 0.866 0.866 Std. sp gr. air = 1 0.996 0.996 0.996 0.996 Degree API 31.93 31.93 31.93 31.93 Average mol wt 28.85 28.85 28.85 28.85 Actual dens kg/m3 2.39 1.18 1.18 1.18 Actual vol m3/h 427377.42 432688.98 432688.98 432688.98 Std liq m3/h 1180.05 590.02 590.02 590.02 Std vap 60F m3/h 838198.99 419099.50 419099.50 419099.50 - - Vapor only - -Molar flow lbmol/h 78003.65 39001.82 39001.82 39001.82 Mass flow lb/h 2250471.50 1125235.75 1125235.75 1125235.75 Average mol wt 28.85 28.85 28.85 28.85 Actual dens kg/m3 2.39 1.18 1.18 1.18 Actual vol m3/h 427377.42 432688.98 432688.98 432688.98 Std liq m3/h 1180.05 590.02 590.02 590.02 Std vap 60F m3/h 838198.99 419099.50 419099.50 419099.50 Cp kJ/kg-K 1.03 1.02 1.02 1.02 Z factor 1.0011 0.9999 0.9999 0.9999 Visc N-s/m2 2.415e-005 1.831e-005 1.831e-005 1.831e-005 Th cond W/m-K 0.0349 0.0255 0.0255 0.0255

101

Page 103: Market Analysis

STREAM PROPERTIES

Stream No. 94 95 96 97 Name - - Overall - -Molar flow lbmol/h 39001.82 39001.82 39001.82 39001.82 Mass flow lb/h 1125235.75 1125235.75 1125235.75 1125235.75 Temp F 77.00 315.63 315.63 315.63 Pres atm 1.00 2.93 2.93 2.93 Vapor mole fraction 1.000 1.000 1.000 1.000 Enth MJ/h -118.55 68801. 68801. 68801. Tc F -223.29 -223.29 -223.29 -223.29 Pc atm 35.57 35.57 35.57 35.57 Std. sp gr. wtr = 1 0.866 0.866 0.866 0.866 Std. sp gr. air = 1 0.996 0.996 0.996 0.996 Degree API 31.93 31.93 31.93 31.93 Average mol wt 28.85 28.85 28.85 28.85 Actual dens kg/m3 1.18 2.39 2.39 2.39 Actual vol m3/h 432688.98 213688.45 213688.45 213688.45 Std liq m3/h 590.02 590.02 590.02 590.02 Std vap 60F m3/h 419099.50 419099.50 419099.50 419099.50 - - Vapor only - -Molar flow lbmol/h 39001.82 39001.82 39001.82 39001.82 Mass flow lb/h 1125235.75 1125235.75 1125235.75 1125235.75 Average mol wt 28.85 28.85 28.85 28.85 Actual dens kg/m3 1.18 2.39 2.39 2.39 Actual vol m3/h 432688.98 213688.45 213688.45 213688.45 Std liq m3/h 590.02 590.02 590.02 590.02 Std vap 60F m3/h 419099.50 419099.50 419099.50 419099.50 Cp kJ/kg-K 1.02 1.03 1.03 1.03 Z factor 0.9999 1.0011 1.0011 1.0011 Visc N-s/m2 1.831e-005 2.415e-005 2.415e-005 2.415e-005 Th cond W/m-K 0.0255 0.0349 0.0349 0.0349

102

Page 104: Market Analysis

STREAM PROPERTIES

Stream No. 98 99 273 Name - - Overall - -Molar flow lbmol/h 39001.82 156007.30 5277.79 Mass flow lb/h 1125235.75 4500943.00 207256.38 Temp F 315.63 315.63 204.00 Pres atm 2.93 2.93 1.09 Vapor mole fraction 1.000 1.000 0.0000 Enth MJ/h 68801. 2.7520E+005 -4.3956E+005 Tc F -223.29 -223.29 701.70 Pc atm 35.57 35.57 171.47 Std. sp gr. wtr = 1 0.866 0.866 0.937 Std. sp gr. air = 1 0.996 0.996 1.356 Degree API 31.93 31.93 19.50 Average mol wt 28.85 28.85 39.27 Actual dens kg/m3 2.39 2.39 873.08 Actual vol m3/h 213688.65 854754.83 107.68 Std liq m3/h 590.02 2360.10 100.41 Std vap 60F m3/h 419099.50 1676397.98 56713.22 - - Vapor only - -Molar flow lbmol/h 39001.82 156007.30 Mass flow lb/h 1125235.75 4500943.00 Average mol wt 28.85 28.85 Actual dens kg/m3 2.39 2.39 Actual vol m3/h 213688.65 854754.83 Std liq m3/h 590.02 2360.10 Std vap 60F m3/h 419099.50 1676397.98 Cp kJ/kg-K 1.03 1.03 Z factor 1.0011 1.0011 Visc N-s/m2 2.415e-005 2.415e-005 Th cond W/m-K 0.0349 0.0349 - - Liquid only - -Molar flow lbmol/h 5277.79 Mass flow lb/h 207256.38 Average mol wt 39.27 Actual dens kg/m3 873.08 Actual vol m3/h 107.68 Std liq m3/h 100.41 Std vap 60F m3/h 56713.22 Cp kJ/kg-K 2.66 Z factor 0.0020 Visc N-s/m2 0.0002989 Th cond W/m-K 0.2109 Surf tens N/m 0.03

103

Page 105: Market Analysis

FLOW SUMMARIES

Stream No. 1 2 3 4Stream Name Acetonitrile Crude C4 3 Temp F 90.0000 90.0000 90.7563 90.1429 Pres atm 9.1655 9.1655 2.3710 4.0000 Enth MJ/h 73.828 -79976. 73.828 -79976. Vapor mass fraction 0.00000 0.00000 0.00000 0.00000 Total lb/h 176.16 606088.00 176.16 606088.00 Flowrates in lb/h1,3-Butadiene 0.00 181826.23 0.00 181826.23 I-Butene 0.00 181826.22 0.00 181826.22 1-Butene 0.00 121217.50 0.00 121217.50 N-Butane 0.00 66669.62 0.00 66669.62 I-Butane 0.00 54547.86 0.00 54547.86 Acetonitrile 176.16 0.00 176.16 0.00 Vinylcyclohexene 0.00 0.00 0.00 0.00 Benzene 0.00 0.00 0.00 0.00 Styrene 0.00 0.00 0.00 0.00 Oxygen 0.00 0.00 0.00 0.00 Water 0.00 0.00 0.00 0.00 Nitrogen 0.00 0.00 0.00 0.00 Carbon Dioxide 0.00 0.00 0.00 0.00

Stream No. 5 6 7 8Stream Name Temp F 90.7372 90.2462 90.8504 90.2732 Pres atm 3.3917 5.0207 2.3710 4.0000 Enth MJ/h 73.839 -79927. 73.839 -79927. Vapor mass fraction 0.00000 0.00000 0.00000 0.00000 Total lb/h 176.16 606088.00 176.16 606088.00 Flowrates in lb/h1,3-Butadiene 0.00 181826.23 0.00 181826.23 I-Butene 0.00 181826.22 0.00 181826.22 1-Butene 0.00 121217.50 0.00 121217.50 N-Butane 0.00 66669.62 0.00 66669.62 I-Butane 0.00 54547.86 0.00 54547.86 Acetonitrile 176.16 0.00 176.16 0.00 Vinylcyclohexene 0.00 0.00 0.00 0.00 Benzene 0.00 0.00 0.00 0.00 Styrene 0.00 0.00 0.00 0.00 Oxygen 0.00 0.00 0.00 0.00 Water 0.00 0.00 0.00 0.00 Nitrogen 0.00 0.00 0.00 0.00 Carbon Dioxide 0.00 0.00 0.00 0.00

104

Page 106: Market Analysis

FLOW SUMMARIES

Stream No. 9 10 11 12Stream Name Cut 1 Temp F 229.4728 230.1150 230.1695 94.9613 Pres atm 2.3710 5.0207 4.0000 4.0000 Enth MJ/h 6.3019E+005 6.3041E+005 6.3041E+005 -1.9679E+005 Vapor mass fraction 0.0011583 0.00000 0.00000 0.00000 Total lb/h 1230117.38 1230117.38 1230117.38 457555.41 Flowrates in lb/h1,3-Butadiene 7.01 7.01 7.01 18184.00 I-Butene 107.14 107.14 107.14 181933.08 1-Butene 121.11 121.11 121.11 121333.71 N-Butane 1227.80 1227.80 1227.80 67897.45 I-Butane 0.89 0.89 0.89 54548.77 Acetonitrile 1228653.50 1228653.50 1228653.50 13658.38 Vinylcyclohexene 0.00 0.00 0.00 0.00 Benzene 0.00 0.00 0.00 0.00 Styrene 0.00 0.00 0.00 0.00 Oxygen 0.00 0.00 0.00 0.00 Water 0.00 0.00 0.00 0.00 Nitrogen 0.00 0.00 0.00 0.00 Carbon Dioxide 0.00 0.00 0.00 0.00

Stream No. 13 15 16 17Stream Name Temp F 184.5409 184.5696 95.0843 184.5914 Pres atm 4.0000 5.0207 5.2207 4.0000 Enth MJ/h 7.1819E+005 7.1828E+005 -1.9674E+005 7.1828E+005 Vapor mass fraction 0.00000 0.00000 0.00000 0.00017588 Total lb/h 1378649.38 1378649.38 457555.41 1378649.50 Flowrates in lb/h1,3-Butadiene 163648.47 163648.47 18184.00 163648.47 I-Butene 0.04 0.04 181933.08 0.04 1-Butene 4.92 4.92 121333.71 4.92 N-Butane 0.00 0.00 67897.45 0.00 I-Butane 0.00 0.00 54548.77 0.00 Acetonitrile 1214996.00 1214996.00 13658.38 1214996.00 Vinylcyclohexene 0.00 0.00 0.00 0.00 Benzene 0.00 0.00 0.00 0.00 Styrene 0.00 0.00 0.00 0.00 Oxygen 0.00 0.00 0.00 0.00 Water 0.00 0.00 0.00 0.00 Nitrogen 0.00 0.00 0.00 0.00 Carbon Dioxide 0.00 0.00 0.00 0.00

105

Page 107: Market Analysis

FLOW SUMMARIES

Stream No. 18 19 20 21Stream Name Temp F 95.1119 97.0107 147.0606 97.5307 Pres atm 4.2000 4.2000 4.2000 9.0000 Enth MJ/h -1.9674E+005 -2.0058E+005 4773.1 -2.0041E+005 Vapor mass fraction 0.00000 0.00000 0.00000 0.00000 Total lb/h 457555.41 442595.28 14957.70 442595.28 Flowrates in lb/h1,3-Butadiene 18184.00 18175.93 7.01 18175.93 I-Butene 181933.08 181825.75 107.14 181825.75 1-Butene 121333.71 121212.16 121.11 121212.16 N-Butane 67897.45 66669.70 1227.80 66669.70 I-Butane 54548.77 54547.87 0.89 54547.87 Acetonitrile 13658.38 163.89 13493.75 163.89 Vinylcyclohexene 0.00 0.00 0.00 0.00 Benzene 0.00 0.00 0.00 0.00 Styrene 0.00 0.00 0.00 0.00 Oxygen 0.00 0.00 0.00 0.00 Water 0.00 0.00 0.00 0.00 Nitrogen 0.00 0.00 0.00 0.00 Carbon Dioxide 0.00 0.00 0.00 0.00

Stream No. 22 23 24 25Stream Name Temp F 97.5516 99.4526 271.0273 99.6091 Pres atm 7.9793 4.0000 4.0000 6.9586 Enth MJ/h -2.0041E+005 1.2344E+005 6.6146E+005 1.2348E+005 Vapor mass fraction 0.00000 0.00000 0.00000 0.00000 Total lb/h 442595.28 163667.81 1214983.50 163667.81 Flowrates in lb/h1,3-Butadiene 18175.93 163650.27 0.00 163650.27 I-Butene 181825.75 0.04 0.00 0.04 1-Butene 121212.16 4.92 0.00 4.92 N-Butane 66669.70 0.00 0.00 0.00 I-Butane 54547.87 0.00 0.00 0.00 Acetonitrile 163.89 12.60 1214983.50 12.60 Vinylcyclohexene 0.00 0.00 0.00 0.00 Benzene 0.00 0.00 0.00 0.00 Styrene 0.00 0.00 0.00 0.00 Oxygen 0.00 0.00 0.00 0.00 Water 0.00 0.00 0.00 0.00 Nitrogen 0.00 0.00 0.00 0.00 Carbon Dioxide 0.00 0.00 0.00 0.00

106

Page 108: Market Analysis

FLOW SUMMARIES

Stream No. 26 27 28 29Stream Name Air feed Temp F 99.6346 249.1469 231.0000 77.0000 Pres atm 5.9379 2.9793 2.5710 1.0000 Enth MJ/h 1.2348E+005 6.6146E+005 6.2534E+005 -237.09 Vapor mass fraction 0.00000 0.047950 0.00000 1.0000 Total lb/h 163667.81 1214983.50 1214983.50 2250471.50 Flowrates in lb/h1,3-Butadiene 163650.27 0.00 0.00 0.00 I-Butene 0.04 0.00 0.00 0.00 1-Butene 4.92 0.00 0.00 0.00 N-Butane 0.00 0.00 0.00 0.00 I-Butane 0.00 0.00 0.00 0.00 Acetonitrile 12.60 1214983.50 1214983.50 0.00 Vinylcyclohexene 0.00 0.00 0.00 0.00 Benzene 0.00 0.00 0.00 0.00 Styrene 0.00 0.00 0.00 0.00 Oxygen 0.00 0.00 0.00 524168.00 Water 0.00 0.00 0.00 0.00 Nitrogen 0.00 0.00 0.00 1726303.50 Carbon Dioxide 0.00 0.00 0.00 0.00

Stream No. 30 31 32 33Stream Name Benzene Feed Temp F 139.7795 230.0167 77.0000 77.1923 Pres atm 3.1793 2.5710 1.0000 6.9586 Enth MJ/h 4773.1 6.3011E+005 65.519 65.591 Vapor mass fraction 0.028872 0.00000 0.00000 0.00000 Total lb/h 14957.70 1229941.25 228.03 228.03 Flowrates in lb/h1,3-Butadiene 7.01 7.01 0.00 0.00 I-Butene 107.14 107.14 0.00 0.00 1-Butene 121.11 121.11 0.00 0.00 N-Butane 1227.80 1227.80 0.00 0.00 I-Butane 0.89 0.89 0.00 0.00 Acetonitrile 13493.75 1228477.25 0.00 0.00 Vinylcyclohexene 0.00 0.00 0.00 0.00 Benzene 0.00 0.00 228.03 228.03 Styrene 0.00 0.00 0.00 0.00 Oxygen 0.00 0.00 0.00 0.00 Water 0.00 0.00 0.00 0.00 Nitrogen 0.00 0.00 0.00 0.00 Carbon Dioxide 0.00 0.00 0.00 0.00

107

Page 109: Market Analysis

FLOW SUMMARIES

Stream No. 34 35 36 37Stream Name Cut 2 Temp F 77.2948 206.7700 252.3362 248.0000 Pres atm 5.9379 5.9379 12.3844 11.9761 Enth MJ/h 65.591 3.2731E+005 3.2760E+005 3.2539E+005 Vapor mass fraction 0.00000 0.16598 0.0064413 0.00000 Total lb/h 228.03 662410.00 662410.00 662410.00 Flowrates in lb/h1,3-Butadiene 0.00 172737.13 172737.13 172737.13 I-Butene 0.00 0.25 0.25 0.25 1-Butene 0.00 32.70 32.70 32.70 N-Butane 0.00 0.00 0.00 0.00 I-Butane 0.00 0.00 0.00 0.00 Acetonitrile 0.00 209.06 209.06 209.06 Vinylcyclohexene 0.00 42.54 42.54 42.54 Benzene 228.03 489388.00 489388.00 489388.00 Styrene 0.00 0.00 0.00 0.00 Oxygen 0.00 0.00 0.00 0.00 Water 0.00 0.00 0.00 0.00 Nitrogen 0.00 0.00 0.00 0.00 Carbon Dioxide 0.00 0.00 0.00 0.00

Stream No. 38 39 40 41Stream Name Temp F 248.0000 248.0889 248.1234 248.0000 Pres atm 11.9761 12.9968 11.9761 11.9761 Enth MJ/h 2.5110E+005 2.5114E+005 2.5114E+005 2.3137E+005 Vapor mass fraction 0.00000 0.00000 0.00000 0.00000 Total lb/h 662409.00 662409.00 662409.00 662408.13 Flowrates in lb/h1,3-Butadiene 61373.50 61373.50 61373.50 31687.14 I-Butene 0.25 0.25 0.25 0.25 1-Butene 32.70 32.70 32.70 32.70 N-Butane 0.00 0.00 0.00 0.00 I-Butane 0.00 0.00 0.00 0.00 Acetonitrile 209.06 209.06 209.06 209.06 Vinylcyclohexene 111405.13 111405.13 111405.13 141091.22 Benzene 489388.00 489388.00 489388.00 489388.00 Styrene 0.00 0.00 0.00 0.00 Oxygen 0.00 0.00 0.00 0.00 Water 0.00 0.00 0.00 0.00 Nitrogen 0.00 0.00 0.00 0.00 Carbon Dioxide 0.00 0.00 0.00 0.00

108

Page 110: Market Analysis

FLOW SUMMARIES

Stream No. 42 43 44 45Stream Name Temp F 248.0810 248.1217 248.0000 248.0780 Pres atm 12.9968 11.9761 11.9761 12.9968 Enth MJ/h 2.3142E+005 2.3142E+005 2.2358E+005 2.2362E+005 Vapor mass fraction 0.00000 0.00000 0.00000 0.00000 Total lb/h 662408.13 662408.13 662408.06 662408.06 Flowrates in lb/h1,3-Butadiene 31687.14 31687.14 19937.55 19937.55 I-Butene 0.25 0.25 0.25 0.25 1-Butene 32.70 32.70 32.70 32.70 N-Butane 0.00 0.00 0.00 0.00 I-Butane 0.00 0.00 0.00 0.00 Acetonitrile 209.06 209.06 209.06 209.06 Vinylcyclohexene 141091.22 141091.22 152840.69 152840.69 Benzene 489388.00 489388.00 489388.00 489388.00 Styrene 0.00 0.00 0.00 0.00 Oxygen 0.00 0.00 0.00 0.00 Water 0.00 0.00 0.00 0.00 Nitrogen 0.00 0.00 0.00 0.00 Carbon Dioxide 0.00 0.00 0.00 0.00

Stream No. 46 47 48 49Stream Name Temp F 248.1211 248.0000 248.0766 248.1207 Pres atm 11.9761 11.9761 12.9968 11.9761 Enth MJ/h 2.2362E+005 2.1969E+005 2.1973E+005 2.1973E+005 Vapor mass fraction 0.00000 0.00000 0.00000 0.00000 Total lb/h 662408.06 662408.00 662408.00 662408.00 Flowrates in lb/h1,3-Butadiene 19937.55 14077.90 14077.90 14077.90 I-Butene 0.25 0.25 0.25 0.25 1-Butene 32.70 32.70 32.70 32.70 N-Butane 0.00 0.00 0.00 0.00 I-Butane 0.00 0.00 0.00 0.00 Acetonitrile 209.06 209.06 209.06 209.06 Vinylcyclohexene 152840.69 158700.28 158700.28 158700.28 Benzene 489388.00 489388.00 489388.00 489388.00 Styrene 0.00 0.00 0.00 0.00 Oxygen 0.00 0.00 0.00 0.00 Water 0.00 0.00 0.00 0.00 Nitrogen 0.00 0.00 0.00 0.00 Carbon Dioxide 0.00 0.00 0.00 0.00

109

Page 111: Market Analysis

FLOW SUMMARIES

Stream No. 50 51 52 53Stream Name Temp F 248.0000 248.1293 163.7016 356.6269 Pres atm 11.9761 9.0000 9.0000 9.0000 Enth MJ/h 2.1745E+005 2.1745E+005 9034.4 2.4709E+005 Vapor mass fraction 0.00000 0.00000 0.00000 0.00000 Total lb/h 662408.00 662408.00 12331.51 650077.00 Flowrates in lb/h1,3-Butadiene 10696.39 10696.39 10695.85 0.54 I-Butene 0.25 0.25 0.25 0.00 1-Butene 32.70 32.70 32.69 0.00 N-Butane 0.00 0.00 0.00 0.00 I-Butane 0.00 0.00 0.00 0.00 Acetonitrile 209.06 209.06 83.60 125.43 Vinylcyclohexene 162081.77 162081.77 1.40 162080.39 Benzene 489388.00 489388.00 1517.71 487870.50 Styrene 0.00 0.00 0.00 0.00 Oxygen 0.00 0.00 0.00 0.00 Water 0.00 0.00 0.00 0.00 Nitrogen 0.00 0.00 0.00 0.00 Carbon Dioxide 0.00 0.00 0.00 0.00

Stream No. 54 55 56 57Stream Name Temp F 163.7008 344.9924 163.7008 345.4786 Pres atm 9.0000 7.9793 9.0000 7.9793 Enth MJ/h 9034.4 2.4709E+005 7674.9 2.4864E+005 Vapor mass fraction 0.00000 0.048365 0.00000 0.040666 Total lb/h 12331.51 650077.00 10475.83 658418.25 Flowrates in lb/h1,3-Butadiene 10695.85 0.54 9086.31 0.54 I-Butene 0.25 0.00 0.21 0.00 1-Butene 32.69 0.00 27.77 0.00 N-Butane 0.00 0.00 0.00 0.00 I-Butane 0.00 0.00 0.00 0.00 Acetonitrile 83.60 125.43 71.02 125.43 Vinylcyclohexene 1.40 162080.39 1.19 170360.27 Benzene 1517.71 487870.50 1289.32 487919.25 Styrene 0.00 0.00 0.00 12.73 Oxygen 0.00 0.00 0.00 0.00 Water 0.00 0.00 0.00 0.00 Nitrogen 0.00 0.00 0.00 0.00 Carbon Dioxide 0.00 0.00 0.00 0.00

110

Page 112: Market Analysis

FLOW SUMMARIES

Stream No. 58 59 60 61Stream Name Cut 3 Temp F 163.7008 332.6731 319.4706 426.3132 Pres atm 9.0000 6.9586 6.9586 6.9586 Enth MJ/h 1359.5 2.4864E+005 1.9605E+005 50378. Vapor mass fraction 0.00000 0.091033 0.00000 0.00000 Total lb/h 1855.68 658418.25 488038.00 170380.45 Flowrates in lb/h1,3-Butadiene 1609.54 0.54 0.54 0.00 I-Butene 0.04 0.00 0.00 0.00 1-Butene 4.92 0.00 0.00 0.00 N-Butane 0.00 0.00 0.00 0.00 I-Butane 0.00 0.00 0.00 0.00 Acetonitrile 12.58 125.43 125.43 0.00 Vinylcyclohexene 0.21 170360.25 41.35 170319.00 Benzene 228.39 487919.25 487870.38 48.78 Styrene 0.00 12.73 0.00 12.73 Oxygen 0.00 0.00 0.00 0.00 Water 0.00 0.00 0.00 0.00 Nitrogen 0.00 0.00 0.00 0.00 Carbon Dioxide 0.00 0.00 0.00 0.00

Stream No. 62 63 64 65Stream Name Temp F 319.4709 304.6219 293.1056 309.2719 Pres atm 6.9586 6.9586 5.9379 1.9083 Enth MJ/h 1.9609E+005 2.0377E+005 2.0377E+005 50378. Vapor mass fraction 0.00000 0.040607 0.080522 0.53244 Total lb/h 488038.00 498514.00 498514.00 170380.45 Flowrates in lb/h1,3-Butadiene 0.54 9086.84 9086.84 0.00 I-Butene 0.00 0.21 0.21 0.00 1-Butene 0.00 27.78 27.78 0.00 N-Butane 0.00 0.00 0.00 0.00 I-Butane 0.00 0.00 0.00 0.00 Acetonitrile 125.43 196.46 196.46 0.00 Vinylcyclohexene 41.35 42.54 42.54 170319.00 Benzene 487870.38 489160.00 489160.00 48.78 Styrene 0.00 0.00 0.00 12.73 Oxygen 0.00 0.00 0.00 0.00 Water 0.00 0.00 0.00 0.00 Nitrogen 0.00 0.00 0.00 0.00 Carbon Dioxide 0.00 0.00 0.00 0.00

111

Page 113: Market Analysis

FLOW SUMMARIES

Stream No. 66 67 68 69Stream Name Air feed Temp F 77.0000 154.4704 315.6330 315.5098 Pres atm 1.0000 7.9793 2.9290 1.9083 Enth MJ/h -474.18 1359.5 1.3760E+005 2.7520E+005 Vapor mass fraction 1.0000 0.038437 1.0000 1.0000 Total lb/h 4500943.00 1855.68 2250471.50 4500943.00 Flowrates in lb/h1,3-Butadiene 0.00 1609.54 0.00 0.00 I-Butene 0.00 0.04 0.00 0.00 1-Butene 0.00 4.92 0.00 0.00 N-Butane 0.00 0.00 0.00 0.00 I-Butane 0.00 0.00 0.00 0.00 Acetonitrile 0.00 12.58 0.00 0.00 Vinylcyclohexene 0.00 0.21 0.00 0.00 Benzene 0.00 228.39 0.00 0.00 Styrene 0.00 0.00 0.00 0.00 Oxygen 1048335.81 0.00 524168.00 1048335.81 Water 0.00 0.00 0.00 0.00 Nitrogen 3452607.00 0.00 1726303.50 3452607.00 Carbon Dioxide 0.00 0.00 0.00 0.00

Stream No. 70 71 72 73Stream Name Temp F 97.8146 98.0984 98.1195 90.0000 Pres atm 7.9793 10.6152 9.5945 9.1862 Enth MJ/h -1.9905E+005 -1.9895E+005 -1.9895E+005 -2.0122E+005 Vapor mass fraction 0.00000 0.00000 0.00000 0.00000 Total lb/h 444451.00 444451.00 444451.00 444451.00 Flowrates in lb/h1,3-Butadiene 19785.48 19785.48 19785.48 19785.48 I-Butene 181825.80 181825.80 181825.80 181825.80 1-Butene 121217.08 121217.08 121217.08 121217.08 N-Butane 66669.70 66669.70 66669.70 66669.70 I-Butane 54547.87 54547.87 54547.87 54547.87 Acetonitrile 176.47 176.47 176.47 176.47 Vinylcyclohexene 0.21 0.21 0.21 0.21 Benzene 228.39 228.39 228.39 228.39 Styrene 0.00 0.00 0.00 0.00 Oxygen 0.00 0.00 0.00 0.00 Water 0.00 0.00 0.00 0.00 Nitrogen 0.00 0.00 0.00 0.00 Carbon Dioxide 0.00 0.00 0.00 0.00

112

Page 114: Market Analysis

FLOW SUMMARIES

Stream No. 74 75 76 77Stream Name Temp F 305.6603 620.3300 620.3300 204.0000 Pres atm 1.9083 1.5000 1.5000 1.0917 Enth MJ/h 3.2558E+005 7.2638E+005 -67229. -5.9329E+005 Vapor mass fraction 1.0000 1.0000 1.0000 1.0000 Total lb/h 4671323.50 4671323.50 4671318.00 4671318.00 Flowrates in lb/h1,3-Butadiene 0.00 0.00 0.00 0.00 I-Butene 0.00 0.00 0.00 0.00 1-Butene 0.00 0.00 0.00 0.00 N-Butane 0.00 0.00 0.00 0.00 I-Butane 0.00 0.00 0.00 0.00 Acetonitrile 0.00 0.00 0.00 0.00 Vinylcyclohexene 170319.00 170319.00 8515.95 8515.95 Benzene 48.78 48.78 48.78 48.78 Styrene 12.73 12.73 127752.00 127752.00 Oxygen 1048335.81 1048335.81 914023.00 914023.00 Water 0.00 0.00 73368.13 73368.13 Nitrogen 3452607.00 3452607.00 3452607.00 3452607.00 Carbon Dioxide 0.00 0.00 95004.00 95004.00

Stream No. 78 79 80 81Stream Name Temp F 204.0000 204.0000 204.0000 204.0078 Pres atm 1.0917 1.0917 1.0917 1.0000 Enth MJ/h -2.5031E+005 66671. -5.0623E+005 66671. Vapor mass fraction 1.0000 0.00000 0.00000 0.00000 Total lb/h 4464061.50 134826.20 72430.17 134826.20 Flowrates in lb/h1,3-Butadiene 0.00 0.00 0.00 0.00 I-Butene 0.00 0.00 0.00 0.00 1-Butene 0.00 0.00 0.00 0.00 N-Butane 0.00 0.00 0.00 0.00 I-Butane 0.00 0.00 0.00 0.00 Acetonitrile 0.00 0.00 0.00 0.00 Vinylcyclohexene 76.64 8363.35 75.95 8363.35 Benzene 0.00 48.78 0.00 48.78 Styrene 664.31 126414.07 673.57 126414.07 Oxygen 914023.00 0.00 0.00 0.00 Water 1687.47 0.00 71680.66 0.00 Nitrogen 3452607.00 0.00 0.00 0.00 Carbon Dioxide 95004.00 0.00 0.00 0.00

113

Page 115: Market Analysis

FLOW SUMMARIES

Stream No. 82 83 84 85Stream Name Temp F 248.3768 275.6539 248.8266 248.8848 Pres atm 0.8000 0.8000 9.0000 7.9793 Enth MJ/h 1547.5 69657. 1551.7 1551.7 Vapor mass fraction 0.00000 0.00000 0.00000 0.00000 Total lb/h 8341.42 126483.77 8341.42 8341.42 Flowrates in lb/h1,3-Butadiene 0.00 0.00 0.00 0.00 I-Butene 0.00 0.00 0.00 0.00 1-Butene 0.00 0.00 0.00 0.00 N-Butane 0.00 0.00 0.00 0.00 I-Butane 0.00 0.00 0.00 0.00 Acetonitrile 0.00 0.00 0.00 0.00 Vinylcyclohexene 8279.90 83.31 8279.90 8279.90 Benzene 48.79 0.00 48.79 48.79 Styrene 12.73 126400.45 12.73 12.73 Oxygen 0.00 0.00 0.00 0.00 Water 0.00 0.00 0.00 0.00 Nitrogen 0.00 0.00 0.00 0.00 Carbon Dioxide 0.00 0.00 0.00 0.00

Stream No. 86 87 88 89Stream Name Temp F 276.1155 276.1846 90.0000 77.0000 Pres atm 9.9347 8.9140 8.5057 1.0000 Enth MJ/h 69723. 69723. 59126. -237.09 Vapor mass fraction 0.00000 0.00000 0.00000 1.0000 Total lb/h 126483.77 126483.77 126483.77 2250471.50 Flowrates in lb/h1,3-Butadiene 0.00 0.00 0.00 0.00 I-Butene 0.00 0.00 0.00 0.00 1-Butene 0.00 0.00 0.00 0.00 N-Butane 0.00 0.00 0.00 0.00 I-Butane 0.00 0.00 0.00 0.00 Acetonitrile 0.00 0.00 0.00 0.00 Vinylcyclohexene 83.31 83.31 83.31 0.00 Benzene 0.00 0.00 0.00 0.00 Styrene 126400.45 126400.45 126400.45 0.00 Oxygen 0.00 0.00 0.00 524168.00 Water 0.00 0.00 0.00 0.00 Nitrogen 0.00 0.00 0.00 1726303.50 Carbon Dioxide 0.00 0.00 0.00 0.00

114

Page 116: Market Analysis

FLOW SUMMARIES

Stream No. 90 91 92 93Stream Name Temp F 315.6329 77.0000 77.0000 77.0000 Pres atm 2.9290 1.0000 1.0000 1.0000 Enth MJ/h 1.3760E+005 -118.55 -118.55 -118.55 Vapor mass fraction 1.0000 1.0000 1.0000 1.0000 Total lb/h 2250471.50 1125235.75 1125235.75 1125235.75 Flowrates in lb/h1,3-Butadiene 0.00 0.00 0.00 0.00 I-Butene 0.00 0.00 0.00 0.00 1-Butene 0.00 0.00 0.00 0.00 N-Butane 0.00 0.00 0.00 0.00 I-Butane 0.00 0.00 0.00 0.00 Acetonitrile 0.00 0.00 0.00 0.00 Vinylcyclohexene 0.00 0.00 0.00 0.00 Benzene 0.00 0.00 0.00 0.00 Styrene 0.00 0.00 0.00 0.00 Oxygen 524168.00 262084.00 262084.00 262084.00 Water 0.00 0.00 0.00 0.00 Nitrogen 1726303.50 863152.00 863152.00 863152.00 Carbon Dioxide 0.00 0.00 0.00 0.00

Stream No. 94 95 96 97Stream Name Temp F 77.0000 315.6330 315.6330 315.6330 Pres atm 1.0000 2.9290 2.9290 2.9290 Enth MJ/h -118.55 68801. 68801. 68801. Vapor mass fraction 1.0000 1.0000 1.0000 1.0000 Total lb/h 1125235.75 1125235.75 1125235.75 1125235.75 Flowrates in lb/h1,3-Butadiene 0.00 0.00 0.00 0.00 I-Butene 0.00 0.00 0.00 0.00 1-Butene 0.00 0.00 0.00 0.00 N-Butane 0.00 0.00 0.00 0.00 I-Butane 0.00 0.00 0.00 0.00 Acetonitrile 0.00 0.00 0.00 0.00 Vinylcyclohexene 0.00 0.00 0.00 0.00 Benzene 0.00 0.00 0.00 0.00 Styrene 0.00 0.00 0.00 0.00 Oxygen 262084.00 262084.00 262084.00 262084.00 Water 0.00 0.00 0.00 0.00 Nitrogen 863152.00 863152.00 863152.00 863152.00 Carbon Dioxide 0.00 0.00 0.00 0.00

115

Page 117: Market Analysis

FLOW SUMMARIES

Stream No. 98 99 273Stream Name Temp F 315.6326 315.6329 204.0000 Pres atm 2.9290 2.9290 1.0917 Enth MJ/h 68801. 2.7520E+005 -4.3956E+005 Vapor mass fraction 1.0000 1.0000 0.00000 Total lb/h 1125235.75 4500943.00 207256.38 Flowrates in lb/h1,3-Butadiene 0.00 0.00 0.00 I-Butene 0.00 0.00 0.00 1-Butene 0.00 0.00 0.00 N-Butane 0.00 0.00 0.00 I-Butane 0.00 0.00 0.00 Acetonitrile 0.00 0.00 0.00 Vinylcyclohexene 0.00 0.00 8439.30 Benzene 0.00 0.00 48.78 Styrene 0.00 0.00 127087.64 Oxygen 262084.00 1048335.81 0.00 Water 0.00 0.00 71680.66 Nitrogen 863152.00 3452607.00 0.00 Carbon Dioxide 0.00 0.00 0.00

116