martingale limit theory and stochastic regression theory

155
Martingale Limit Theory and Stochastic Regression Theory Ching-Zong Wei

Upload: others

Post on 03-Feb-2022

14 views

Category:

Documents


0 download

TRANSCRIPT

Martingale Limit Theoryand

Stochastic Regression Theory

Ching-Zong Wei

Contents

1 Martingale Limit Theory 21.1 Conditional Expectation . . . . . . . . . . . . . . . . . . . . . . . . . 51.2 Martingale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131.3 Basic Inequalities (maximum inequalities) . . . . . . . . . . . . . . . 251.4 Square function inequality . . . . . . . . . . . . . . . . . . . . . . . . 291.5 Series Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 Stochastic Regression Theory 1092.1 Introduction: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

1

Chapter 1

Martingale Limit Theory

Some examples of Martingale:

Example 1.1 Let yi = ayi−1 + εi, where εi i.i.d. with E(εi) = 0, Var(εi) = σ2, andif we estimate a by least squares estimation

a =

∑ni=1 yi−1yi∑ni=1 y

2i−1

a− a =

∑ni=1 yi−1εi∑ni=1 y

2i−1

,

then Sn =∑n

i=1 yi−1εi is a martingale.

Example 1.2 Likelihood Ratio:Given Θ, and

Ln(θ) = fθ(X1, . . . , Xn)

= fθ(Xn|X1, . . . , Xn−1) · fθ(X1, . . . , Xn−1)

=n∏i=2

fθ(Xi|X1, . . . , Xi−1) · fθ(X1),

then Rn(θ) = Ln(θ)Ln(θ0)

, Rn(θ) is a martingale.

2

For example, if Xi = θui + εi, where ui is constant, εi is i.i.d. N(0.1), then

fθ(x1, . . . , xn) = (1√2π

)ne−∑ni=1(xi−θui)

2

2

fθ(x1, . . . , xn)

fθ0(x1, . . . , xn)= e−

∑ni=1(xi−θui)

2

2+

∑ni=1(xi−θ0ui)

2

2

= e(θ−θ0)∑ni=1 uixi−

(θ2−θ20)

2

∑ni=1 u

2i .

Example 1.3 Likelihood: L0 = 1, d logLn(θ)dθ

is a martingale.

logLn(θ) = log fθ(Xn|X1, . . . , Xn−1) + logLn−1(θ)

ui(θ) =d log fθ(Xn|X1, . . . , Xn−1)

dθ=d[logLn(θ)− logLn−1(θ)]

In(θ) =n∑i=1

Eθ(u2i (θ)|X1, . . . , Xn−1).

Let

Vi(θ) =dui(θ)

dθ=d2 log fθ(Xn|X1, . . . , Xn−1)

dθ2,

sinceEθ(u

2i (θ)|X1, . . . , Xi−1) = −Eθ(Vi(θ)|X1, . . . , Xi−1)

and

Jn(θ) =n∑i=1

Vi(θ),

Then Jn(θ) + In(θ) is a martingale.

Example 1.4 Branching Process with Immigration :Let Zn+1 =

∑Zni=1 Yn+1,i+In+1, where Yj,i is i.i.d. with mean E(Yj,i) = m, Var(Yj,i) =

3

σ2, and In is i.i.d. with mean E(In) = b, Var(In) = λ, then

E(Zn+1|Fn) = mZn + b

Zn+1 = E(Zn+1|Fn) + δn+1

δn+1 = Zn+1 − E(Zn+1|Fn)E(δ2

n+1|Fn) = σ2Zn + λ

Zn+1 = mZn + b+ Zn∑i=1

(Yn+1,i −m) + (In+1 − b)

= mZn + b+√σ2Zn + λ εn+1,

where

εn+1 =δn+1√σ2Zn + λ

.

4

Consider (Ω,F ,P), where

Ω: Sample space

F : σ–algebra ⊂ 2Ω

P: probability

X = ai = Ei, i = 1, . . . , nFX = minimum σ–algebra ⊃ E1, . . . , EnFX1,X2 = σ–algebra ⊃ X1 = ai, X2 = bj i = · · · , j = · · ·Note that FX1,X2 ⊃ FX1 .

Xn is said to be Fn–adaptive if Xn is Fn–measurable (i.e. FXn ⊂ Fn.)

1.1 Conditional Expectation

Main purpose: Given X1 = a1, . . . , Xn = an to find the expectation of Y , i.e. to findE(Y |X1 = a1, . . . , Xn = an).

(Ω,F ,P) is a probability space.Given an event B with P (B) > 0, the conditional probability given B is defined

to be

P (A|B) =P (A ∩B)

P (B)∀A ∈ F ,

then (Ω,F ,P(·|B)) is a probability space.Given X, we can define

E(X|B) =

∫XdP (·|B).

Example 1.5 Let X =∑n

i=1 aiIAi where Ai = X = ai, then E(X|B) =∑n

i=1 aiP (Ai|B).

Ω = ∪∞i=1Bi, where Bi ∩Bj = ∅ if i 6= j.F = σ(Bi), 1 ≤ i <∞E(X|F) =

∑∞i=1E(X|Bi)IBi

Observe that if X =∑n

i=1 aiIAi ,Ω = ∪li=1Bi, Bi ∩Bj = ∅ if i 6= j, then

(i) E(X|F) is F–measurable and E(X|F) ∈ L1,

(ii) ∀ G ∈ F ,∫GE(X|F)dP =

∫GXdP .

5

Sol :

(i) E(X|F) =∑l

i=1E(X|Bi)IBi ,

|E(X|F)| ≤∑l

i=1 |E(X|Bi)| <∞ ⇒ E(X|F) ∈ L1

(ii) ∀ G ∈ F ∫G

E(X|F)dP =

∫G

l∑i=1

E(X|Bi)IBidP

=l∑

i=1

E(X|Bi)P (Bi ∩G)

=l∑

i=1

n∑j=1

ajP (Aj|Bi)P (Bi ∩G)

=n∑j=1

aj(l∑

i=1

P (Aj|Bi)P (Bi ∩G))

=n∑j=1

ajP (Aj ∩G).

Since by hypothesis G ∈ F ,∃ an index set I s.t. G = ∪i∈IBi

l∑i=1

P (Aj|Bi)P (Bi ∩G) =∑i∈I

P (Aj|Bi)P (Bi) =∑i∈I

P (Aj ∩Bi)

= P (Aj ∩ (∪i∈IBi)) = P (Aj ∩G).

Definition 1.1 (Ω,G,P) is a probability space. Let F ⊂ G, X ∈ L1. Define theconditional expectation of X given F to be a random variable that satisfies (i) and(ii).

Existence and Uniqueness:

Uniqueness: Assume Z,W both satisfies (i) and (ii).

Let G = Z > W .

By

6

(i) G is F–measurable,

(ii)∫G(Z −W )dP =

∫GXdP −

∫GXdP = 0

⇒ P (G) = 0.

Recall that Z ≥ 0 a.s. and E(Z) = 0 ⇒ P (Z > 0) = 0.Similarly, P (W > Z) = 0.

Existence: X ≥ 0, X =∑l

i=1 aiIAiDefine ν(G) =

∫GXdP =

∑li=1 aiP (Ai ∩G) ∀ G ∈ F .

Then ν is a (σ–finite) measure on F .

ν P|F = P (P (G) = 0 ⇒ ν(G) = 0)

By Radon-Nikodym theorem ∃ F–measurable function f

s.t.

∫G

fdP =

∫G

fdP = ν(G)

so f = E(X|F) a.s.

• derivative : 4f/4t

• density : contents/unit vol

• ratio

Radon-Nikodym Theorem : Assume that ν and µ are σ–finite measure on F s.t.ν µ. Then ∃ F–measurable function f s.t.∫

A

fdµ = ν(A) ∀A ∈ F (f =dν

dµ).

1. transformation of X −→ new measure

2. FA 6= FB ⇒ E(X|FA) 6= E(X|FB)

Example 1.6

7

1. Discrete : F = σ(Bi, 1 ≤ i <∞) X ∈ L1

E(X|F) =∞∑i=1

∫BiXdP

P (Bi)IBi

2. Continuous : Let f(x, y1, . . . , yn) be the joint density of (X, Y1, . . . , Yn) andg(y1, . . . , yn) =

∫f(x, y1, . . . , yn)dx,

Set f(x|y1, . . . , yn) = f(x,y1,...,yn)

g(Y )I[g(Y ) 6=0], Y = (y1, . . . , yn).

Then E(ϕ(X)|Y1, . . . , Yn) = h(Y1, . . . , Yn) a.s.,

where h(y1, . . . , yn) =∫ϕ(x)f(x|y1, . . . , yn)dx.

We only have to show for any Borel set B ⊂ Rn,

E(h(Y )IB) =

∫B

h(Y )g(Y )dY , Y = (Y1, . . . , Yn)

=

∫B

[

∫ϕ(x)f(x|Y )dx]g(Y )dY

=

∫B

∫ϕ(x)f(x, Y )dxdY

=

∫ ∫ϕ(x)IBf(x, Y )dxdY

= E(ϕ(X)IB)

= E(E(ϕ(X)IB|Y ))

⇒ ϕ(X) = h(Y )

Proposition 1.1 Let X, Y ∈ L1,

1. E[E(X|F)] = E X.Proof :

∫ΩE(X|F)dP =

∫ΩXdP .

2. E(X|∅,Ω) = E X.

3. If X is F–measurable then E(X|F) = X a.s..Proof : Since ∀G ∈ F

∫GE(X|F)dP =

∫GXdP .

4. If X = c ,a constant, a.s. then E(X|F) = c a.s..Proof :

∫GXdP =

∫GcdP, Y ≡ c is F–measurable.

8

5. ∀ constants a, b E(aX + bY |F) = aE(X|F) + bE(Y |F).Proof :

∫G(rhd) =

∫G(lhs).

6. X ≤ Y a.s. ⇒ E(X|F) ≤ E(Y |F).Proof : Use (5), we only show that

X − Y = Z ≥ 0 a.s. ⇒ E(Z|F) ≥ 0 a.s..

Let A = E(Z|F) < 0, then

0 ≤∫A

ZdP =

∫A

E(Z|F)dP ⇒ P (A) = 0.

7. |E(X|F)| ≤ E(|X||F) a.s..

8. |Xn| ≤ Y a.s., Y ∈ L1. If limn→∞Xn = X a.s., then

limn→∞

E(Xn|F) = E(X|F) a.s..

Proof :Set Zn = supk≥n |Xk−X|, then Zn ≤ 2Y . So Zn ∈ L1, and Zn ↓ ⇒ E(Zn|F) ↓ .So ∃Z s.t. limn→∞E(Zn|F) = Z a.s.. We only have to show that Z = 0 a.s..Since |E(Xn|F)− E(X|F)| ≤ E(|Xn −X||F) ≤ E(Zn|F).Note that Z ≥ 0 a.s.. We only have to prove E Z = 0.Since E(Zn|F) ↓ Z, hence

E Z ≤ limn→∞

E(E(Zn|F)) = limn→∞

E(Zn) = E( limn→∞

Zn) = 0

⇒ E Z = 0.

Theorem 1.1 If X is F–measurable and Y,XY ∈ L1, then E(XY |F) = XE(Y |F).Proof :

1. X = IG where G ∈ F∀ B ∈ F ∫

B

E(XY |F)dP =

∫B

XY dP =

∫B

IGY dP =

∫B∩G

Y dP

=

∫B∩G

E(Y |F)dP (Since B ∩G ∈ F)

=

∫B

IGE(Y |F)dP =

∫B

XE(Y |F)dP.

So E(XY |F) = XE(Y |F).

9

2. Find Xn s.t. Xn =∑n2

k=0knI[ kn≤x< k+1

n] − k

nI[− k+1

n<x≤− k

n],

then |Xn| ≤ |X|, and Xn → X a.s..From (1), we obtain that E(XnY |F) = XnE(Y |F).Now XnY → XY a.s.|XnY | = |Xn||Y | ≤ |XY |limn→∞E(XnY |F)

byD.C.T.= E(limn→∞XnY |F) = E(XY |F).

But limn→∞XnE(Y |F) = XE(Y |F) a.s..So E(XY |F) = XE(Y |F).

Theorem 1.2 (Towering)If X ∈ L1 and F1 ⊂ F2, then E[E(X|F2)|F1] = E(X|F1).

Proof : ∀ B ∈ F1 then B ∈ F2 and∫B

E[E(X|F2)|F1]dP =

∫B

E(X|F2)dP (Since B ∈ F1)

=

∫B

XdP (Since B ∈ F2).

So E[E(X|F2)|F1] = E(X|F1) a.s..

Remark 1.1 E[E(X|F1)|F2] = E(X|F1)E[1|F2] = E(X|F1), since E(X|F1) is F2–measurable.

Jensen’s Inequality : If ϕ is a convex function on R and X,ϕ(X) ∈ L1 thenϕ(E(X|F)) ≤ E(ϕ(X)|F) a.s..Proof :

1. Let X =∑k

i=1 aiIAi , where ∪ki=1Ai = Ω, and Ai ∩ Aj = ∅ if i 6= j, then

E(X|F) =k∑i=1

aiE(IAi|F).

Sincek∑i=1

E(IAi|F) = E(k∑i=1

IAi|F) = E(1|F) = 1 a.s.,

10

so

ϕ(E(X|F)) ≤k∑i=1

E(IAi|F)ϕ(ai)

= E(k∑i=1

ϕ(ai)IAi|F) = E(ϕ(X)|F)

2. FindXn as before (i.e., Xn is of the form∑aiIAi , |Xn| ≤ |X|, andXn → Xa.s..)

Then ϕ(E(Xn|F)) ≤ E(ϕ(Xn)|F).First observe that E(Xn|F) → E(X|F)a.s.. By continuity of ϕ,

limn→∞

ϕ(E(Xn|F)) = ϕ( limn→∞

E(Xn|F)) = ϕ(E(X|F))

Fix m,we can find a convex function ϕm such that ϕm(x) = ϕ(x), ∀|x| ≤ m,and |ϕm(x)| ≤ Cm(|x|+ 1), ∀x, and ϕ(x) ≥ ϕm(x), ∀x.Fix m, ∀n,

|ϕm(xn)| ≤ Cm(|xn|+ 1) ≤ Cm(|x|+ 1),

solimn→∞

E[ϕm(xn)|F ] = E[ limn→∞

ϕm(xn)|F ] = E[ϕm(x)|F ],

E[ϕ(x)|F ] ≥ supmE[ϕm(x)|F ] = sup

mlimn→∞

E[ϕm(xn)|F ]

≥ supm

limn→∞

ϕm(E(Xn|F)) = supmϕm[ lim

n→∞E(Xn|F)]

= supmϕm[E(X|F)] = ϕ[E(X|F)] a.s.

Some properties of convex function ϕ :

• If λi ≥ 0,∑n

i=1 λi = 1 then ϕ(∑n

i=1 λixi) ≤∑n

i=1 λiϕ(xi)

• The geometry property

• ϕ is continuous(since right-derivative and left-derivative exist)

11

Corollary 1.1 If X ∈ Lp, p ≥ 1 then E(X|F) ∈ Lp.Proof : Since ϕ(x) = |x|p is convex if p ≥ 1, then

|E(X|F)|p ≤ E(|X|p|F) a.s.

andE|E(X|F)|p ≤ EE(|X|p|F) = E|X|p <∞.

Homework :

1. If p > 1 and 1p

+ 1q

= 1,X ∈ Lp, Y ∈ Lq, then

E(|XY ||F) ≤ E(|X|p|F)1pE(|Y |q|F)

1q a.s..

2. If X ∈ L2 and Y ∈ L2(F) = U : U ∈ L2 and U is F–measurable, then

E(X − Y )2 = E(X − E(X|F))2 + E(E(X|F)− Y )2.

Thereforeinf

Y ∈L2(F)E(X − Y )2 = E(X − E(X|F))2.

Proof :

E(X − Y )2 = E(X − E(X|F) + E(X|F)− Y )2

= E(X − E(X|F))2 + E(E(X|F)− Y )2

+2E[(X − E(X|F))(E(X|F)− Y )].

Lemma 1.1 E(X − E(X|F))U = 0 if U ∈ L2(F).proof:

E[E((X − E(X|F))U |F)] = EU [E((X − E(X|F))|F ]= EU [E(X|F)− E(X|F)] = EU · 0 = 0.

Application : Bayes Estimate (X1, · · · , Xn) ∼ f(~x|θ) , θ ∈ L2, Xi ∈ L2. UseX1, · · · , Xn to estimate θ.Method : find θ(X1, · · · , Xn) ∈ L2 such that E(θ − θ)2 is minimum.

12

Remark 1.2 Let Fn = σ(X1, · · · , Xn). Then θ is Fn–measurable⇔ ∃ measurable function h such that θ = h(X1, · · · , Xn) a.s.So θn = E(θ|Fn) is the solution.

Question : In what sense θn −→ θ ?

1.2 Martingale

(Ω,F ,P)Fn ⊂ F ,Fn ⊂ Fn+1 : history(filtration)

Definition 1.2

(i) Xn is Fn–adaptive ( or adapted to Fn ) if Xn is Fn–measurable ∀n.

(ii) Yn is Fn–predictive ( predictive w.r.t. Fn ) if Yn is Fn−1–measurable ∀n.

(iii) The σ–fields Fn = σ(X1, · · · , Xn) is said to be the natural history of Xn.( Itis obvious Fn ↑. )

(iv) Xn, n ≥ 1 is said to be a martingale w.r.t. Fn, n ≥ 1 ,if

(1) Xn is Fn–adaptive.(2) E(Xn|Fn−1) = Xn−1, ∀n ≥ 2.

(3) εn, n ≥ 1 is said to be a martingale difference sequence w.r.t. Fn, n ≥ 0if E(εn|Fn−1) = 0 a.s., ∀n ≥ 1.

Remark 1.3 If Xn, n ≥ 1 is a martingale w.r.t. Fn, n ≥ 1 and E(X1) = 0,then ε1 = X1, εn = Xn − Xn−1 for n ≥ 2 is a martingale difference sequence w.r.t.Fn, n ≥ 0, where F0 = ∅,Ω, E(ε1|F0) = E(X1|F0) = E(X1) = 0.

If εn, n ≥ 1 is a martingale difference w.r.t. Fn, n ≥ 0,Yn, n ≥ 1 is Fn, n ≥0–predictive, and εn ∈ L1, Ynεn ∈ L1, then Sn =

∑ni=1 Yiεi is a martingale w.r.t.

13

Fn, n ≥ 0.Proof :

E(Sn|Fn−1) = E(Ynεn + Sn−1|Fn−1)

= E(Ynεn|Fn−1) + Sn−1 = YnE(εn|Fn−1) + Sn−1

= Yn · 0 + Sn−1 = Sn−1 a.s..

Example 1.7

(a) If εi are independent r.v.′s with E(εi) = 0, and V ar(εi) = 1, ∀i. Let Sn =∑ni=1 εi, and Fn = σ(ε1, · · · , εn), then E(εn|Fn−1) = E(εn) = 0.

(b) Let Xn = ρXn−1 +εn, |ρ| < 1, where εn are i.i.d. with E(εn) = 0, E(ε2n) <∞ and

X0 ∈ L2 is independent of εi, i ≥ 1, then∑n

i=1Xi−1εi is a martingale w.r.t.Fn, n ≥ 0, where Fn = σ(X0, ε1, · · · , εn), ∀n ≥ 0.proof :

Xn = ρ2Xn−2 + ρεn−1 + εn

= · · · = ρnX0 + ρn−1ε1 + · · ·+ εn.

(c) Bayes estimate : θn = E(θ|Fn) where Fn ↑,

E(θn+1|Fn) = E(E(θ|Fn+1)|Fn) = E(θ|Fn) = θn.

(d) Likelihood Ratio : Pθ, dPθ = fθ(X1, · · · , Xn)dµ

Yn(θ, θ0, X1, · · · , Xn) =fθ(X1, · · · , Xn)

fθ0(X1, · · · , Xn)=

dPθ/dµ

dPθ0/dµ=

dPθdPθ0

Fn = σ(X1, · · · , Xn)

Ln(θ,X1, · · · , Xn) = fθ(Xn|X1, · · · , Xn−1)Ln−1(θ,X1, · · · , Xn−1).

14

Fix θ0, θ, thenYn(θ),Fn, n ≥ 1 is a martingale

Eθ0(Yn(θ)|Fn−1) = Eθ0(Ln(θ)

Ln(θ0)|Fn−1)

= Eθ0(fθ(Xn|X1, · · · , Xn−1)

fθ0(Xn|X1, · · · , Xn−1)· Ln−1(θ)

Ln−1(θ0)|Fn−1)

=Ln−1(θ)

Ln−1(θ0)Eθ0(

fθ(Xn|X1, · · · , Xn−1)

fθ0(Xn|X1, · · · , Xn−1)|Fn−1)

= Yn−1(θ)

∫fθ(xn|X1, · · · , Xn−1)

fθ0(xn|X1, · · · , Xn−1)· fθ0(xn|X1, · · · , Xn−1)dxn.

i.e., E(ϕ(X)|X1, · · · , Xn) =

∫ϕ(x)f(x|X1, · · · , Xn)dx.

(e) d logLn(θ)dθ

,Fn = σ(X1, · · · , Xn) is a martingale if∫∂fθ(xn|X1, · · · , Xn−1)

∂θdxn =

∂θ

∫fθ(xn|X1, · · · , Xn−1)dxn = 0.

Eθ(d logLn(θ)

dθ|Fn−1)

= Eθ(d log fθ(Xn|X1, · · · , Xn−1)

dθ+d logLn−1(θ)

dθ|Fn−1)

= Eθ[∂fθ(Xn|X1,··· ,Xn−1)

∂θ

fθ(Xn|X1, · · · , Xn−1)|Fn−1] +

d logLn−1(θ)

=

∫ ∂fθ(xn|X1,··· ,Xn−1)∂θ

fθ(xn|X1, · · · , Xn−1)· fθ(xn|X1, · · · , Xn−1)dxn +

d logLn−1(θ)

=d logLn−1(θ)

dθ.

Lemma : If Xn is Fn–adaptive and Xn ∈ L1, then S1 = X1, Sn = X1 +∑ni=2(Xi − E(Xi|Fi−1)) is a martingale w.r.t. Fn, n ≥ 1.

proof : n ≥ 2,

∵ E(Sn|Fn−1) = X1 +n∑i=2

Xi − E(Xi|Fi−1) + E[(Xn − E(Xn|Fn−1))|Fn−1],

∴ E[(Xn − E(Xn|Fn−1))|Fn−1] = E(Xn|Fn−1)− E(Xn|Fn−1) = 0.

15

(f) Let

un(θ) =d log fθ(Xn|X1, . . . , Xn−1)

dθ,

d logLn(θ)

dθ=

n∑i=1

ui(θ),

I(θ) =n∑i=1

E[u2i (θ)|Fi−1],

dun(θ)

dθ= vn(θ),

J(θ) =n∑i=1

vn(θ),

then J(θ)+I(θ) is a martingale, and J(θ)−∑m

i=1E(vi(θ)|Fi−1) is a martingale.We only have to show that

E[vi(θ)|Fi−1] = −E[u2i (θ)|Fi−1] a.s..

Example : Xn = θXn−1 + εn, n = 1, 2, . . ., and X0 ∼ N(0, c2) is independentof i.i.d. sequence εn ∼ N(0, σ2). Assume that σ2 and c2 are known, then

Ln(θ,X0, . . . , Xn) = fθ(X0)fθ(X1|X0) · · · fθ(Xn|X0, . . . , Xn−1)

=1√2πc

e−x202c2 · · · 1√

2πσe−

(xn−θxn−1)2

2σ2

= (1√2π

)n+1 1

c

1

σne−[

x202c2

+ 12σ2

∑ni=1(xi−θxi−1)2].

Hence

logLn(θ) =n+ 1

2log(2π)− log c− n log σ − [

x20

2c2+

1

2σ2

n∑i=1

(xi − θxi−1)2],

therefore

d logLn(θ)

dθ=

1

σ2

n∑i=1

xi−1(xi − θxi−1) =1

σ2

n∑i=1

xi−1εi.

16

i.e., ui(θ) =1

σ2Xi−1(Xi − θXi−1) ⇒ u2

i (θ) =1

σ4X2i−1(Xi − θXi−1)

2.

Then

E[u2i (θ)|Fi−1] =

1

σ4X2i−1E[(Xi − θXi−1)

2|Fi−1]

=1

σ4X2i−1σ

2 =X2i−1

σ2,

so

I(θ) =1

σ2

n∑i=1

X2i−1,

vi(θ) =dui(θ)

dθ= −

X2i−1

σ2,

J(θ) =n∑i=1

vi(θ) = − 1

σ2

n∑i=1

X2i−1.

⇒ I(θ) + J(θ) = 0.

And∑n

i=1 u2i (θ) +

∑ni=1E[vi(θ)|Fi−1] is also a martingale, since

1

σ4

n∑i=1

X2i−1[Xi − θXi−1]

2 − 1

σ2

n∑i=1

X2i−1 =

1

σ4

n∑i=1

X2i−1[ε

2i − σ2],

E[ε2 − σ2|Fi−1] = E(ε2 − σ2) = σ2 − σ2 = 0.

Definition 1.3 An Fn, n ≥ 1– adaptive seq. Xn is defined to be a sub–martingale(super–martingale) if E(Xn|Fn−1) ≥ (≤)Xn−1 for n = 2, . . ..

(1)Intuitive : martingale — constantsubmartingale — increasingsupermartingale — decreasing

(2)Game : martingale — fair gamesubmartingale — favorable gamesuppermartingale — infarovable game

17

Theorem 1.3

(i) Assume that Xn,Fn is a martingale. If ϕ is convex and ϕ(Xn) ∈ L1, thenϕ(Xn)Fn is a submartingale.

(ii) Assume that Xn,Fn is a submartingale. If ϕ is convex, increasing and E[ϕ(Xn)] ∈L1, then ϕ(Xn),Fn is a submartingale.

Proof : By Jensen inequality,

E[ϕ(Xn)|Fn−1] ≥ ϕ(E[Xn|Fn−1]) = ϕ(Xn−1).

For examples, ϕ(x) = |x|p, p ≥ 1 or ϕ(x) = (x− a)+.

Corollary 1.2 If Xn,Fn is a martingale, and Xn ∈ Lp with p ≥ 1, then h(n) =E|Xn|p is an increasing function.Proof : Since |Xn|p,Fn is a submartingale,

EE(|Xn+1|p|Fn) ≥ E|Xn|p.

Prove that Xn =∑n

i=1 εi, where ε′is are i.i.d. r.v.′s with E(εi) = 0, and E|εi|3 <∞,then

E|Xn|3 ≤ E|Xn+1|3 ≤ . . . .

(iii) [Gilat,D.(1977) Ann. Prob. 5,pp.475-481]For a nonnegative submartingale Xn, σ(X1, . . . , Xn), there is a martingale

Yn, σ(Y1, . . . , Yn) s.t. XnD= |Yn|.

(iv) Assume that Xn, σ(X1, . . . , Xn) is a nonnegative submartingale. If ϕ is con-vex and ϕ(Xn) ∈ L1, then there is a submartingale Zn, σ(Z1, . . . , Zn) s.t.ϕ(Xn)

D= Zn.

Proof : Let ψ(X) = ϕ(|X|). Then ψ(X) is a convex function. By Gilat’s

theorem, ∃ martingale Yn s.t. XnD= |Yn|, so

ϕ(Xn)D= ϕ(|Yn|) = ψ(Yn) = Zn,

which is a submartingale by (i).

18

Homework : Assume that Xn,Fn is a submartingale. If ∃ m > 1 s.t. E(Xm) =E(X1), then Xi,Fi, 1 ≤ i ≤ m is a martingale.

Definition 1.4 Let N∞ = 1, 2, . . . ,∞, and T : Ω → N∞. Then T is said to be aFn–stopping time if T = n ∈ Fn, n = 1, 2, . . . .

Remark 1.4 Let F∞ = ∨nFn. Since T = ∞ = T < ∞c and T < ∞ =∪nT = n ∈ F∞ so T = ∞ ∈ F∞.

We said that a stopping time T is finite if PT = ∞ = 0.

Remark 1.5 Since T ≥ n = T < nc ∈ Fn−1, then

T ≤ n ∈ Fn, ∀ n⇔ T = n ∈ Fn, ∀ n.

Definition 1.5 Let T be an Fn–stopping time. The pre–T σ–field FT is defined tobe Λ ∈ F : Λ ∩ T = n ∈ Fn,∀ n ∈ N∞.

If Λ ∈ FT , then Λ = ∪n∈N∞(Λ ∩ T = n) ∈ F∞, so FT ⊂ F∞.

Example 1.8 Let Xn be Fn–adaptive ∀ Borel set Γ, we define T = infn : Xn ∈ Γ.Then T is an Fn–stopping time. (inf Ø = ∞).Proof : T = k = X1 6∈ Γ, . . . , Xk−1 6∈ Γ, Xk ∈ Γ ∈ Fk.

Theorem 1.4 Assume that T1 and T2 are Fn–stopping times.

(i) Then so are T1 ∧ T2 and T1 ∨ T2.

19

(ii) If T1 ≤ T2 then FT1 ⊂ FT2.

Proof :

(i) T1 ∧ T2 ≤ n = T1 ≤ n ∪ T2 ≤ n ∈ FnT1 ∨ T2 ≤ n = T1 ≤ n ∩ T2 ≤ n ∈ Fn

(ii) Let Λ ∈ FT1, then Λ∩ T1 ≤ n ∈ Fn. Since T2 ≤ n ∈ Fn, we have Λ∩ T1 ≤n ∩ T2 ≤ n ∈ Fn and Λ ∩ T1 ≤ n ∩ T2 ≤ n = Λ ∩ T2 ≤ n ∈ FT2, soΛ ∈ FT2 .

Theorem 1.5 (Optional Sampling Theorem)Let α and β be two Fn–stopping times s.t. α ≤ β ≤ K where K is a positive

integers. Then for any (sub or super) martingale Xn,Fn,Xα,Fα;Xβ,Fβ is a(sub or super) martingale.Proof : We only have to consider the case when Xn is a submartingale.Lemma : Assume that β is an Fn–stopping time s.t. β ≤ K. If Xn,Fn is asubmartingale then

E[Xβ|Fn] ≥ Xn a.s. on β ≥ nE[Xβ|Fn]I[β≥n] ≥ XnI[β≥n] a.s.

Proof of Lemma : It is sufficient to show that

∀ A ∈ Fn∫A

XβI[β≥n]dp ≥∫A

XnI[β≥n]dp

Let A = Un > E(Z|Fn), E(Z|Fn) ≥ Un ∈ Fn

⇔ ∀ A ∈ Fn,∫A

Zdp ≥∫A

Udp

⇔ ∀ A ∈ Fn,∫A

(Z − U)dp ≥ 0

⇔∫A

E(Z|Fn)dp ≥∫A

Udp

⇔∫A

[E(Z|Fn)− U ]dp = 0.

20

∫A

XnI[β≥n]dp =

∫A∩[β≥n]

Xndp =

∫A∩[β=n]

Xndp+

∫A∩[β≥n+1]

Xndp

≤∫A∩[β=n]

Xβdp+

∫A∩[β≥n+1]

Xn+1dp.

Since B ∈ Fn, ∫B

E[Xn+1|Fn]dp =

∫B

Xn+1dp ≥∫B

Xndp.

We have that∫A

XnI[β≥n]dp ≤∫A∩[β=n]

Xβdp+ . . .+

∫A∩[β=K]

Xβdp+

∫A∩[β≥K+1]

XK+1dp

=

∫A∩[n≤β≤K]

Xβdp =

∫A∩[n≤β]

Xβdp.

Continuation of the proof of the theorem :It is sufficient to show that ∀ Λ ∈ Fα,

∫ΛXβdp ≥

∫ΛXαdp. Given Λ ∈ Fα, A =

∪kn=1(Λ ∩ α = n). It is sufficient to show ∀ 1 ≤ n ≤ K,∫Λ∩[α=n]

Xβdp ≥∫

Λ∩[α=n]

Xαdp =

∫Λ∩[α=n]

Xndp.

However,∫

Λ∩[α=n]Xβdp =

∫Λ∩[α=n]

E(Xβ|Fn)dp. Since α = n ⊂ β ≥ n (since

β ≥ α = n), we have∫

Λ∩[α=n]E(Xβ|Fn)dp ≥

∫Λ∩[α=n]

Xndp,

∀ n, Xα ≤ x ∪ α = n = Xn ≤ x ∩ α = n ∈ Fn

So Xα ≤ x ∈ Fα.

Remark 1.6 If α = 1,∀ β ≤ K, we have EXβ = EX1, then Xn,Fn is a martin-gale.

How to prove the convergence of a sequence:

1. Find the limit X, try to show |Xn −X| → 0.

21

2. Without knowing the limit:

(i) Cauchy sequence supm>n |Xn −Xm| → 0 as n→∞(ii) limit set ,[lim infXn, lim supXn] = A

(a) lim infXn = lim supXn

(b) ∀ a ∈ A,ψ(a) = 0 and ψ has a unique root.

Consider

lim infXn < lim supXn = ∪ a<brationals

lim infXn < a < b < lim supXn

α1 = infm : Xm ≤ aβ1 = infm > α1 : Xm ≥ b

...

αk = infm > βk−1 : Xm ≤ aβk = infm > αk : Xm ≥ b,

and define upcrossing number Un = Un[a, b] = supj : βj ≤ n, j < ∞. Note that ifα′i = αi ∧ n, β′i = βi ∧ n then α′n = β′n = n.

Then define τ0 = 1, τ1 = α′1, . . . , τ2n−1 = α′n, and τ2n = β′n. Clearly, τn = n.If Xn,Fn is a submartingale, then Xτk ,Fτk , 1 ≤ k ≤ n is a submartingale by

optional sampling theorem. ( Since τk ≤ n ∀ 1 ≤ k ≤ n. )

Theorem 1.6 (Upcrossing Inequality)If Xn,Fn is a submartingale, then (b− a)EUn ≤ E(Xn − a)+ − E(X1 − a)+.

Proof : Observe that the upcrossing number Un[0, b− a] of (Xn − a)+ is the same asUn[a, b] of Xn. Furthermore,(Xn−a)+,Fn is also a martingale. ϕ(x) = (x−a)+ is aconvex function. Hence we only have to show the case Xn ≥ 0 a.s. and Un = Un[0, c].Now consider

Xn −X1 = Xτn −Xτn−1 + . . .+Xτ1 −Xτ0 =n−1∑i=0

(Xτi+1−Xτi) =

∑i:even

+∑i:odd

,

∵∑i:odd

(xτi+1−Xτi) ≥ UnC,

∴ EXn − EX1 ≥ CEUn + E(∑i:even

) ≥ CEUn +∑i:even

(EXτi+1− EXτi) ≥ CEUn.

22

Theorem 1.7 (Global convergence theorem)Assume that Xn,Fn is a submartingale s.t. supnE(X+

n ) < ∞. Then Xn con-verges a.s. to a limit X∞ and E|X∞| <∞.Proof : We only have to show that

P [lim infXn < a < b < lim supXn] = 0. (∗)

Let U∞[a, b] be the upcrossing number of Xn. Then lim infXn < a < b <lim supXn ⊂ ∪∞[a, b] = ∞ and Un[a, b] ↑ U∞[a, b],

EU∞[a, b] = limn→∞

E(Un[a, b])

≤ supn

(E(Xn − a)+ − E(X1 − a)+)/(b− a) <∞,

so U∞[a, b] <∞ a.s., and P [U∞[a, b] = ∞] = 0.This implies (∗). Now

E|Xn| = EX+n + EX−

n = 2EX+n − (EX+

n − EX−n )

= 2EX+n − EXn ≤ 2EX+

n − EX1,

so supnE|Xn| ≤ 2 supnEX+n − EX1 <∞.

By Fatou’s Lemma,

E|X∞| = E( limn→∞

|Xn|) ≤ lim inf E|Xn| ≤ supnE|Xn| <∞.

Remark 1.7 Xn ↑, supnEX+n <∞ : upper bound.

Corollary 1.3 If Xn is a nonnegative supermartingale then ∃ X ∈ L′ s.t. Xna.s.→

X.Proof : Since −Xn is a nonpositive submartingale and E(−Xn)

+ = 0, ∀ n.

Example 1.9

23

1. Likelihood Ratio

Yn(θ) =Ln(θ)

Ln(θ0)≥ 0.

So Yn(θ) → Y (θ) a.s. (Pθ0), (Y (θ) = 0 if θ1, θ0 are distinctable.)

2. Baye’s est.

θn = E[θ|X1, . . . , Xn], E(θ2) <∞E|θn| ≤ EE(|θn||X1, . . . , Xn) = E|θn| <∞.

So supnE|θn| <∞, and θna.s.→ θ∞.

Definition 1.6 Xn is said to be uniformly integrable(u.i.) if ∀ ε > 0,∃ A s.t.

supn

∫|Xn|>A

|Xn|dp ≤ ε or limA→∞

supn

∫|Xn|>A

|Xn|dp→ 0.

Theorem 1.8 Xn is u.i. ⇐⇒

(i) supnE|Xn| <∞, and

(ii) ∀ ε > 0,∃ δ > 0 s.t. ∀ E ∈ F , P (E) < δ ⇒ supn∫E|Xn|dP < ε.

How to prove Xn is u.i. ?

1. If Z = supn |Xn| ∈ L′ then Xn is u.i..Proof :

(i) obvious,since E|Xn| ≤ E(Z) <∞(ii) ∫

E

|Xn|dP ≤∫E

ZdP ≤∫E

ZI[Z≤c]dP +

∫E

ZI[Z>c]dP

≤ cP (E) +

∫Z>c

ZdP

24

2. If ∃ Borel–measurable function f : [0,∞) 7→ [0,∞) s.t. supnEf(|Xn|) <∞ and

limt→∞f(t)t

= ∞, then Xn is u.i..

Theorem 1.9 Assume that Xnp→ X , then the following statements are equivalent.

(i) |Xn|p is u.i.

(ii) XnLp→ X, (i.e.E|Xn −X|p n→∞−→ 0)

(iii) E|Xn|pn→∞−→ E|X|p

Remark 1.8 If XnD→ X and |Xn|p is u.i., then E|Xn|p

n→∞−→ E|X|p.Proof : We can reconstruct the probability space and r.v.’s X ′

n, X′,

s.t. X ′nD= Xn, X

′ D= X and X ′na.s.→ X ′.

Ex. Let XnD→ N(0, σ2) and X2

n is u.i., then E(X2n)

n→∞−→ σ2. How to knowmax1≤i≤n|Xn|p ∈ L1 ?

1.3 Basic Inequalities (maximum inequalities)

Theorem 1.10 (Fundamental Inequality)If Xi,Fi, i ≤ i ≤ n is a submartingale, then ∀ λ

λP [max1≤i≤n

Xi > λ] ≤ E(XnI[max1≤i≤nXi>λ]).

Proof : Define τ = infi : Xi > λ, (recall : inf Ø = ∞), then max1≤i≤nXi > λ =τ ≤ n. On the set τ = k ≤ n, Xτ > λ, then

λP [τ = k] ≤∫

[τ=k]

XτdP =

∫[τ=k]

XkdP ≤∫

[τ=k]

XndP

Sinceτ = k ⇔ X1 ≤ λ, . . . , Xk−1 ≤ λ,Xk > λ,

then

λP [max1≤i≤n

Xi > λ] = λ

n∑k=1

P [τ = k] ≤∫

[τ≤n]

XndP =

∫[max1≤i≤nXi>λ]

XndP.

25

Theorem 1.11 (Doob’s Inequality)If Xi,Fi, 1 ≤ i ≤ n is a martingale, then ∀ p > 1

‖Xn‖p ≤ ‖ max1≤i≤n

|Xi|‖p ≤ q‖Xn‖p ,

where ‖X‖p = (E|X|p)1p and 1

p+ 1

q= 1.

Proof : Since |Xn|,Fn is a submartingale, by the theorem. Let Z = max1≤i≤n |Xi|,then

E(Zp) = p

∫ ∞

0

xp−1P [Z > x]dx

≤ p

∫ ∞

0

xp−2E(|Xn|I[Z>x])dx = pE[|Xn|∫ ∞

0

I[Z > x]xp−2dx]

≤ pE[|Xn|∫ Z

0

xp−2dx] = pE[|Xn|Zp−1

p− 1]

≤ p

p− 1‖Xn‖p‖Zp−1‖q =

p

p− 1‖Xn‖p[E(Zp)]

1q .

Hence

‖Zp−1‖q = E(Zp−1)q1/q = [E(Zp)]1/q,

‖Z‖p = [E(Zp)]1/p = [E(Zp)]1−1q ≤ q‖Xn‖p.

Note that‖ max

1≤i≤n|Xi|‖p = ∞ ⇒ q‖Xn‖p = ∞.

Corollary 1.4 If Xn,Fn, n ≥ 1 is a martingale s.t. supnE|Xn|p < ∞ for somep > 1 then |Xn|p is u.i. and Xn converges in Lp.Proof : p > 1 ⇒ supnE|Xn| < ∞ so Xn converges a.s. to a r.v. X. By Doob’sinequality:

‖ max1≤i≤n

|Xi|‖p ≤ q‖Xn‖p ≤ q supn‖Xn‖p <∞

By the Monotone convergence theorem:

E sup1≤i≤∞

|Xi|p = limn→∞

E sup1≤i≤n

|Xi|p ≤ q supnE|Xn|p <∞

So sup1≤i≤∞ |Xi|p ∈ L1, |Xn|p is u.i. and XnLp−→ X.

26

Homework : Show without using martingale convergence theorem that if Xn,Fnis a martingale and supnE|Xn|p <∞ for some p > 1 then Xn converges a.s.

Ex.( Bayes Est. ) θn = E[θ|X1, . . . , Xn]. If θ ∈ L2 then θna.s.→ θ∞ and E[θn−θ∞]2 → 0.

pf: Eθ2n ≤ Eθ2 <∞(p = 2).

What is θ∞ ? Is θ∞ equal to E[θ|Xi, i ≥ 1]?

Theorem 1.12 If X ∈ L1, Xn = E(X|Fn) and X∞ = limn→∞Xn then (i) Xn isu.i., and (ii) X∞ = E(X|F∞) where F∞ = ∨∞n=1Fn.

pf: Fix n, Xn,Fn, X,F is a martingale. Therefore, |Xn|,Fn, |X|,F is a sub-

martingale. So∫|Xn|>λ |Xn|dP ≤

∫|Xn|>λ |X|dP . Now P|Xn| > λ ≤ E|Xn|

λ≤

E|X|λ→ 0. ∫

|Xn|>λ |X|dP ≤ cP|Xn| > λ+∫|X|>c |X|dP

≤ cE|X|λ

+∫|X|>c |X|dP

⇒ supnE|Xn|I[|Xn|>λ] ≤ c

E|X|λ

+

∫|X|>c

|X|dP

limλ→∞

supnE|Xn|I[|Xn|>λ] ≤

∫|X|>c

|X|dP ∀ c

Therefore, XnL1

→ X∞. So ∀ Λ ∈ F ,∫

ΛXndP

n→∞→∫

ΛX∞dP . Since |

∫ΛXndP −∫

ΛX∞dP | ≤

∫Λ|Xn −X∞|dP ≤ E|Xn −X∞| → 0. Fix n,Λ ∈ Fn,∀ m ≥ n∫

Λ

XdP =

∫Λ

XndP =

∫Λ

XmdP =

∫Λ

X∞dP

Let G = Λ :∫

ΛXdP =

∫ΛX∞dP. Then G is a σ–field s.t. G ⊃ ∪∞n=1Fn. So

G ⊃ ∨∞n=1Fn = F∞. Observe that X∞ is F∞–measurable. Hence E(X|F) = X∞.

Corollary 1.5 Assume that θ ∈ L2, θn = E(θ|X1, . . . , Xn) and θ∞ = E(θ|Xi, i ≥ 1).

If ∃ θn = θn(X1, . . . , Xn) s.t. θnp→ θ then θ∞ = θ a.s.

pf: Since θnp→ θ. Let Fn = σ(X1, . . . , Xn). So ∃ nj s.t. θnj

a.s.→ θ as nj → ∞.Hence θ is F∞ = σ(Xi, i ≥ 1) measurable. By the theorem stated above, we getθ∞ = E[θ|F∞] = θ a.s.

27

Example: yi = θxi + εi,Xi : constant,θ ∈ L2 with known density f(θ),εi i.i.d.N(0, σ2), σ2 known, and εi is independent of θ.

θn = E(θ|Y1, . . . , Yn) =µc2

+∑ni=1XiYiσ2

1c2

+∑ni=1X

2i

σ2

Assume that f(θ) ∼ N(µ, c2), µ, c2 known.

g(θ, y1, . . . , yn) =1√2πc

e−(θ−µ)2

2c2 (1√2πσ

)ne−∑ni=1(yi−θxi)

2

2σ2

g(θ|y1, . . . , yn) = g(θ,y1,...,yn)∫g(θ,y1,...,yn)dθ

∝ K(y1, . . . , yn)e−( 1

2c2+

∑ni=1X

2i

2σ2 )θ2+(µ2

c2+

∑ni=1 xiyiσ2 )θ

When∑∞

i=1X2i <∞

θnn→∞−→

µc2

+∑∞i=1X

2i

σ2 θ +∑∞i=1Xiεiσ2

1c2

+∑∞i=1X

2i

σ2

= θ∞

∼ N(µ,

∑∞i=1X

2i

σ2 c2 +(∑∞i=1X

2i )σ2

σ4

( 1c2

+∑∞i=1X

2i

σ2 )2)D6= θ

When∑∞

i=1X2i →∞

θn ∼∑n

i=1 xiyi∑ni=1 x

2i

= θ +

∑ni=1 xiεi∑ni=1 x

2i

a.s.→ θ

In general, let θn =∑ni=1 xiyi∑ni=1 x

2i

. When∑n

i=1 x2i →∞,

E(θn − θ)2 = E∑n

i=1 xiεi∑ni=1X

2i

2 =σ2∑ni=1 x

2i

→ 0

So θnp→ θ. By our theorem, θn → θ a.s. or L2.

How to calculate the upper and lower bound of E|Xn|p and E|∑n

i=1Xiεi|p ?

28

1.4 Square function inequality

Let Xn,Fn be a martingale and d1 = X1,di = Xi −Xi−1 for i ≥ 2.

Theorem 1.13 (Burkholder’s inequality)∀ 1 < p <∞, ∃ C1 and C2 depending only on p such that

C1E|n∑i=1

d2i |p/2 ≤ E|Xn|p ≤ C2E|

n∑i=1

d2i |p/2

Cor. For p > 1, ∃C ′2 depending only on p s.t.

C1E|n∑i=1

d2i |p/2 ≤ E(X∗

n)p ≤ C ′

2E|n∑i=1

d2i |p/2

where X∗n = max1≤i≤n |Xi| and C1 is defined by the theorem.

proof:Since E(X∗

n)p ≥ E|Xn|p =⇒ lower half is obtained.

By Doob’s inequality: ‖X∗n‖p ≤ q‖Xn‖p

So E(X∗n)p = ‖X∗

n‖pp ≤ qpE|Xn|p ≤ qpC2E|∑n

i=1 d2i |p/2

Remark: When di are independent, it is called Marcinkiewz-Zygmund inequality.Note that for p ≥ 2

E|∑n

i=1 d2i |p/2 = ‖

∑ni=1 d

2i ‖p/2p/2

≤ (∑n

i=1 ‖d2i ‖p/2)p/2 =

∑ni=1(E|di|p)2/pp/2

If εiD∼ N(0, σ2) then Y

D∼ N(0, (∑∞

−∞ a2i )σ

2).C2 = (

∑∞−∞ a2

i )σ2

E|Y |p = E|YC|pCp = (E|N(0, 1)|p)Cp = E|N(0, 1)|pσp/2(

∞∑−∞

a2i )p/2

Example: Let Y =∑∞

−∞ aiεi,where∑∞

−∞ a2i <∞ and εi are i.i.d. random varibles

with E(εi) = 0 and V ar(εi) = σ2 < ∞. Assume E|εi)|p < ∞,Yn =∑n

−n aiεi,(a−nε−n, a−nε−n + a−n+1ε−n+1, · · · , Yn) is a martingale.

E|Yn|p ≤ C2∑n

−n(E|aiεi|p)2/pp/2= C2

∑n−n(|ai|pE|εi|p)2/pp/2

= C2(E|ε1|p)2/pp/2∑n

−n a2i p/2

29

By Fatou’s lemma, E|Y |p ≤ C2(E|ε1|p)∑∞

−∞ a2i p/2, ∃ C1, C2 depending only on p

and E|εi|p s.t.

C1(∞∑−∞

a2i )p/2 ≤ E|Y |p ≤ C2(

∞∑−∞

a2i )p/2

Example: Consider yi = α + βxi + εi where εi are i.i.d. mean 0 and E|εi|p < ∞for some p ≥ 2. Assume that xi are constant and s2

n =∑n

i=1(xi− xn)2 →∞. If p > 2

then the least square estimator β is strongly consistent.

βn − β =

∑ni=1(xi − xn)εi∑ni=1(xi − xn)2

(V ar(βn) =σ2

s2n

)

xn = 1n

∑ni=1 xi,let

Sn =∑n

i=1(xi − xn)εi, n ≥ 2= S2 + (S3 − S2) + · · ·+ (Sn − Sn−1)

When n > m,

Sn − Sm =∑n

i=1(xi − xn)εi −∑m

i=1(xi − xm)εi=

∑mi=1(xm − xn)εi +

∑ni=m+1(xi − xn)εi

E(Sn − Sn−1)Sm =∑m

i=1(xi − xm)(xm − xn)σ2

= (xm − xn)[∑m

i=1(xi − xm)]σ2

So s2n = (

∑ni=2C

2i ) where C2

2 = E(S22)/σ

2 and C2n = E(Sn − Sn−1)

2/σ2. We want toshow Sn

s2n→ 0 a.s.

Moricz:E|∑n

i=m Zi|p ≤ Cp(∑n

i=mC2i )p/2 ∀ n,m

If∑n

i=1C2i →∞ and P > 2 then

∑ni=1 Zi∑ni=1 C

2i→ 0 a.s.

Zi = Si− Si−1,Sn =∑n

i=1(xi− xn)εi Note that∑n

i=m Zi =∑n

i=1 ai(n,m)εi whereai(n,m) may depend on n and m.

So E|∑n

i=m Zi|p ≤ Cp(∑n

i=1 a2i (n,m))p/2

≤ Cp[V ar(

∑ni=m Zi)

σ2 ]p/2

= Cp[∑ni=m V ar(Zi)

σ2 ]p/2

= Cpσp

(∑n

i=mC2i )p/2

If ai is Fi−1–measurable,recall:

∑n

i=1(E|di|p)2/pp/2 = ∑n

i=1(E|aiεi|p)2/pp/2= ∑n

i=1(E|ai|pE(|εi|p|Fi−1))2/pp/2

30

Theorem 1.14 (Burkholder-Davis-Gundy)∀ ρ > 0, ∃ C depending only on p s.t.

E(X∗n)p ≤ CE[

n∑i=1

E(d2i |Fi−1)]

p/2 + E(max1≤i≤n

|di|p)

Theorem 1.15 (Rosenthal’s inequality)∀ 2 ≤ p <∞, ∃ C1, C2 depending only on p s.t.

C1E[∑n

i=1E(d2i |Fi−1)]

p/2 +∑n

i=1E|di|p ≤ E|Xn|p≤ C2E[

∑ni=1E(d2

i |Fi−1)]p/2 +

∑ni=1E|di|p

Cor.(Wei,1987,Ann.Stat. 1667-1682)Assume that εi,Fi is a martingale differences s.t. supnE|εn|p|Fn−1 ≤ C for

some p ≥ 2 and constant C.Assume that un is Fn−1–measurable. Let Xn =

∑ni=1 uiεi and X∗

n = sup1≤i≤n |Xi|.Then ∃ K depending only on C and p s.t. E(X∗

n)p ≤ KE(

∑ni=1 u

2i )p/2.

Proof: By B–D–G inequality:

E(X∗n)p ≤ CpE[

n∑i=1

E(u2i ε

2i |Fi−1)]

p/2 + E max1≤i≤n

|uiεi|p

∑ni=1E(u2

i ε2i |Fi−1) ≤

∑ni=1 u

2i [E(|εi|p|Fi−1)

2/p]

≤ C2p (∑n

i=1 u2i )

first term ≤ CpCE(∑n

i=1 u2i )p/2

second term ≤ E∑n

i=1 |ui|p|εi|p=

∑ni=1E(|ui|p|εi|p)

=∑n

i=1EE(|ui|p|εi|p|Fi−1)≤ C

∑ni=1E|ui|p

= CE(∑n

i=1 |ui|p)≤ CE

∑ni=1 u

2i (max1≤j≤n |uj|p−2)

≤ CE(∑n

i=1 u2i )(∑n

i=1 u2i )

p−22

= CE(∑n

i=1 u2i )p/2

Let K = CpC + C.

ai constant,p ≥ 2 :∑n

i=1 |ai|p ≤ (∑n

i=1 a2i )p/2.

The comparison of Local convergence theorems and Global convergence theorems:Conditional Borel-Cantelli Lemma:Classical results: Ai events,

31

1. If∑P (Ai) <∞ then P (Ai i.o.) = 0.

2. If Ai are independent and P (Ai i.o.) = 0 then∑P (Ai) <∞.

Define X =∑∞

i=1 IAi then Ai i.o. = X = ∞.∑P (Ai) =

∑E(IAi) = E(

∑IAi) = E(X)

The classical result connects the finiteness of X and E(X).

1. X > 0, E(X) <∞⇒ X <∞ a.s.

2. ?∑∞i=1E(IAi|Fi−1) <∞ a.s. if

∑∞i=1EIAi <∞,Fn = σ(A1, · · · , An)

Mi = E(IAi|Fi−1) = P (Ai)

P (∞∑i=1

IAi <∞) > 0 ⇒∞∑i=1

P (Ai) <∞

Theorem: Let Xn be a sequence of nonnegative random variables and Fn, n ≥ 0be a sequence of increasing σ–fields. Let Mn = E(Xn|Fn−1). Then

1.∑∞

i=1Xi <∞ a.s. on ∑∞

i=1Mi <∞, and

2. if Y = supnXn/(1 + X1 + · · · + Xn−1) ∈ L1 and Xn is Fn–measurable then∑∞i=1Mi <∞ a.s. on

∑∞i=1Xi <∞.

Remark: If Xi are uniformly bdd by C then Y ≤ C a.s. and Y ∈ L1. In thiscase,with the assumption Xn is Fn–measurable.

P [(∞∑i=1

Xi <∞4 ∞∑i=1

Mi <∞) ∪ (∞∑i=1

Xi = ∞4 ∞∑i=1

Mi = ∞)] = 0

proof: ( Due to Louis,H.Y.Chen,Ann.Prob 1978)

Theorem 1.16 Let Xn be a sequence of nonnegative random variables and Fnbe a sequence of increasing σ–fields. Let Mn = E(Xn|Fn−1) for n ≥ 1.

1.∑∞

i=1Xi <∞ a.s. on ∑∞

i=1Mi <∞.

2. If Xn is Fn–measurable and Y = supnXn

1+X1+···+Xn−1∈ L1 then

∑∞i=1 < ∞ a.s.

on ∑∞

i=1Mi <∞.

32

Classical results : Ai events∑∞i=1 P (Ai) <∞⇒ P (An i.o.) = 0

IfAi are independent then P (An i.o.) = 0 or P (∑∞

i=1 IAi <∞) = 1,⇒∑∞

i=1 P (Ai) <∞.

xi = IAi ,Fn = σ(A1, · · · , An)∑∞i=1 P (Ai) =

∑∞i=1E(IAi) = E(

∑∞i=1 IAi)

= E(∑∞

i=1Xi) = E∑∞

i=1E(Xi|Fi−1) <∞⇒∑∞

i=1E(Xi|Fi−1) <∞ a.s. ⇒∑∞

i=1Xi <∞ a.s.An i.o. =

∑∞i=1 IAi = ∞ =

∑∞i=1Xi = ∞∑∞

i=1Mi =∑∞

i=1E(IAi|Fi−1)indep.=

∑∞i=1E(IAi) =

∑∞i=1 P (Ai)

P∑∞

i=1 IAi <∞ > 0 ⇒∑∞

i=1 P (Ai) <∞

proof of theorem:

(i) Let M0 = 1. Consider ∑ni=1

Mi

(M0+···+Mi−1)(M0+···+Mi)

=∑n

i=11

M0+···+Mi−1− 1

M0+···+Mi

= 1M0− 1

M0+···+Mn= 1− 1

1+M0+···+Mn

Let Sn = M0 + · · ·+Mn then Sn is Fn−1–measurable.

Since 1 ≥ E∑∞

i=1Mi

Si−1Si=∑∞

i=1E( Mi

Si−1Si)

=∑∞

i=1E(E(Xi|Fi−1)Si−1Si

) =∑∞

i=1EE( XiSi−1Si

|Fi−1)=∑∞

i=1E( XiSi−1Si

) = E(∑∞

i=1Xi

Si−1Si)

So∑∞

i=1Xi

Si−1Si<∞ a.s.

On the set S∞ <∞,∞∑i=1

Xi

Si−1Si≥

∞∑i=1

Xi

S2∞

=1

S2∞

∞∑i=1

Xi ⇒∞∑i=1

Xi <∞

(ii) Let X0 = 1 and Un =∑n

i=0Xi is Fn–measurable.

E(∑∞

i=1Mi

U2i−1

) =∑∞

i=1E( Mi

U2i−1

) =∑∞

i=1EE( Mi

U2i−1|Fi−1)

= E(∑∞

i=1XiU2i−1

) = E(∑∞

i=1Xi

Ui−1Ui

UiUi−1

)

≤ E[(∑∞

i=1Xi

Ui−1Ui)(supi

UiUi−1

)] ≤ E supiUiUi−1

= E(supi(1 + XiUi−1

)) = E(1 + Y ) <∞

33

So∑∞

i=1Mi

U2i−1

<∞ a.s.

On the set U2∞ <∞

∞∑i=1

Mi

U2i−1

≥∑∞

i=1Mi

U2∞

⇒∞∑i=1

Mi <∞

Remark: Under condition(ii)

P [∑∞

i=1Mi <∞4 ∑∞

i=1Xi <∞] = 0, andP [∑∞

i=1Mi = ∞4 ∑∞

i=1Xi = ∞] = 0.

1.5 Series Convergence

Recall (Global) convergence theorem :Xn,Fn is a martingale and supnE|Xn| <∞⇒ Xn converges a.s.Let ε1 = X1 and εn = Xn −Xn−1,n ≥ 2

supnE|

n∑i=1

εi| <∞⇒n∑i=1

εi converges a.s.

Theorem 1.17 (Doob) Let Xn =∑n

i=1 εi,Fn be a martingale. Then Xn convergesa.s. on

∑∞i=1E(ε2

i |Fi−1) <∞.

proof: Fix K > 0. Define τ = infn :∑n+1

i=1 E(ε2i |Fi−1) > K. Then Xn∧τ ,Fn∧τ is

a martingale.

E(X2n∧τ ) = E(

∑n∧τi=1 εi)

2 = E(∑n

i=1 εiI[τ≥i])2

=∑n

i=1E(I[τ ≥ i]ε2i ) =

∑ni=1EE(I[τ≥i]ε

2i |Fi−1)

= E∑n

i=1 I[τ≥i]E(ε2i |Fi−1) = E

∑n∧τi=1 E(ε2

i |Fi−1)≤ E(K) = K

Since supnE(X2n∧τ ) <∞ soXn∧τ converges a.s. But on the eventAK =

∑∞i=1E(ε2

i |Fi−1) ≤K : τ = ∞ and Xn∧τ = Xn. So Xn converges a.s. on AK . Hence it also convergesa.s. on ∪∞K=1AK =

∑∞i=1E(ε2

i |Fi−1) <∞.

Theorem 1.18 (Three series Theorem)Let Xn =

∑ni=1 εi be Fn–adaptive and C a positive constant. Then Xn converges

a.s. on the event where

(i)∑∞

i=1 P [|εi| > C|Fi−1] <∞,

34

(ii)∑n

i=1E(εiI[|εi|≤C]|Fi−1) converges, and

(iii)∑∞

i=1E(ε2i I[|εi|≤C]|Fi−1)− E2(εiI[|εi|≤C]|Fi−1) <∞

Remark: When εi are independent,(i),(ii) and (iii) are also necessary for Xn to be ana.s. convergent series.

proof:

Xn =∑n

i=1 εi=

∑ni=1 εiI[|εi|>C] +

∑ni=1εiI|εi|≤C] − E(εiI[|εi|≤C]|Fi−1)

+∑n

i=1E(εiI[|εi|≤C]|Fi−1)= I1n + I2n + I3n

Let Ω0 = (i),(ii) and (iii) hold. By (i) and the conditional Borel—Cantelli lemma,

∞∑i=1

I[|εi|>C] <∞ a.s. on Ω0

Hence I[|εi|>C] = 0 eventually on Ω0. So I1n converges a.s. on Ω0. The conver-gence of I2n on Ω0 follows from (iii) and Doob’s theorem. Let Zi = εiI|εi|≤C] −E(εiI[|εi|≤C]|Fi−1).

E(Z2i |Fi−1) = E(ε2

i I[|εi|≤C]|Fi−1)− E2(εiI[|εi|≤C]|Fi−1).

I3n follows from (ii).

Counterexample: Let Xn be a sequence of independent random variables s.t.

P [Xn =1√n

] = P [Xn =−1√n

] =1

2.

Let Fn = σ(X1, · · · , Xn),ε1 = X1 and εn = Xn −Xn−1 for n ≥ 2. Claim (i) Xna.s.→ 0

since |Xn| = 1√n

a.s. (ii) Let C = 2. Then I[|εi|≤2] = 1, since |εn| ≤ 2.∑ni=1E(εi|Fi−1) =

∑ni=1E(Xi)−Xi−1

=∑n

i=2−Xi−1 = −∑n

i=2Xi−1∑∞i=2 Var(Xi−1) =

∑∞i=2EX

2i−1 =

∑∞i=2

1i−1

= ∞

⇒∑Xi diverges a.s.

Theorem 1.19 (Chow)Let Xn =

∑ni=1 εi,Fn be a martingale and 1 ≤ p ≤ 2. Then Xn converges a.s.

on ∑∞

i=1E(|εi|p|Fi−1) <∞.

35

proof: Let C > 0.

(i) P [|εi| > C|Fi−1] ≤ E(|εi|p|Fi−1)/Cp.

(ii)∞∑i=2

|E(εiI[|εi|≤C]|Fi−1)| =∞∑i=2

|E(εiI[|εi|>C]|Fi−1)|

≤∞∑i=2

E(|εi|I[|εi|>C]|Fi−1) ≤∞∑i=2

E(|εi|p|Fi−1)/Cp−1

(iii)Eε2

i I[|εi|≤C]|Fi−1 ≤ E|εi|pC2−p|Fi−1≤ C2−pE|εi|p|Fi−1.

New proof: τ = infn :∑n+1

i=1 E(|εi|p|Fi−1) > K, 1 < p ≤ 2.

E|Xτ∧n|p = E|∑n

i=1 I[τ≥i]εi|p≤ CpE(

∑ni=1 I[τ≥i]ε

2i )p/2

≤ CpE∑n

i=1 I[τ≥i]|εi|p= CpE

∑n∧τi=1 E(|εi|p|Fi−1)

≤ KCp

When p = 1,E|Xτ∧n| ≤ E

∑ni=1 I[τ≥i]|εi|

= E∑n∧τ

i=1 E(|εi||Fi−1) ≤ K.

Colloary. Let εn,Fn be a sequence of martingale differences and 1 ≤ p ≤ 2. Let Xn

be Fn−1–measurable. Then∑n

i=1Xiεi converges a.s. on ∑∞

i=1 |Xi|pE(|εi|p|Fi−1) <∞.

Remark: We does not assume that Xi is integrable.Proof: We can find constants ai so that

∑∞i=1 P [|Xi| > ai] < ∞. For any Z and

α > 0, we can find n so that P [|Z| > n] ≤ α.

an ↔ αn =1

n2

P [|Xn| > an i.o.] = 0, so we can replaceXi by Xi = XiI[|Xi|≤ai]. In this case,∑n

i=1Xiεiis a martingale and E(|Xiεi|p|Fi−1) = |Xi|pE(|εi|p|Fi−1). The collary follows Chow’sresult.

Remark: If supnE(|εi|p|Fi−1) <∞ then∑n

i=1Xiεi converges a.s. on ∑∞

i=1 |Xi|p <∞

36

yi = βxi + εi

εii.i.d., Eεi = 0 and V ar(εi) = σ2

xi is Fi−1 = σ(ε1, · · · , εi−1)–measurable.

βn = β +∑ni=1 xiεi∑ni=1 x

2i

converges a.s. to β +∑∞i=1 xiεi∑∞i=1 x

2i

on ∑∞

i=1 x2i <∞

Chow’s Theorem

n∑i=1

εi converges a.s. on

∞∑1

E(| εi |P | Fi−1) <∞

, where 1 ≤ p ≤ 2.

Special case:

supiE(| εi |2| Fi−1) <∞

⇒n∑1

xiεi converges a.s. on

∞∑1

x2i <∞

Corollary : If un is Fn−1 measurablethen

n∑1

εi = 0(un) a.s. on the set

un ↑ ∞,

∞∑1

| ui |−p E| εi |p| Fi−1 <∞

pf : Take xi = 1ui

Then∞∑1

1

uiεi converges a.s. by previous corollary. In view of Kronecker’s Lemma.

∞∑1

εi

un−→ 0 when un ↑ ∞

Corollary : Let f : [0,∞) → (0,∞) be an increasing fun. s.t.∫∞

0f−2(t)dt <∞ . Let

s2n =

∑ni=1E(ε2

i | Fi−1)εFn−1 measurable. Then

n∑i=1

εif(s2

i )converges a.s.,

n∑i=1

εi = 0(f(s2n)) a.s.

on s2n →∞ where lim

t→∞f(t) = ∞.

37

pf:

∞∑i=1

E

[(εi

f(s2i )

)2

| Fi−1

]=

∞∑i=1

E(ε2i | Fi−1)

f 2(s2i )

=∞∑i=1

s2i − s2

i−1

f 2(s2i )

≤∞∑i=1

∫ s2i

s2i−1

1

f 2(t)dt

≤∫ ∞

so

1

f 2(t)dt <∞

Remark:

f(t) =

t1/2(log t)

1+δ2 , δ > 0, t ≥ 2

f(2), o.w.

or f(t) = t

For this, we have that

s2∞ =

∞∑i=1

x2iE(ε2

i | Fi=1)

n∑i=1

xiεi = 0

(n∑i=1

x2iE(ε2

i | Fi=1)

)

on

[∞∑i=1

x2iE(ε2

i | Fi=1) = ∞

]If we assume that

supiE(ε2

i | Fi−1) <∞

n∑i=1

xiεi = 0

(n∑i=1

x2i

)on

∞∑i=1

x2i = ∞

In summary, under the assumption

supiE(ε2

i | Fi−1) <∞

n∑i=1

xiεi =

O(1) on

∑∞1 x2

i <∞o(∑n

1 x2i ) on

∑∞1 x2

i = ∞

38

Example : yi = βxi + εiwhere εi,Fi is a martingale difference seq. s.t.

supnE(ε2

n | Fn−1) <∞ a.s. and xi is Fi−1 measurable.

Then

βn =

n∑1

xiyi

n∑1

x2i

= β +

n∑1

xiεi

n∑1

x2i

converges a.s. and the limit is β on ∞∑1

x2i = ∞

pf:

On ∞∑1

x2i <∞,

n∑1

xiεi converges

So that βn → β +

∞∑i=1

xiεi

∞∑i=1

x2i

On ∞∑1

x2i = ∞

n∑i=1

xiεi

n∑i=1

x2i

−→ 0, as n→∞

So that βn −→ β

Application (control)yi = βxi + εi, (β 6= 0) where εi i.i.d. with E(εi) = 0, V ar(εi) = σ2

Goal: Design xi which depends on previous observations so that y ' y∗ 6= 0

39

Strategy : choose x1 arbitrary , set

xn+1 =y∗

βn

Question:

xn →y∗

βa.s. ?

or βn → β a.s. ?

By previous result, βn always converges.

Then x2n+1 =

(y∗)2

β2n

is bounded away from zero

and∞∑1

x2n+1 = ∞ a.s.. Therefore, βn → β a.s.

Open Question:Is there a corresponding result for

yi = α+ βxi + εi

or yi = αyi−1 + βxi + εi

Open Questions:

Assume that∞∑1

| xi |p<∞ a.s. and

supnE(| εn |p| Fn−1) <∞ a.s. for some 1 ≤ p ≤ 2

What are the distribution properties of S =∞∑1

xiεi ?

xi are constantsxi 6= 0 i.o.p = 2

lim infn→∞E(| εn || Fn−2) > 0 a.s.

⇒ S has a continuous distribution

40

Almost SupermartingaleTheorem (Robbins and Siegmund)Let Fn be a sequence of increasing fields and xn, βn, yn, zn are nonnegative Fn-measurable random variables

s.t. E(xn+1 | Fn) ≤ xn(1 + βn) + yn − zn a.s.

Then on ∞∑i=1

βi <∞,

∞∑i=1

yi <∞

xnconverges and∞∑1

zi <∞ a.s.

pf:1o Reduction to the case βn = 0, ∀ n

set x′n = xn

n−1∏i=1

(1 + βi)−1

y′n = yn

n∏i=1

(1 + βi)−1

z′n = zn

n∏i=1

(1 + βi)−1

Then E(x′

n+1 | Fn) = E(xn+1 | Fn)n∏i=1

(1 + βi)−1

≤ [xn(1 + βn) + yn − zn]n∏i=1

(1 + βi)−1

= x′n + y′n − z′n

on

∞∑i=1

βi <∞

,

n∏i=1

(1 + βi)−1 converges to a nonzero limit.

41

Therefore,

(i)∑

yi <∞⇐⇒∑

y′i <∞(ii) xn converges ⇐⇒ x′n converges

(iii)∑

zi <∞⇐⇒∑

z′i <∞

2o Assume that βn = 0, ∀ nE(xn+1 | Fn) ≤ xn + yn − zn

Let un = xn −n−1∑

1

(yi − zi) = xn +n−1∑

1

zi −n−1∑

1

yi

Then E(un+1 | Fn) = E(xn+1 | Fn)−n∑1

(yi − zi)

≤ xn + yn − zn −n∑1

(yi − zi)

= xn −n−1∑

1

(yi − zi) = un

Given a > 0 , define

τ = infn :n∑1

yi > a

Observe that [τ = ∞] = [∞∑1

yi ≤ a]

and uτΛn is also a supermartingale

uτ∧n ≥ −τ∧n−1∑

1

yi ≥ −a, ∀ n

So that uτ∧n converges a.s.

Consequently un = uτ∧n converges on [τ = ∞] = ∞∑1

yi ≤ a . Since a is arbi-

trary, un converges a.s. on ∞∑1

yi <∞

42

So that x+∞∑1

zi converges a.s. on ∞∑1

yi <∞

So thatn∑1

zi converges and so does xn.

Example : Find the quantile

Assume y = α+ βx+ ε where β > 0Given y∗, want to find x∗

Method : choose x1 arbitrary

xn+1 = xn+ an (y∗ − yn) , an > 0↑ ↑

control step control direction

=⇒ Stochastic Approximation

Question : xn?→ x∗

(xn+1 − x∗) = (xn − x∗) + an(α+ βx∗ − α− βxn − εn)

= (xn − x∗)(1− anβ)− anεn

xn+1 is Fn-measurablewhere Fn = σ(xo, ε1, · · · , εn)E((xn+1 − x∗)2 | Fn−1) = (xn − x∗)2(1− anβ)2 + a2

nσ2

where we assume εi are i.i.d., Eεi = 0, var(εi) = σ2

Xn = (xn+1 − x∗)2

Zn−1 = 2anβ(xn − x∗)2 = 2βanXn−1

Yn−1 = a2nσ

2

Bn−1 = a2nβ

2

E(Xn | Fn−1) ≤ Xn−1(1 + βn−1) + Yn−1 − Zn−1

43

Condition (1)∑a2n <∞

Then Xn converges a.s. and∑

Zi <∞ a.s.Condition (2)

∑an = ∞

Xn converges to X∑Zi = 2β

∑ai+1Xi <∞

⇒ X = 0 a.s.Remark: Assume

∑ai <∞

(xn+1 − x∗) = (xn − x∗) + an(α+ βx∗ − α− βxn − εn)

= (xn − x∗)(1− anβ)− anεn

=n∏j=1

(1− ajβ)(x1 − x∗)−n∑i=1

n∏`=j+1

(1− a`β)ajεj

=n∏j=1

(1− ajβ)(x1 − x∗)−

[n∏`=1

(1− a`β)

]n∑j=1

[j∏`=1

(1− a`β)

]−1

ajεj

when∑aj <∞, Cn =

n∏j=1

(1− ajβ) converges to C > 0.

So that xn − x∗ → C

[(x1 − x∗)−

∞∑j=1

C−1j ajεj

]

Note that∞∑j=1

(C−1j aj)

2 <∞, C−1j aj > 0 ∀j

So that∞∑j=1

C−1j ajεjhas a continuous distribution

This implies that where xi is a const.

P

[(x1 − x∗)−

∞∑j=1

C−1j ajεj = 0

]= 0

Central Limit Theorems (CLT)Reference: I.S. Helland (1982)Central Limit Theorems for martingales with discrete or continuous time. Scand J.Statist. 9, 79∼ 94.

44

Classical CLT:Assume that ∀ nXn,i, 1 ≤ i ≤ kn are indep. with EXn,i = 0.

Let s2n =

kn∑i=1

X2n,i

Thm. If ∀ ε > 0,kn∑i=1

1

s2n

E[X2n,iI[|Xn,i|>snε]

]→ 0

thenkn∑i=1

Xn,i

sn

D→ N(0, 1)

* Reformulation: Xn,i =Xn,isn

(i)kn∑i=1

E(X2n,i) = 1

(ii)kn∑i=1

E[X2n,iI[|Xn,i|>ε]

]→ 0 ∀ ε

(ii) is Lindeberg′s condition* uniform negligibility (How to use mathematics to formulate?)

max1≤i≤kn

| Xn,i |D→ 0

controlX2n,i

* condition of varienceTo recall Burkholder′s inequality: ∀ 1 < p <∞

C ′pE

(n∑i=1

d2i

)p/2

≤ E | Sn |p≤ CpE

(n∑i=1

d2i

)p/2

EZp Z = (∑d2i )

1/2 EZp

kn∑i=1

X2n,i

formalize→kn∑i=1

(X2n,i | Fn,i−1)

1∑i=1

X2n,i

j∑i=1

E(X2n,i | Fn,i−1)

↑ ↑optional quadratic variance predictable quadratic variance

45

Thm. ∀ n ≥ 1, Fn,j; 1 ≤ j ≤ kn < ∞ is a sequence of increasing σ-fields. LetSn,j =

j∑i=1

Xn,i, 1 ≤ j ≤ kn

be Fn,j-adaptive.

Define

X∗n = max

1≤i≤kn| Xn,i |,

U2n,j =

j∑i=1

X2n,i, 1 ≤ j ≤ kn

Assume that

(i) U2n = U2

n,kn =kn∑i=1

X2n,i

D→ Co,where Co > 0 is a constant.

(ii) X∗n

D→ 0

(iii) supn≥1

E(X∗n)

2 <∞

(iv)kn∑j=1

EXn,j | Fn,j−1D→ 0 and

kn∑j=1

E2Xn,j | Fn,j−1D→ 0

Then

Sn =kn∑i=1

Xn,iD→ N(0, Co)

= Sn,kn

Remark:Xn,j, 1 ≤ j ≤ kn can be defined on different probability space for differentn.Step 1. Reduce the problem to the case

where Sn,j,Fn,j, 1 ≤ j ≤ kn is a martingale. Set

Xn,j = Xn,j − E(Xn,j | Fn,j−1) 1 ≤ j ≤ kn,Fn,o : trivial field

U2n =

kn∑j=1

X2n,j

X∗n = max

1≤j≤kn| Xn,j |

Sn =kn∑j=1

Xn,j

46

(a)Sn − Sn =kn∑j=1

E(Xn,j | Fn,j−1)D→ 0 by(iv)

(b) X∗n ≤ max

1≤j≤kn| Xn,j | + max

1≤j≤kn

| E(Xn,j | Fn,j−1) |2

1/2

= X∗n +

kn∑j=1

E2(Xn,j | Fn,j−1)

1/2

So that X∗n

D→ 0 by (ii) and (iv)

(X∗)2 ≤ 2(X∗n)

2 + 2

(max

1≤j≤knE2(Xn,j | Fn,j−1)

)≤ 2(X∗

n)2 + 2

(max

1≤j≤knE2(X∗

n | Fn,j−1)

)| E(Xnj | Fn,j−1) |≤ E(| Xn,j || Fn,j−1) ≤ E(X∗

n | Fn,j−1)

Vj = E(X∗n | Fn,j) is a martingale 1 ≤ j ≤ kn

E

(sup

1≤j≤knV 2j

)≤ 4E(X∗

n)2

by Doob′s ineq. ∞ > p > 1 ,

‖ sup1≤j≤n

| Xj | ‖p≤ q ‖ Xn ‖p .

So that E(X∗n)

2 ≤ 2E(X∗n)

2 + 2× 4E(X∗n)

2

= 10E(X∗n)

2 <∞

U2n − U2

n =kn∑j=1

E2(Xn,j | Fn,j−1) − 2kn∑j=1

Xn,jE(Xn,j | Fn,j−1)D→ 0

kn∑j=1

E2(Xn,j | Fn,j−1)D→ 0 By(iv)

kn∑j=1

Xn,jE(Xn,j | Fn,j−1)D→ 0

47

Because |kn∑i=1

Xn,jE(Xn,j | Fn,j−1) |≤

(kn∑j=1

X2n,j

)1/2( kn∑i=1

E2(Xnj | Fn,j−1)

)1/2

D→ 0

(kn∑j=1

X2n,j

)1/2

= (U2n)

1/2 D→ C1/2o(

kn∑i=1

E2(Xn,j | Fn,j−1)

)1/2

D→ 0

So that U2n

D→ Co

Thm. ∀n ≥ 1, Fn,j, 1 ≤ j ≤ kn < ∞ is a sequence of increasing σ-fields. Let

Sn,j =

j∑i=1

Xn,i, 1 ≤ j ≤ kn be Fn,j -martingale. Define X∗n = max

1≤i≤kn| Xn,i |

, U2n,j =

j∑i=1

X2n,i, 1 ≤ j ≤ kn

Assume that

(i) U2n = U2

n,kn =kn∑i=1

X2n,i

D→ Co, where Co > 0 is a constant

(ii) X∗n

D→ 0

(iii) supn≥1

E(X∗n)

2 <∞

Then

Sn =kn∑i=1

Xn,iD→ N(0, Co)

Step 2. Further Reduction. Define

τ =

infi : 1 ≤ i ≤ kn, U

2n,i > C , when U2

n > Ckn , when U2

n ≤ C

48

where C > Co

Define Xn,j = Xn,jI[τ≥j]

Sn =kn∑j=1

Xn,j =kn∑i=1

Xn,jI[τ≥j] =τ∑j=1

Xn,i

U2n,j =

j∑i=1

X2n,i,

X∗ = max1≤i≤kn

| Xn,j |

Un = U2n,kn =

τ∑j=1

X2n,j

P (Sn 6= Sn) ≤ P (U2n > C) → 0

⇒ It is sufficient to show that

SnD→ N(0, Co)

If C ≥ U2n then U2

n = U2n

If C < U2n then τ ≤ kn and

C < U2n =

τ−1∑i=1

X2n,j +X2

n,τ ≤ C + (X∗n)

2

So that U2n ∧ C ≤ U2

n ≤ (U2n ∧ C) +(X∗

n)2

↓ ↓ ↓ DCo ∧ C = Co Co ∧ C = Co 0

⇒ U2n

D→ Co

Clearly, X∗n ≤ X∗

n

Therefore, X∗n

D→ 0 by (ii) and

supn≥1

E(X∗n)

2 ≤ supn≥1

E(X∗n)

2 <∞

Step 3. E eiSn → e−co/2

Claim: This is sufficient to show SnD→ N(0, Co)

49

Reason : Step 3 ⇒ E eiSn → e−Co/2

Now replace Sn by t Sn. Using step 3 again, we obtain EeitSn → e−t2Co/2

(a) Expansioneix = (1 + ix)e(−x

2/2)+r(x) ,where | r(x) |≤| x |3 for | x |< 1

Because | x |< 1

⇒ ix = [log(1 + ix)]− x2/2 + r(x)

⇒ r(x) =x2

2+ ix− log(1 + ix)

=x2

2+ ix−

[∞∑j=1

(−1)j+1 (ix)j

j

]

=∞∑j=3

(−1)j(ix)j

j= −(ix)3

3+

(ix)4

4− · · ·

= x4a(x) + x3b(x)i

where a(x) =1

4− x2

6+x4

8− · · · < 1

4

b(x) =1

3− x2

5+x4

7· · · < 1

3

| r(x) | =√x8a2(x) + x6b2(x)

≤√x8

16+x6

9≤| x |3

√1

16+

1

9≤| x |3

eiSn =kn∏j=1

eiXn,j

=

[kn∏j=1

(1 + iXn,j)

]e

kn∑j=1

X2n,j/2 +

kn∑j=1

r(Xn,j)

def= Tne

−U2n/2+Rn

= (Tn − 1)e−Co/2 + (Tn − 1)[e−U

2n/2+Rn − e−Co/2

]+ e−U

2n/2+Rn

= In + IIn + IIIn

50

Note that on X∗n < 1

| Rn | ≤kn∑j=1

| r(Xn,j) |≤kn∑j=1

| Xn,j |3

≤ X∗n

kn∑j=1

X2n,j = X∗

nU2n

So that | Rn |≤| Rn | I[X∗n≥1]+ X∗n U2

m

↓ D ↓ D ↓ D0 0 Co

⇒ RnD→ 0

So that IIInD→ e−Co/2

Now E | Tn |2 = E

kn∑j=1

(1 + X2n,j)

= E(1 + X2

n,τ )∏j<τ

(1 + X2n,j)

≤ E(1 + X∗2n )e

τ−1∑j=1

X2n,j

≤ ecE(1 + X∗2n ) <∞

So that Tn is u.i. ⇒ conv. in dist.

⇒ conv. in expectation

| IIn |= | Tn − 1 | | IIIn − e−co/2 | D→ 0‖ ↓ D

Op(1) 0

51

E(In) = e−co/2[E(Tn)− 1] = 0

E(Tn) = E

kn∏j=1

(1 + iXn,j)

= E

kn∏j=1

(1 + iXn,j) · E(1 + iXn,kn | Fn,kn−1)

= E

kn−1∏j=1

(1 + iXn,j)

= · · · = E1 + iXn,1 = 1

So that eiSn = In + IIn + IIIn

E(In) = 0, IInD→ 0, IIIn

D→ e−co/2

In = (Tn − 1)e−co/2 is u.i.

eiSn − In = IIn + IIInD→ e−co/2

But eiSn − In is u.i.

Therefore E(eiSn) = E(eiSn − In)u.i.→ E(e−co/2) = e−co/2, as n→∞

Note:

∀n

Sn,j =

j∑i=1

Xn,i,Fn,j

is a martingale

(i) U2n =

kn∑i=1

X2n,i

D→ C > 0

(ii) sup1≤i≤kn

| Xn,i |D→ 0

(iii) supnE sup

1≤i≤kn| Xn,i |2<∞

⇒ Sn =kn∑i=1

Xn,iD→ N(0, C)

52

Lemma 1. Assume that Fo ⊂ F1 ⊂ · · · ⊂ FnThen ∀ ε > 0 ,

P

(n⋃i=1

Ai

)≤ ε+ P

n∑j=1

P (Aj | Fj−1) > ε

pf: Let µk =k∑j=1

P (Aj | Fj−1)

Then µk is Fk−1-measurable

So that P

(n⋃i=1

Ai[µn ≤ ε]

)≤

n∑i=1

P (Ai[µn ≤ ε])

≤n∑i=1

P (Ai[µi ≤ ε])

= E

n∑i=1

E(IAiI[µi≤ε] | Fi−1)

= En∑i=1

E(IAi | Fi−1)I[µi≤ε]

≤ ε

Lemma : Zj ≥ 0, µj =

j∑i=1

E(Zi | Fi−1)

Then En∑i=1

ZiI[µi≤ε] = En∑i=1

E(Zi | Fi−1)I[µi≤ε] ≤ ε

pf: Set τ = maxj : 1 ≤ j ≤ n, µj ≤ εThen, since µ1 ≤ µ2 ≤ · · · ≤ µτ

n∑i=1

E(Zi | Fi−1)I[µi≤ε]

=τ∑i=1

E(Zi | Fi−1) = µτ ≤ ε.

53

Corollary. Assume that Ynj ≥ 0 a.s. and Fn,1 ⊂ · · · ⊂ Fn,kn

Thenkn∑j=1

P (Yn,j > ε | Fn,j−1)D→ 0, ∀ ε

⇒ maxa≤j≤kn

Yn,jD→ 0

Remark :kn∑j=1

E[Yn,jI[Yn,j>ε] | Fn,j−1]D→ 0 is sufficient

pf : Let Y ∗n = max

1≤j≤knYn,j

P (Y ∗n > ε) = P

[kn⋃j=1

(Yn,j > ε)

]

≤ η + P

[kn∑j=1

P ([Yn,j > ε] | Fn,j−1) > η

]∀η > 0 By Lemma 1

lim supn→∞

P [Y ∗n > ε] ≤ η

Set η → 0

Lemma 2. ∀n Yn,j is Fn,j-adaptiveAssume that Yn,j ≥ 0 a.s. and E(Yn,j) <∞

Let Un,j =

j∑i=1

Yn,i and Vn,j =

j∑i=1

E(Yn,j | Fn,j−1)

Un = Un,kn , Vn = Vn,kn

Ifkn∑i=1

EYn,jI[Yn,j>ε] | Fn,jD→ 0

and Vn is tight (i.e. limλ→∞

supnP (Vn > λ) = 0)

then max1≤j≤kn

| Un,j − Vn,j |D→ 0

pf: By previous corollary Y ∗n

D→ 0Let Y ′

n,j = Yn,jI[Yn,j≤δ, Vn,j≤λ]

54

Define U′n,j, V

′n,j, U

′n, V

′n similarly

Then P

[max

1≤j≤kn| Un,j − Vn,j |> 3γ

]≤ P

[max

1≤j≤kn| Un,j − U ′

n,j |> γ

]+P

[max

1≤j≤kn| U ′

n,j − V ′n,j |> γ

]+P

[max

1≤j≤kn| V ′

n,j − Vn,j |> γ

]def≡In + IIn + IIIn

(1) In ≤ P [∃j 3 Yn,j > δ or Vnj > λ]

≤ P [Y ∗n > δ] + P [Vn > λ]

(2) IIn ≤ 1

r2E

(max

1≤j≤kn(U

n,j − V ′n,j)

2

)≤ 1

r24E(U ′

n − V ′n)

2

=4

r2

kn∑i=1

[E(Y ′n,j)

2 − E(E2(Y ′n,j | Fn,j−1))]

≤ 4

r2

kn∑j=1

E(Y ′n,j)

2

≤ 4

γ2δ

kn∑j=1

E(Y ′n,j) =

4

γ4δE

(kn∑j=1

E(Y ′n,j | Fn,j−1)

)

≤ 4δ

r2E

(kn∑j=1

EYn,jI[Vnj≤λ] | Fn,j−1

)

=4δ

r2E

(kn∑j=1

E[Yn,j | Fn,j−1]I[Vn,j≤λ]

)≤ 4δλ

γ2

55

(3) Note that max1≤j≤kn

| Vn,j − V ′n,j |

≤ max1≤j≤kn

|j∑i=1

(E(Yn,i | Fn,i−1)− E(Y ′n,i | Fn,i−1)) |

≤kn∑i=1

E(| Yn,i − Y ′n,i || Fn,i−1)

≤kn∑j=1

E(Yn,jI[Yn,j>δ or Vn,j>λ] | Fn,j−1)

≤kn∑j=1

E(Yn,jI[Yn,j>δ] | Fn,j−1) +kn∑j=1

E(Yn,jI[Vn,j>λ] | Fn,j−1)

≤kn∑j=1

E(Yn,jI[Yn,j>δ] | Fn,j−1) +kn∑j=1

E(Yn,j | Fn,j−1)I[Vn,j>λ]

≤kn∑j=1

E(Yn,jI[Yn,j>δ] | Fn,j−1) +kn∑j=1

E(Yn,j | Fn,j−1)I[Vn>λ]

≤kn∑j=1

E(Yn,jI[Yn,j>δ] | Fn,j−1) + VnI[Vn>λ]

IIIn ≤ P

[kn∑j=1

E(Yn,jI[Yn,j>δ] | Fn,j−1) >γ

2

]+P

[VnI[Vn>λ] >

γ

2

]≤ P

[kn∑j=1

E(Yn,jI[Yn,j>δ] | Fn,j−1) >γ

2

]+ P [Vn > λ]

So that lim supn→∞

P

[max

1≤j≤kn| Un,j − Vn,j |> 3γ

]≤ 2 sup

nP [Vn > λ] +

4δλ

γ2

Let λ→∞, δ = 1λ2 . The proof is completed.

56

Thm. ∀ n Sn,j =

j∑i=1

Xn,i,Fn,j is a martingale

If (i) V 2n =

kn∑i=1

E(X2n,i | Fn,i−1)

D→ C > 0

and (ii)kn∑i=1

E(X2n,iI[X2

n,i>ε]| Fn,i−1)

D→ 0 Conditional Lindeberg′s condition

then Sn =kn∑i=1

Xn,iD→ N(0, C)

pf: Set Yn,j = X2n,j

By (ii) and lemma 1, Y ∗n = max

1≤j≤knX2n,j

D→ 0

or max1≤j≤kn

| Xn,j |D→ 0

By (i), V 2n is tight.

Therefore by (ii) and lemma 2.

V 2n − U2

nD→ 0, So that U2

nD→ C by (i).

Now define X ′n,j = Xn,jI

j∑i=1

E(X2n,jI[X2

n,j>ε]| Fn,j−1) ≤ 1

Since P [Sn 6= S ′n] ≤ P

[kn∑j=1

E(X2n,jI[X2

n,j>ε]| Fn,j−1) > 1

]→ 0

So that it is sufficient to show that S ′nD→ N(0, C)

(a) max1≤j≤kn

| X ′n,j |≤ X∗

nD→ 0

(b) P [U2n 6= U

′2n ] ≤ P

[kn∑j=1

E(X2n,jI[X2

n,j>ε]| Fn,j−1) > 1

]→ 0

So that U′2n

D→ C

57

(c) E

[max

1≤j≤kn(X ′

n,j)2

]≤ E max

1≤j≤kn(X ′

n,j)2I[(X′n,j)2≤ε] + E max

1≤j≤kn(X ′

n,j)2I[(X′n,j)2>ε]

≤ ε+ E

kn∑j=1

(X ′n,j)

2I[(X′n,j)2>ε]

= ε+ E

kn∑j=1

X2n,jI[X2

n,j>ε]I

j∑i=1

E(X2n,iI[X2

n,i>ε]| Fn,i−1) ≤ 1

≤ ε+ 1 <∞.

Thm. Let

Sn,i =

i∑j=1

Xn,j, Fn,i 1 ≤ j ≤ kn

be a martingale, s.t.

(i)kn∑i=1

E(X2n,i | Fn,i−1)

D→ C > 0

and

(ii) An =kn∑i=1

E(X2n,iI[X2

n,i>ε]| Fn,i−1)

D→ 0 ∀ ε

Then Sn =kn∑i=1

Xn,iD→ N(0, C)

Conditional Lyapounov condition

Bn =kn∑i=1

E(| Xn,i |2+δ| Fn,i−1)D→ 0 for some δ > 0

Lyapounov′s condition ⇒ Lindeberg′s condition

kn∑i=1

E(X2n,iI[X2

n,i>ε]| Fn,i−1

)≤

kn∑i=1

E

(| xn,i |2+δ

(√ε)δ

| Fn,i−1

)D→ 0

E(An) =kn∑i=1

E(X2n,iI[X2

n,i>ε]) → 0

E(Bn) =kn∑i=1

E | Xn,i |2+δ→ 0

58

Both are sufficient since An ≥ 0 and Bn ≥ 0Example: yi = βxi + εi, i = 1, 2, · · ·

βn =

n∑i=1

xiyi

n∑i=1

x2i

= β +

n∑i=1

xiεi(n∑i=1

x2i

)

Assumptions:

(1) ∃ an > 0 s.t. an ↑ ∞,anan+1

→ 1 andn∑i=1

x2i /an → 1 a.s.

(2) εi i.i.d. E(εi) = 0, V ar(εi) = σ2

(3) xi is Fi = σ(xo, ε1, · · · , εi−1) measurable

(a) If E | ε1 |2+δ<∞ then√an(βn − β)

D→ N(0, σ2)

(b) If (xi, εi) are identically distributed with

E(X2i ) <∞, and an = n, then

√n(βn − β)

D→ N(0, σ2)

Consider Sn =

n∑i=1

xiεi

√an

, i.e. Xn,i = xiεi√an, kn = n

(1)kn∑i=1

E(X2n,i | Fn,i−1) =

n∑i=1

x2i

anE(ε2

i )

=

n∑i=1

x2i

anσ2 a.s.→ σ2

59

(a)n∑i=1

E(| Xn,i |2+δ| Fn,i−1) =

(n∑i=1

∣∣∣∣ Xi√an

∣∣∣∣2+δ)

(E | ε1 |2+δ)

max1≤i≤n

| Xi |√an

δ

n∑i=1

| Xi |2

an

E | ε1 |2+δa.s.→ 0

x2n

an=

n∑i=1

x2i

an− an−1

an·

n−1∑i=1

x2i

an−1

a.s.→ 0

⇒max1≤i≤n

(x2i )

an

a.s.→ 0

(b)n∑i=1

E

(X2i ε

2i

nI[X2

iε2i

n>δ

])

=1

n

n∑i=1

E

(X2

1ε21I

[X2

1ε21

n>δ

])

= E(X21ε

21I[X2

1ε21>nδ]

)n→∞−→ 0

Note that

E(X21ε

21) = E(X2

1E(ε21 | Fo)) = σ2E(X2

1 ) <∞

Lemma. If Z ≥ 0 and E(Z) <∞

then limn→∞

E(ZI[Z>Cn]) = 0 when Cn →∞

0 ≤ Zn = ZI[Z>Cn] ≤ Z

Zn → 0a.s. by Lebesgue Dominated Convergence Theorem

Theorem 1. (Unconditional form)

60

Let

Sn,i =

i∑j=1

Xn,j, Fn,i, 1 ≤ i ≤ kn

be a martingale s.t.

(1)kn∑j=1

X2n,j

D→ C > 0

(2) X∗n = max

1≤i≤kn| Xni |

D→ 0

(3) supnE(X∗

n)2 <∞

Then Sn =kn∑i=1

Xn,iD→ N(0, C)

Theorem 3.(1) +E(X∗

n) → 0 is sufficient(Note that (3) ⇒ X∗

n is u.i.(2) + u.i. ⇒ lim

n→∞E(X∗

n) = 0

)

Theorem 3′.(1)+(2)+

kn∑j=1

∣∣E(Xn,jI[|Xnj |>1] |Fn,j−1)|D→ 0 is sufficient

Lemma. Assume that Yn,j ≥ 0 is Fnj-adaptive

If E(Y ∗n ) = E

(max

1≤j≤knYnj

)= 0(1)

thenkn∑j=1

E(Yn,jI[Yn,j>ε] | Fn,j−1)D→ 0 ∀ ε > 0

pf : Define τn =

inf1 ≤ j ≤ kn : Yn,j > ε on

⋃knj=1[Yn,j > ε] = [Y ∗

n > ε]

kn Otherwise

61

∀δ > 0

P

kn∑j=1

E(Yn,jI[Yn,j>ε] | Fn,j−1) > δ

Fn,j−1−measurable

≤ Pτn < kn+ P

τn∑j=1

E(Yn,jI[Yn,j>ε] | Fn,j−1) > δ

≤ PY ∗n > ε+ P

kn∑j=1

I[τn≥j]E(Yn,jI[Yn,j>ε] | Fn,j−1) > δ

≤ PY ∗n > ε+ P

kn∑j=1

E(Yn,jI[τn≥j,Yn,j>ε] | Fn,j−1) > δ

≤ ε−1E(Y ∗n ) + δ−1E

(kn∑j=1

Yn,jI[τn≥j,Yn,j>ε]

)

≤ ε−1E(Y ∗n ) + δ−1E

(Y ∗n

kn∑j=1

I[τn≥j,Yn,j>ε]

)≤ ε−1E(Y ∗

n ) + δ−1E(Y ∗n ) → 0.

Corollary 1. Yn,j ≥ 0 is Fn,j-adaptive

If Y ∗n

D→ 0 thenkn∑j=1

P [Yn,j > ε | Fn,j−1]D→ 0, ∀ ε > 0

pf: Fix ε > 0

Let znj = I[Yn,j>ε] ≥ 0

z∗n = max1≤j≤kn

I[Yn,j>ε] = I[Y ∗n>ε]

E(z∗n) = P [Y ∗n > ε] = 0(1)

62

Thereforekn∑j=1

E(zn,jI[zn,j> 12] | Fn,j−1)

D→ 0

=kn∑j=1

E(I[Yn,j>ε]I[zn,j=1] | Fn,j−1)

=kn∑j=1

E(I[Yn,j>ε] | Fn,j−1)

=kn∑j=1

P (Yn,j > ε | Fn,j−1).

Corollary 2. Thm 3. is a corollary of Thm 3′.pf: Let Yn,j =| Xn,j |Then E(Y ∗

n ) = E(X∗n) → 0

So thatkn∑j=1

E(| Xn,j | I[|Xn,j |>ε] | Fn,j−1)D→ 0.

Corollary 3.If (1) Yn,j ≥ 0 is Fn,j-adaptive(2) | Yn,j |≤ C ∀ n, j

(3) Y ∗n

D→ 0

thenkn∑j=1

E(Y 2n,jI[Y 2

n,j>ε]| Fn,j−1)

D→ 0

pf:kn∑j=1

E(Y 2n,jI[Y 2

n,j>ε]| Fn,j−1)

≤ C2∑kn

j=1 P [Yn,j >√ε | Fn,j−1]

D→ 0 by (3) and Corollary 1.kn∑j=1

E(Yn,jI[Yn,j>ε] | Fn,j−1)D→ 0

Vn =∑kn

j=1E(Yn,j | Fn,j−1) is tight ⇒|kn∑j=1

Yn,j − Vn |D→ 0

63

pf. of Theorem 3′

Sn =kn∑i=1

Xn,i

=kn∑i=1

Xn,iI[|Xn,i|≤1] +kn∑i=1

Xn,iI[|Xn,i|>1]

Let Xn,i = Xn,iI[Xn,i|≤1]

Note thatP [Xn,j 6= Xn,j, for some 1 ≤ j ≤ kn]≤ P [X∗

n > 1] → 0 by (2)

So that Sn − SnD→ 0

and (1) giveskn∑j=1

X2n,j

D→ C

Xn,j = Xn,j − E(Xn,j | Fn,j−1)

Sn − Sn =kn∑j=1

E(Xn,jI[|Xn,j |≤1] | Fn,j−1)

= −kn∑j=1

E(Xn,jI[|Xn,j |>1] | Fn,j−1) By martingale properties.

So that | Sn − Sn | ≤kn∑j=1

| E(Xn,jI[|Xn,j |>1] | Fn,j−1) |D→ 0

Observe that

| Xn,j |≤ 1 ⇒| Xn,j |≤ 2

So that supnE(X∗

n) ≤ 2 [(3) is satisfied]

64

X∗n = max

1≤j≤n| Xn,j − E(Xn,j | Fn,j−1) |

≤ max1≤j≤n

| Xn,j | + max1≤j≤n

| E(Xn,jI[|Xn,j |>1] | Fn,j−1) |

≤ max1≤j≤n

| Xnj | +kn∑j=1

| E(Xn,jI[|Xn,j |>1] | Fn,j−1) |∣∣∣∣∣kn∑j=1

X2

n,j −kn∑j=1

X2n,j

∣∣∣∣∣=

∣∣∣∣∣−2kn∑j=1

Xn,jE(Xn,j | Fn,j−1) +kn∑j=1

E2(Xn,j | Fn,j−1)

∣∣∣∣∣≤ 2

∣∣∣∣∣kn∑j=1

Xn,jE(Xn,jI[|Xn,j |>1] | Fn,j−1)

∣∣∣∣∣+kn∑j=1

E2(Xn,jI[|Xn,j |>1] | Fn,j−1)

≤ 2

(kn∑j=1

X2n,j

)1/2( kn∑j=1

E2(Xn,jI[|Xn,j |>1] | Fn,j−1)

)1/2

+kn∑j=1

E2(Xn,jI[|Xn,j |>1] | Fn,j−1)

It is sufficient to show

kn∑j=1

| E(Xn,jI[|Xn,j |>1] | Fn,j−1) |2D→ 0 (By the assumption ∀ 0 < δ < 1)

kn∑j=1

| E(Xn,jI[|Xn,j |>1] | Fn,j−1) |≤

kn∑j=1

| E(Xn,jI[|Xn,j |>1] | Fn,j−1) |

2

D→ 0

65

Homework: Assume that Xn,j is Fnj-measurable

(1)kn∑j=1

E(X2n,jI[X2

n,j>ε]| Fn,j−1)

D→ 0

(2)kn∑j=1

E(Xn,j | Fn,j−1)D→ 0

(3)kn∑j=1

E(X2n,j | Fn,j−1)− E2(Xn,j | Fn,j−1)

D→ C > 0

Then Sn =kn∑j=1

Xn,jD→ N(0, C)

Exponential Inequality:Theorem 1 (Bennett′ inequality):Assume that Xn is a martingale difference with respect to Fn and τ is an Fn-stopping time (with possible value ∞). Let σ2

n = E(X2n | Fn−1) for n ≥ 1. Assume

that ∃ positive constants U and V such that Xn ≤ U a.s. for n ≥ 1 andτ∑i=1 σ

2i ≤ V

a.s., Then ∀ λ > 0

P

τ∑i=1

Xi ≥ λ

≤ exp

[−1

2λ2V −1ψ(4λV −1)

]where ψ(λ) = (2/λ2)[(1 + λ)log(1 + λ)− λ], ψ(0) = 1.Note:

(i)n∑i=1

Xi/√n =⇒ 1√

∫ ∞

λ

e−x2

2 dx ∼ 1√2π

1

λe−

λ2

2 .

(ii) Prokhorov′s “arcsinh” inequality:Its upper bound is

h = exp

[−1

2λ(2υ)−1arcsinh(υλ(2V )−1

]where υλV −1 ≈ 0, arcsinh[υλ(2V )−1] ∼= υλ(2V )−1

h ∼= exp

[−1

2λ(2υ)−1υλ(2V )−1

]= exp

[− λ2

8V

]66

Reference: (i) Annals probability (1985).Johson, Schechtman, and Zin.

(ii) Journal of theoretical probalility (1989) (Levental).Corollary:(Bernsteins in equality).

P (τ∑i=1

Xi ≥ λ) ≤ exp

[−1

2λ2/(V +

1

3υλ)

]proof:

By ψ(λ) ≥ (1 +λ

3)−1, ∀ λ > 0.

idea:(i) Note that on (τ = ∞)

since∞∑i=1

E(X2i | Fi−1) =

τ∑i=1

σ2i ≤ V a.s.

τ∑i=1

Xi coverges a.s. on(τ = ∞).

(By Chow′s Theorem).(ii) We can replace

P

τ∑i=1

Xi ≥ λ

by P

τ∑i=1

Xi > λ

since λ > 0, δ > 0.

P

τ∑i=1

Xi > λ+ δ

≤ exp

[−1

2(λ+ δ)2V −1ψ(υ(λ+ δ)V −1

]

Let δ ↓ 0. Left = P

τ∑i=1

Xi ≥ λ

right = exp

[−1

2λ2V −1ψ(υλV −1)

]

67

(iii)

τ∑i=1

Xi =∞∑i=1

XiI[τ≥i] = limn→∞

n∑i=1

XiI[τ≥i] a.s. (By (i))

P

(τ∑i=1

Xi > λ

)= E

I[

τ∑i=1

Xi > λ]

≤ E limn→∞

inf

In∑i=1

XiI[τ≥i] > λ

(Fatou′s Lemma)

≤ limn→∞

inf E

I

n∑i=1

XiI[τ≥i] > λ

Therefore, it is sufficient to show that

P

(n∑i=1

XiI[τ≥i] > λ

)≤ exp

[−1

2λ2V −1ψ(υλV −1)

], ∀ n

(iv) XiI[τ≥i], Fi is a martingale difference sequence.

since [τ ≥ i] = Ω\∑j<i

(τ = j)εFi−1 −measurable.

=⇒ E(XiI[τ≥i] | Fi−1) = I[τ≥i]E(Xi | Fi−1) = 0

So that,

n∑i=1

E(X2i I[τ≥i] | Fi−1

)=

n∑i=1

I[τ≥i]E(X2i | Fi−1)

≤τ∑i=1

σ2i ≤ V.

68

and XiI[τ≥i] ≤ υ a.s.Proof: Let Yi = XiI[τ≥i].

E(etYi | Fi−1), t > 0 (etYi ≤ etυ)

= E

(1 + tYi +

∞∑j=2

tjY ji

j!| Fi−1

)

≤ 1 +∞∑j=2

tjE[Y 2i | Fi−1]

j!υj−2, Y j

i = Y 2i Y

j−2i ≤ Y 2

i υj−2

= 1 +∞∑j=2

tjI[τ≥i]j!

σ2i υ

j−2

= 1 +

(∞∑j=2

tjυj

j!υ2

)I[τ≥i]σ

2i

= 1 + g(t)I[τ≥i]σ2i ≤ eg(t)I[τ≥i]σ

2i ,

where

g(t) = (etυ − 1− tυ)/υ2, and∞∑j=2

tjυj

j!=

∞∑j=0

(υt)j

j!− 1− tυ = etυ − 1− tυ

Claim:

e

t

j∑i=1

Yi/e

j∑i=1

I[τ≥i]σ2i

g(t)

is a supermartingale.

69

proof:

E

et

n∑i=1

Yi − g(t)n∑i=1

I[τ≥i]σ2i

| Fn−1

= e

t

n−1∑i=1

Yi − g(t)n∑i=1

I[τ≥i]σ2i

E[etYn | Fn−1

]≤ e

t

n−1∑i=1

Yi − g(t)n−1∑i=1

I[τ≥i]σ2i

Ee

t

n∑i=1

Yi≤ Ee

t

n∑i=1

Yi· e

g(t)

V−n∑i=1

I[τ≥i]σ2i

= E

et

n∑i=1

Yi − g(t)n∑i=1

I[τ≥i]σ2i

eg(t)V

≤ eg(t)V

(since V −

n∑i=1

I[τ≥i]σ2i > 0

)

P

n∑i=1

Yi > λ

≤ e−λtE

(et

∑ni=1 Yi

)≤ e−λt · eg(t)V = e−λt+g(t)V , ∀ t > 0,

P

n∑i=1

Yi > λ

≤ e

inft>0

(−λt+ g(t)V )

Differentiate h(t) = −λt+ g(t)Vwe obtain the minmizer to = υ−1log(1 + υλV −1)

70

Therefore

P

n∑i=1

Yi > λ

≤ eh(to)

= exp

[−λ

2

2V −1ψ(υλV −1)

].

Note:

Eet∑ni=1 Yi = E

(E(et

∑ni=1 Yi | Fn−1

))Remark:

(i) ψ(0+) = 1

(ii) ψ(λ) ∼= 2λ−1logλ, as λ→∞.

(iii) ψ(λ) ≥ (1 +λ

3)−1,∀λ > 0.

Reference: Appendix of shorack and wellner (1986, p.852).∀ λ > 0

P

τ∑i=1

Xi > λ,τ∑i=1

σ2i ≤ V

≤ exp

[−λ

2

2V −1ψ(υλV −1)

]also holds.Example:

V =∞∑i=1

σ2i <∞

P

n∑i=1

Xi > λ, for some n

≤ P

τ∑i=1

Xi > λ

Let τ = inf

n :

n∑i=1

Xi > λ

.

Theorem 2 (Hoeffding′s inequality):Let Xn,Fn be an adaptive sequence such that ai ≤ Xi ≤ bi, a.s.and µi = E[Xi | Fi−1]

71

Then ∀ λ > 0,

P

n∑i=1

Xi −n∑i−1

µi ≥ λ

≤ exp

[− 2λ2∑n

i=1(bi − ai)2

]or P

Xn − µn ≥ λ

≤ exp

[− 2n2λ2∑n

i=1(bi − ai)2

]proof: By convexity of etx, (t > 0)

etXi ≤ bi −Xi

bi − aietai +

Xi − aibi − ai

etbi

E(et(Xi−µi) | Fi−1

)≤ bi − µi

bi − aiet(ai−µi) +

µi − aibi − ai

et(bi−µi)

= eL(hi)

where L(hi) = −hiPi + `n(1− Pi + Piehi)

hi = t(bi − ai), Pi =µi − aibi − ai

L(hi) = `n[(

1− Pi)et(ai−µi) + Pie

t(bi−µi))]

= `n[et(ai−µi)

((1− Pi) + Pie

t(bi−ai))]

L′(hi) = −Pi + Pi/[(1− Pi)e

−hi + Pi]

L′′(hi) =Pi(1− Pi)e

−hi

[(1− Pi)e−hi + Pi]2= ui(1− ui)

where 0 ≤ ui = Pi/[(1− Pi)e−hi + Pi] ≤ 1

L(hi) = L(0) + L′(0)hi +1

2L′′(h∗i )h

2i

≤ L(0) +1

2L′(0)hi +

1

8h2i

L(hi) ≤ h2i /8 ≤ t2(bi − ai)

2/8

So that E(et(Xi−µi)) ≤ exp

[t2(bi − ai)

2

8

]72

E e

t

n∑i=1

(Xi − µi)

≤ EE(· · · | Fn−1)

≤ e18t2(bi−ai)2 E e

t

n−1∑i=1

(Xi − µi)

≤ e

18t2

n∑i=1

(bi − ai)2

So that P

n∑i=1

(Xi − µi) > λ

≤ exp

[−λt+

1

8t2

n∑i=1

(bi − ai)2

]

Leth(t) = −λt+1

8t2

n∑i=1

(bi − ai)2

minimizer t0 = 4λ

/ n∑i=1

(bi − ai)2

h(t0) = −λ 4λn∑i=1

(bi − ai)2

+1

8

4λn∑i=1

(bi − ai)2

2

n∑i=1

(bi − ai)2

= −2λ2

/ n∑i=1

(bi − ai)2

So that P

n∑i=1

(Xi − µi) > λ

≤ exp

[−2λ2

/ n∑i=1

(bi − ai)2

]

Application: yn = βXn + εn, whereXn is Fn-measurable r.v.s.εn i.i.d. with common distriburtion F.

73

εn is independent of Fn−1 ⊃ σ(ε1, · · · , εn)Eεn = 0, 0 < V ar(εn) = σ2 <∞ .

Question : Test F = Fo (Ho)Example : AR(1) process

yn = βyn−1 + εn, yoεFo −measurable

Fn(u) =1

n

n∑i=1

I[yi−βnxi≤u],

where βn an estimator of β based on (y1, x1), · · · , (yn, xn).

idea : Fn(u) ∼= Fn(u) =1

n

n∑i=1

I[εi≤u], if βnxi ∼= βxi

supu| Fn(u)− F0(u) |

P→ 0

√n sup

u| Fn(u)− F0(u) |

D→ sup0≤t≤1

| oω (t) |, (Under Ho)

whereoω (t) is the Brownian Bridge which is defined by

oω (t) = w(t)− tw(1) and

w(t) is the Brownian Motion(i) w(ti)− w(si) are independent,∀ 0 = s0 ≤ t0 ≤ s1 ≤ t1 ≤ · · · ≤ sn ≤ tn(ii) w(t)− w(s) = N(0, t− s)(iii) w(0) = 0If the εn are independent and have a cemmon distribution function F (t). Then forlarge n,Fn(t, w) → F (t).Glivenko-Cantelli theoren:

sup0≤t≤1

| Fn(t)− F (t) |→ 0 a.s.

Fn(t) =1

n

n∑i=1

I[εi≤t]

Basic Theorem:If εi are i.i.d. U(0, 1).Then

αn(t) =1√n

(n∑i=1

[I[εi≤t] − F (t)

])D→ oω (t) in D− space.

74

Wish :√n sup

u| Fn(u)− Fn(u) |

P→ 0 (In general, it is wrong)

√n sup

u| Fn(u)− Fn(u) |

D→ sup0≤t≤1

| oω (t) |

Reject if√n sup

u| Fn(u)− Fn(u) |> Cα

Compare:

(i)√n sup

u| Fn(u)−

1

n

n∑i=1

F (u+ (βn − β)xi)− Fn(u) + F (u) | P→ 0 (right)

(ii)√n sup

u| [Fn(u)− F (u)]− [Fn(u)− F (u)] | P→ 0 (It is wrong, in general)

Fn(u) =1

n

n∑i=1

I[yi−βnxi≤u]

=1

n

n∑i=1

I[εi≤u+(βn−β)xi]

F (c xi + u)

= E(I[εi≤c xi+u] | Fi−1)

(If C is constant, we can use the exponential bound).√n(Fn(u)− F (u))

=√n(Fn(u)−

1

n

n∑i=1

F (·)− Fn(u) + F (u)) · · · (1)

+√n

(1

n

n∑i=1

F (·)− F (u)

)· · · (2)

+√n(Fn(u)− F (u)) · · · (3)

In fact, tell us:

1√n

n∑i=1

[F (u+ (βn − β)xi)− F (u)]

∼=1√n

n∑i=1

F ′(u)(βn − β)xi

= F ′(u)

(1√n

n∑i=1

xi

)(βn − β) does not converge to zero.

75

Example:

yi = βxi + εi, xi = 1, βn − β = εn(1√n

n∑i=1

xi

)(βn − β) =

√n(εn)

D→ N(0, 1)

wish:(1) → 0p(1)(2) → 0, and

known (3)D→ o

W(t), 0 ≤ t ≤ 1

Classical result: υ(0, 1) = FDefine:αn(t) =

√n(Fn(t)− t)

Oscillation modulus:

Wn(δ) = sup|t−u|≤δ

| αn(t)− αn(u) |

Lemma:∀ ε > 0, ∀ η > 0, ∃ δ and N 3 n ≥ N, PWn(δ) ≥ ε ≤ η.Reference:Billingsley, (1968)Convergence of probability measures. (Book).Papers:(i) W. Stute (1982, 1984). Ann. Prob. p.86-107, p.361-379.(ii) The Oscillation behavior of empirical process.: The Multivariate case.Key idea:• If (βn − β) ∼= C and u fixed. Then

1√n

n∑i=1

[I(εi≤Cxi+u) − F (Cxi + u)− I[εi≤u] + F (u)

]

Byn∑i=1

Yi, (Yi | Fi−1) ∼ b(1, Pi) and exponential bound. Pi ∈ Fi−1 -measurable.

• Lemma: If ‖ F ′∞ ‖, Then

√n sup

u|

n∑i=1

I[εi≤u+δni] − F (u+ δni)− I[εi≤u] + F (u) |

P→ 0, if δn = op(1√n

)

76

•(βn − β) = op(an)∃ c ∈ Cn lattice points and ∀x ∈

∑(∑

: square set) .

3 (c− x) sup1≤i≤n

| xi |= 0(1√n

)

# (Cn) ≤ nk.wish:

√n sup

u| Fn(u)−

1

n

n∑i=1

F (u+ (βn − β)xi)− Fn(u) + F (u) | P→ 0

By

√n sup

usupc∈Cn

| Fn(u)−1

n

n∑i=1

F (u+ cxi)− Fn(u) + F (u) |

∀ ε > 0∑c∈Cn

P

√n sup

u| Fn(u)− · · · |> ε

≤∑u∈Un

∑c∈Cn

P√

n | Fn(u) · · · |> ε

≤ nk+k′(e−

nε2

2t). if #(Un) ≤ nk

Question:

1√n

n∑i=1

(I[εi≤(βn−β)xi+u]

− F ((βn − β)xi + u)− I[εi≤u] + F (u))

•(βn − β) = Op(an)Yi = βXi + εi, εi i.i.d. with distribution ft. FXi ∈ Fi−1-measurable, εi independent of Fi−1.

1√n

n∑i=1

(I[εi≤δXi+u] − F (δXi + u)− I[εi≤u] + F (u)

)=

1√n

n∑i=1

Yi

77

(a) E[Yi | Fi−1] =

∫[ε≤δXi+u]

dF (ε)− F (δXi + u)−∫

[ε≤u]dF (ε) + F (u)

= 0

(b) − 1 ≤ yi ≤ 1

Hoeffding′s inequality: (not good)Yi,Fi is a martingale difference.

−1 = ai ≤ Yi ≤ bi = 1

PYn ≥ t ≤ exp

− 2n2t2

n∑i=1

(bi − ai)2

.

So that P

1√n

∣∣∣∣∣n∑i=1

Yi

∣∣∣∣∣ ≥ λ

≤ 2e−

2n2 λ2n

2n = 2exp[−λ2]

— It can′t reflect the true variance.Bennett′s inequality: (better)

Yi ≤ υ,τ∑i=1

E(Y 2i | Fi−1) ≤ V

P

τ∑i=1

Yi ≥ t

≤ exp

[− t2

2Vψ(UtV −1)

]

E(Y 2i | Fi−1) = | F (δXi + u)− F (u) || 1− (· · · ) |

≤ | F (δXi + u)− F (u) |≤ ‖ F ′ ‖∞| δ || Xi |

78

n∑i=1

E[Y 2i | Fi−1] ≤‖ F ′ ‖∞| δ |

n∑i−1

| xi |

βn − β =

n∑i=1

xiεi

n∑i=1

x2i

=

n∑i=1

xiεi(n∑i=1

x2i

) 12

1(n∑i=1

x2i

) 12

n∑i=1

x2i∼= a2

ncn

(βn − β)n∑i=1

| xi |≈ Op(1)

n∑i=1

| xi |(n∑i=1

x2i

) 12

≤ n12

(n∑i=1

x2i

) 12

take V =√nc, τ = n, υ = 1

P

| 1√

n

n∑i=1

Yi |> λ

≤ exp

−(√nλ)2

2√nc

ψ(√nλ/

√nc)

= exp

[−√nλ2

2cψ

c

)]Law of the iteratived logarithm:classical: Xn i.i.d., EXn = 0, 0 < V ar(Xn) = σ2 <∞

limn→∞

supSn√

2nloglogn= σ a.s.

(a) Zn = Sn

/√nσ

D∼ N(0, 1)

Sn = Zn

/√2loglogn

79

(b) if m and n very closeness.If Zm and Zn are very closeness.

E(ZmZn) =

E

(n∑i=1

Xi

)2

σ2√mn

=n

σ2√mn

==1

σ2

√n

m.

(c) nm

= 1c, c large enough.

n1 = c, n2 = c2, · · · , nk = ck

Zn1 , Zn2 , · · · , Znk ' i.i.d.N(0, 1).

(d) if Yi is i.i.d. N(0,1)

limn→∞

sup Yn

/√2logn = 1 a.s.

proof: ∀ ε > 0

PYn ≥ (1 + ε)√

2logn i.o. = 0

PYn ≥ (1− ε)√

2logn i.o. = 1

By Borel-Contelli lemma, we only have to check

∞∑n=1

PYn ≥ (1 + δ)√

2logn <∞

∼∞∑n=1

1

(1 + δ)√

2logne−

2(1+δ)2logn2

=∞∑n=1

1

(1 + δ)√

2logn

1

n(1+δ)2<∞ if δ > 0 .

(e) limn→∞

supZn,k√2logk

= 1 a.s.

nk = ck, loglognk = logk + loglogc.

(f) limk→∞

supSck√

ck · 2 · loglogck= 1 a.s.

80

(g) limn→∞

supSn

σ√

2nloglogn= 1 a.s.

Theorem A: Let Xi,Fi be a martingale difference such that | Xi |≤ υ a.s. and

s2n =

n∑i=1

E(X2i | Fi−1) →∞ a.s.

Then

limn→∞

supSn

sn(2loglogs2n)

12

≤ 1 a.s.

where

Sn =n∑i=1

Xi

Corollary:

limn→∞

infSn

sn(2loglogs2n)

12

≥ −1

and limn→∞

sup| Sn |

sn(2loglogs2n)

12

≤ 1 a.s.

proof: (theorem A)c > 1∀ k, let Tk = infn : s2

n+1 ≥ c2kSo that Tk is a stopping timeTk <∞ a.s. since s2

n →∞ a.s.Consider STk

S2Tk≤ c2k, S2

Tk

/c2k

a.s.→ 1.

Want to show:

(∗) PSTk > (1 + ε)ck

√2logk, i.o.

= 0(

⇒ limk→∞

sup (STk

/STk(2loglogs

2Tk

)12 )] ≤ 1 + ε a.s.

)81

By Bennett′s inequality, let

λ = (1 + ε)ck√

2logk, V = c2k, υ = υ

(∗) ≤∞∑k=1

exp

− λ2

2Vψ

(υλ

V

)

=∞∑k=1

exp

−(1 + ε)2c2kψ(υ(1+ε)ck

√2logk

c2k

)2logk

2c2k

≤ c′

∞∑k=1

exp[−(1 + ε′)2logk]

= c′∞∑k=1

1

k(1+ε′)2<∞

(Because (1 + ε)2logk · 1

1 + υ(1+ε)ck√

2logkc2k

≥ (1 + ε′)2logk)

∀ n, ∃ Tk, Tk+1, s.t. Tk ≤ n ≤ Tk+1

Sn = STk + Sn − STkSn

sn√

2loglogs2n

≤ STksn√

2loglogs2n

+Sn − STk

sn√

2loglogs2n

Given ε > 0 , choose c > 1So that ε2/(c2 − 1) > 1

n∑i=1

XiI[Tk<i≤Tk+1], Fn

is a martingale

supTk<n≤Tk+1

(Sn − STk) ≤ sup1≤n<∞

(n∑i=1

XiI[Tk<i≤Tk+1]

)

Since

Tk+1∑i=Tk+1

E(X2i | Fi−1) = S2

Tk+1− S2

Tk+1 ≤ c2(k+1) − c2k = c2k(c2 − 1).

Want to prove:

P supTk<n≤Tk+1

(Sn − STk) > εck√

2logk, i.o. = 0

pf : Def τ = infj :

j∑i=1

XiI[Tk<i≤Tk+1] > εck√

2logk

82

∞∑k=1

P

sup

Tk<n≤Tk+1

(Sn − STk) > εck√

2logk

=∞∑k=1

P

τ∑i=1

XiI[Tk<i≤Tk+1] > εck√

2logk

≤∞∑k=1

exp

[− ε2c2k2logk

2(c2 − 1)c2kψ

(υck

√2logk

(c2 − 1)c2k

)]≤

∞∑k=1

exp

[−ε

2logk

c2 − 1ψ

(υ√

2logkck

(c2 − 1)c2k

)]when k is large, [ε2/(c2 − 1)]ψ(·) ≥ 1 + δ, for some δ > 0.

≤ C ′∞∑k=1

exp[−(1 + δ) log k]

= C ′∞∑k=1

k−(1+δ) <∞.

Reference:

1. W. Stout: A martingale analysis of kolmogorov′s law of the iteratived logarithm.Z.W. Verw. Geb. 15, 279∼290, (1970).

2. D.A. Freedman, Ann. Prob. (1975), 3, 100-118. On Tail Probability ForMartingale.

Exponential Centering:X ∼ F, ∃ ϕ(t) = EetX

PX > µ

=

∫[x>µ]

dF (x) =

∫[x>µ]

ϕ(t)e−txetxdF (x)

ϕ(t)

= ϕ(t)

∫[x>µ]

e−txdG(x)

Under G, X have the mean=ψ′(t) and Variance=ψ′′(t).

where ψ(t) = logϕ(t), G(x) = etxdF (x)ϕ(t)

83

•∫xdG(x) =

∫xetx

ϕ(t)dF (x) =

ddt

∫etxdF

ϕ(t)=ϕ′(t)

ϕ(t)= [logϕ(t)]′

= ψ′(t)

Similarly, for∫x2dG(x).

So, Px > u

= ϕ(t)

∫[x>u]

e−txdG(x)

= ϕ(t)e−tψ′(t)

∫[x−ψ′(t)√ψ′′(t)

>u−ψ′−1(t)√

ψ′′(t)

] e−t(x−ψ′(t))dG(x)

= eψ(t)−tψ′(t)∫

[z>

u−ψ′(t)√ψ′′(t)

] e−t√ψ′′(t)zdH(z)

where H(z) = G(√ψ′′(t)z + ψ′(t)).

Example: X ∼ N(0, 1)

ϕ(t) = e−t2

2

ψ(t) = t2/2, ψ′(t) = t, ψ′′(t) = 1

PX > u = et2

2−t2∫

[z>u−t]e−tzdH(z)

H(z) ∼ N(0, 1)

Simulation: t = u

PX > u = e−u2

2

∫[z>0]

e−uzdH(z)

Exponential bound : t = u(1 + ε)

PX > u = e−u2

2(1+ε)2

∫[z>−εu]

e−u(1+ε)zdH(z)

≥ e−u2

2(1+ε)2

∫[0≥z>−εu]

e−u(1+ε)zdH(z)

Ref: R.B. Bahadur : Some limit theorems in statisties. SIAM.Lemma 1: If E[X | F ] = 0, E[X2 | F ] ≥ c > 0 and E[X4 | F ] ≤ d <∞

84

Then PX > 0 | F ∧ PX < 0 | F ≥ c2/4d.proof:

E[X | F ] = 0 ⇔ E[X+ | F ] = E[X− | F ]

E[X2 | F ] ≥ c ⇔ E[X+2 | F ] ≥ c

2or

E[X−2 | F ] ≥ c

2

Assume that:E(X+2 | F) ≥ c2

c

2≤ E(X+2 | F) = E[(X+)

23 · (X+4

)13 | F ] (Holder inequality)

≤ E23 (X+ | F)(E(X+)4)

13

So that (c

2)3 ≤ E2(X+ | F)E(X4 | F)

(c

2)3/d ≤ E2(X+ | F)

(c

2)

32/d

12 ≤ E(X+ | F) = E(X+I[X>0] | F)

≤ E14 (X4 | F)E

34 (I[X>0] | F) (Holder inequality)

≤ d14P

34X > 0 | F

(c

2)6/d2 ≤ dP 3X > 0 | F, implies

PX > 0 | F ≥ c2

4d

Similarly, E(X− | F) ≥( c

2)

32

d12

, and

PX < 0 | F ≥ c2/4d.

Lemma 2: Assume that εn,Fn is a martingale difference sequence such that

E

(n∑i=1

ε2i | Fo

)≥ c2 > 0.

n∑i=1

E(ε2i | Fi−1) ≤ c1 and sup

1≤i≤n| εi |≤M a.s.

85

Then there is a universal constant B s.t.

p

n∑i=1

εi < 0 | Fo

∧ P

n∑i=1

εi > 0 | Fo

≥ Bc22/(c

21 +M4)

proof: (i) Burkholder-Gundy-Davis

p > 0

E

[( sup1≤i≤n

|i∑

j=1

εj |P | Fo

]

≤ kE

( n∑j=1

E(ε2j | Fj−1)

)P2

| Fo

+kE

[(max1≤j≤n

| εi |P)| Fo

]use: If E(XIA) ≥ E(Y IA), ∀AεF , X ≥ 0, Y ≥ 0

Then E(X | F) ≥ E(Y | F) a.s.

p.f. : Let A = E(X | F) < E(Y | F)E(XIA − Y IA) = E[E(X | F)− E(Y | F)]IA

= E(XIA)− E(Y IA)

⇒ P (A) = 0.(ii) By a conditional version of B-G-D inequality take p=4.

E

∣∣∣∣∣n∑j=1

εj

∣∣∣∣∣4

| Fo

≤ kE

n∑i=1

(ε2i | Fi−1)

2

| Fo

+kE

(max1≤i≤n

| εi |4| Fo)

≤ kc21 + kM4 = k(c21 +M4)

86

By Lemma 1,

P

n∑i=1

εi > 0 | Fo

∧ P

n∑i=1

εi < 0 | Fo

≥ c22/4k(c

21 +M4) = Bc22/(c

21 +M4)

where B = 14k

use (i) E

(n∑i=1

εi | Fo

)= 0

(ii) E

( n∑i=1

εi

)2

| Fo

= E

(n∑i=1

ε2i | Fo

)≥ c2.

Similarly,

P

n∑i=1

εiε(−λ, 0) | Fo

∧ P

n∑i=1

εiε(0, λ) | Fo

≥ Bc22/(c

21 +M4)− c1/λ

2

(By Markov-inequality)

Let Sn =n∑i=1

Xi

Assumptions:(i) Xi,Fi is a martingale difference sequence.(ii) P| Xi |≤ d = 1, ∀ 1 ≤ i ≤ nNotations:

σ2i = E(X2

i | Fi−1), s2i =

i∑j=1

σ2j

g1(x) = x−1(ex − 1), g(x) = x−2(ex − 1− x)

Conditional Exponential Centering:

idea : PA | Fo = E(E(· · ·E(E(IA | Fn−1) | Fn−2) · · · | Fo))ϕi(t) = E[etXi | Fi−1], ψi(t) = logϕi(t)

Definition

F(t)i (x) = E[I[Xi≤x]e

tXi | Fi−1]/ψi(t)

87

So that PSn > λ | Fo

=

∫[Sn>λ]

· · ·∫ [ n∏

i=1

[ϕi(t)]

]e

−t

n∑i=1

xidF (t)

n · · · dF (t)1

=

∫[Sn>λ]

· · ·∫e

n∑i=1

[ψi(t)]

e

−t

n∑i=1

xidF (t)

n · · · dF (t)1

=

∫[Sn>λ]

· · ·∫e

n∑i=1

[ψi(t)− tψ′i(t)]

e

−t

n∑i=1

(xi − ψ′i(t))

dF (t)n · · · dF (t)

1

Under new measure,

E[Xi | Fi−1] = ψ′i(t).

V ar(Xi | Fi−1) = ψ′′i (t).

Goal : Compute PSn > λ | Fo= E(I[Sn>λ] | Fo)= E(E · · ·E(I[Sn>λ] | Fn−1) | Fn−2) · · · | Fo)

by d(t)Fi

=etXi

ϕi(t)dP [Xi ≤ x | Fi−1].

88

Now, if s2n ≤M, g(−td)− t2d2g2(−td)− g1(td) ≤ 0,

then PSn > λ | Fo

=

∫[Sn>λ]

· · ·∫ [ n∏

i=1

ϕi(t)

]e

−t

n∑i=1

xidF (t)

n · · · dF (t)1 ,∀t > 0

=

∫[Sn>λ]

· · ·∫e

n∑i=1

ψi(t)− t

n∑i=1

xidF (t)

n · · · dF (t)1

(∗∗) =

∫[Sn>λ]

· · ·∫e

n∑i=1

(ψi(t)− tψ′i(t))

e

−t

n∑i=1

(xi − ψ′i(t))

dF (t)n · · · dF (t)

1

under dF (t)n , · · · dF (t)

1 ,

E[Yi | Fi−1] =

∫ydF

(t)i (y) = E[Xie

tXi | Fi−1]

= [logϕi(t)]′ = ψ′i(t), and

V ar(Yi | Fi−1) = ψ′′i (t).

•ψ′i(t) = E(XietXi | Fi−1)

= E(Xi(etXi − 1) | Fi−1)

= E[tX2i

etXi − 1

tXi

| Fi−1]

= tE[X2i g1(tXi) | Fi−1], where g1(x) ↑ as x ↑ .

≤ tE[X2i g1(td) | Fi−1] ≤ tσ2

i g1(td).≥ tE[X2

i g1(−td) | Fi−1] ≥ tσ2i g1(−td).

Since g1(x) > 0,

(ex − 1

x≥ 0, ∀x

)ϕ′i(t) ≥ 0, There ϕi(t) ≥ ϕi(0) = 1

89

• • ϕi(t) = E[etXi | Fi−1]

= E[1 + tXi + t2X2i g(tXi) | Fi−1]

≤ 1 + t2σ2i g(td)

≥ 1 + t2σ2i g(−td)

• • •ψ′i(t) =ϕ′i(t)

ϕi(t)≤ tg1(td)σ

2i

≥ tg1(−td)σ2i

1+t2σ2i g(td)

So, ψi(t)− tψ′i(t) ≥ logϕi(t)− t2σ2i g1(td).

≥ log[1 + t2σ2i g(−td)]− t2σ2

i g1(td)

(1 + u ≥ eu−u2

, u ≥ 0; eu2

(1 + u) ≥ eu)

≥ t2σ2i g(−td)− t4σ4

i g2(−td)− t2g1(td)σ

2i

≥ t2σ2i g(−td)− t2d2g2(−td)− g1(td)

Because σ2i = E(X2

i | Fi−1) ≤ d2

, and

n∑i=1

(ψi(t)− tψ′i(t))

≥ t2s2ng(−td)− t2d2g2(−td)− g1(td)

Becausen∑i=1

σ2i = s2

n.

90

Thus,

(∗∗) ≥ et2M [g(−td)−t2d2g2(−td)−g1(td)]

·∫

[Sn>λ]

· · ·∫e

−t

n∑i=1

(xi − ψ′i(t))

dF (t)n · · · dF (t)

1 .([Sn > λ] = [Sn −

n∑i=1

ψ′i(t) > λ−n∑i=1

ψ′i(t)].

)

≥∫· · ·∫

[Sn−

∑ni=1 ψ

′i(t)≥λ−

tmg(−td)1+t2d2g(td)

] e−t

n∑i=1

(xi − ψ′i(t))

dF (t)

n · · · dF (t)n

·et2M [g(−td)−t2d2g2(−td)−g1(td)]

≥ et2M [g(−td)−t2d2g2(−td)−g1(td)]

·∫· · ·∫

[0≥Sn−

∑ni=1 ψ

′i(t)≥λ−

tmg(−td)1+t2d2g(td)

] 1dF (t)n · · · dF (t)

1 .

• • • • ϕ′′i (t) = E(X2i e

tXi | Fi−1)

≤ E(X2i e

td | Fi−1) = etdσ2i

≥ e−tdσ2i

ψ′′i (t) =ϕ′′i (t)

ϕi(t)− (ψ′i(t))

2

≤ ϕ′′i (t)/ϕi(t) ≤ ϕ′′i (t) ≤ etdσ2i

≥ e−tdσ2i

1 + t2σ2i g(td)

− t2g21(td)σ

4i

≥ σ2i e−tde−t

2σ2i g(td) − t2g2

1(td)σ4i

≥ σ2i [e

−td−t2d2g(td) − t2d2g21(td)].

So,n∑i=1

ψ′′i (t)

=

≤ s2

netd

≥ s2ne−td−t

2d2g(td) − t2d2g21(td)

91

Replace t by t/√M and λ by (1− r)

√Mt.

(∗ ∗ ∗) PSn > (1− r)√Mt | Fo

≥ et2g(−td/

√M)−(td/

√M)2g2(− td√

M)−g1( td√

M)

·∫· · ·∫[

0≥∑ni=1

(xi−ψ′i

(t√M

))≥(1−r)

√Mt−

m t√Mg(−td/

√M)

1+ t2Md2g2(td/

√M)

] dF (t/√M)

n · · · dF (t/√M)

1

Let εi = Xi − ψ′i(t/√M), | εi |≤

2d√M

(1)n∑i=1

E(ε2i | Fi−1) ≤

s2n

Me(td/

√M) ≤ etd/

√M = c1

(2) E

[n∑i=1

ε2i | Fo

]= E

[n∑i=1

(Xi − ψ′i(t/√M))2 | Fo

]

≥ M1

M− 2

td√Mg1

(td√M

)+m

M

t√Mg1(−

td√M

)/(1 +t2d2

Mg2(

td√M

))

Thus,

(∗ ∗ ∗) ≥ et2[g(td/

√M)−(td/

√M)2g2(−td/

√M)−g1(td/

√M)]

·

[M1

M− (2td/

√M)g1(td/

√M) + m

Mt√Mg(−td/

√M) ·B

e2td/√M + (2d/

√M)4

− etd/√M

t2[(1− r)− mMtg(−td/

√M)/(1 + t2d2

Mg2(td/

√M))]2

Let t→∞, and td/

√M → 0

Assume thatn∑i=1

E(X2i | Fo) ≥M1 > 0, and let M1/M → 1, m/M → 1,

m ≤n∑i=1

E(X2i | Fi−1) ≤M , and 1− (m/M) < r

ThenPSn > (1− r)

√Mt | Fo

≥ e−t2

2(1+0(1)) ·B(1 + 0(1))

In summary:

92

For each n, Xn,i, Fu,i, i = 1, 2, · · · , n is a martingale difference such that

(1) supn| Xn,i |≤ dn, dn increasing.

(2) mn ≤n∑i=1

E(X2n,i | Fn,(i−1)) ≤Mn,

n∑i=1

E(X2n,i | Fn,o) ≥Mn,1,

where mn/Mn → 1, Mn,1/Mn → 1

If tn →∞, and tndn/√Mn → 0

then

P

n∑i=1

Xn,i > (1− r)√Mntn | Fno

≥ e−

t2n2

(1+0(1)) · C(1 + 0(1))

Theorem: Assume that

Sn =

n∑i=1

Xi,Fn

is a martingale

such that sup1≤n<∞

| Xn |≤ d <∞ a.s.

Let σ2i = E(X2

i | Fi−1) and s2n =

n∑i=1

σ2i

If s2n →∞ a.s., then

limn→∞

sup Sn/(2s2nloglogs

2n)

1/2 = 1 a.s.

proof: (i) “≤ ” is already shown.(ii) To show “≥ 1”.

we only have to show that ∀ ε > 0, ∃ nk 3

PSnk > (1− ε)(2s2nkloglogs2

nk)1/2 i.o. = 1

Given c > 1, let τk = n : s2n+1 ≥ ck

τk is a stopping time, since

s2n+1 =

n+1∑i=1

E(X2i | Fi−1) is Fn measurable.

Note that

s2τk< ck, s2

τk+1≥ ck

93

(1) s2τk+1

− s2τk

≤ ck+1 −[s2τk+1 − σ2

τk+1

]≤ ck+1 − ck + d2

(2) s2τk+1

− s2τk

≥(s2τk+1+1 − σ2

τk+1+1

)− ck

≥ ck+1 − d2 − ck

By in summary,

Sτk+1− Sτk =

τk+1∑i=τk+1

Xi =∞∑i=1

XiI[τk<i≤τk+1]

PSτk+1− Sτk > (1− δ)(2s2

τk+1loglogs2

τk+1)1/2 | Fτk

≥ PSτk+1− Sτk > (1− δ)(2ck+1loglogck+1)1/2 | Fτk

(∗) = PSτk+1− Sτk > (1− r)(

1− δ

1− r)(2ck+1loglogck+1)1/2 | Fτk

let r = δ/2 and choose c so that

1− δ

1− δ/2<

√1− 1

c, implies

1− δ

1− r≤√

1− c−1 ≤√

1− c−1 +d2

ck+1

Mk = ck+1 − ck + d2, mk = ck+1 − d2 − ck

tk =(2loglogck+1)1/2

(1− c−1 + d2

ck+1 )1/2(1− δ

1− r)

< α(2loglogck+1)1/2, 0 < α < 1.

(∗) = PSτk+1− Sτk > (1− r)

√Mktk | Fτk

≥ e−t2k2

(1+0(1))B(1 + 0(1))

≥ B(1 + 0(1))e−α2loglogck+1(1+0(1))

≥ B(1 + 0(1))((k + 1)α2(1+0(1)))−1

So that,∞∑k=1

PSτk+1− Sτk > (1− r)

√Mktk | Fτk = ∞ a.s.

So that, PSτk+1− Sτk > (1− δ)(2s2

τk+1loglogs2

τk+1)1/2 i.o. | Fτk

= 1

94

But

Sτk(2s2

τk+1loglogs2

τk+1

)1/2=

Sτk(2s2

τkloglogs2

τk

)1/2 (s2τkloglog × s2

τk)1/2(

sτk+1loglog × s2

τk+1

)1/2

(s2τkloglogs2

τk)1/2(

s2τk+1

loglogs2τk+1

)1/2≤ (ckloglogck)1/2

((ck+1 − d2)loglogck+1)1/2

≤ (1/(c− d2/ck))1/2 → 0, as c→∞≤ δ (choose c so that)

So that, with c choosen,

limk→∞

sup Sτk+1/(2s2

τk+1loglogs2

τk+1)

≥ limk→∞

supSτk+1

− Sτk(2s2

τk+1loglog s2

τk+1)1/2

+ limk→∞

sup Sτk/(2s2τk+1

loglogs2τk+1

)1/2

≥ (1− δ) + (−1)δ = 1− 2δ

By limn→∞

sup(an + bn)

≥ limn→∞

sup an + limn→∞

inf bn.

History of L.I.L.:Step 1:

Xi i.i.d. PXi = 1 = PXi = −1 = 1/2

Sn =n∑i=1

Xi

s2n = n

(1913) Hausdorff: Sn = O(n12+ε) a.s.

(By moment and chebyshev′s inequality).(1914) Hardy-Littlewood:

Sn = O((n log n)1/2)

(By e−x2

2 or e−x/2)

95

(1922) Steinhauss:

limn→∞

sup Sn/(2nlogn)1/2 ≤ 1 a.s.

(1923) Khinchine:

Sn = O((n loglogn)1/2)

(1924) Khinchine:

limn→∞

sup Sn/(2n loglog n)1/2 = 1 a.s.

step 2:(1929) Kolmogorov:

Xi indep. r.v′.s EXi = 0, s2n =

n∑i=1

EX2i

(i) sup1≤k≤n

| Xk |≤ knsn

(loglogs2n)

1/2

(ii) kn → 0, s2n →∞.

Then

limn→∞

sup Sn/(2s2nloglogs

2n)

1/2 = 1 a.s.

(1937) Marcinkewicz and Zygmund:Given an example:

Sn =n∑i=1

ciεi, P (εi = −1) = P (εi = 1) =1

2,

εn i.i.d.

cn is choosen, so that kn → k > 0, | cn |≤knsn

(2 loglogs2n)

1/2.

They showed that

limn→∞

sup Sn/(2s2n loglogs

2n)

1/2 < 1 a.s.

(1941) Hartman and WitterXi i.i.d. EXi = 0, V ar(Xi) = σ2.

96

Step 3:(196?) Strassen:Xi i.i.d, EXi = 0, V ar(Xi) = 1.limit of Sn/(2loglogn) is -1, 1.

Wn is a Brownian Motion

| Sn −Wn |= 0 (n12 (loglogn)

12 ).

Construct a Brownian Motion W (t) and stopping time τ1, τ2, · · · so thatSn

D= W (

n∑i=1

τi), n = 1, 2, · · ·

| Sn −Wn |=| W

(n∑i=1

τi

)−Wn |

(1965) Strassen:Xi independent case and special martingale.(1970) W.F. Stout:Martingale Version of Kolmogorov′s Law of Iterated Logarithm. Z.W.V.G. 15, 279∼290.Xn =

n∑i=1

Yi, Fn

is a martingale.

s2n =

n∑i=1

E[Y 2i | Fi−1]

If s2n →∞ a.s. and | Yn |≤ kn sn/(2log2s

2n)

12 a.s.

where kn is Fn−1-measurable and limn→∞

kn = 0

Then limn→∞

sup Xn/(snun) = 1 a.s.

un = (2log2s2n)

12 ≡ (2loglogs2

n)12 .

(1979) H. Teicher:Z.W.V.G. 48, p.293-307.Indepent Xi, P| Xn |≤ dn = 1.

limn→∞

dn(log2s2n)

12

sn= a ≥ 0

(a=0, Kolmogorov′s condition)

P

limn→∞

Sn/sn(2log2s2n)

12 = c/

√2

= 1

97

where 0.3533/a ≤ c ≤ minb>0

[1

b+ bg(a, b)]

(1986) E. Fisher:Sankhya, Series A, 48, p.267∼ 272.Martingale Version:

limn→∞

sup kn < k. a.s.

implies limn→∞

supn∑i=1

Yi/sn(2log2s2n)

12 ≤ 1 + ε(k).

where ε(k) =

k/4, if 0 < k ≤ 1(3 + 2k2)/4k − 1, if k > 1.

This bound is not as good as Teicher′s bounds.Problems:

1. Do we have a martingale version of Teicher′s result?

2. M-Z. implies c/√

2 < 1.Teicher′s result does not imply this.How to interprate M-Z phenomenon?

3. Can we extend martingale′s result to the double arrays of martingale differencesSn?

Sn =∞∑−∞

ani εi.

Lai and Wei (1982). Annals prob. 10, 320∼ 335.

Papers:D. Freedman (1973). Annals probability, 1, 910∼925.Basic assumptions:

(i) Fo ⊂ F1 ⊂ · · · ⊂ Fn · · · (σ −fields)

(ii) Xn is Fn−measurable, n ≥ 1.

(iii) 0 ≤ Xn ≤ 1 a.s.

Sn =n∑i=1

Xi, Mi = E[Xi | Fi−1], Tn =n∑i=1

Mi.

98

Theorem: Let τ be a stopping time

(i) If 0 ≤ a ≤ b, then

P

τ∑i=1

Xi ≤ a andτ∑i=1

Mi ≥ b

≤ (b/a)aea−b ≤ exp

−(a− b)2

2c

,where c = a ∨ b = maxa, b.

(ii) If 0 ≤ b ≤ a, then

P

τ∑i=1

Xi ≥ a andτ∑i=1

Mn ≤ b

≤ (b/a)aea−b ≤ exp

−(b− a)2

2c

, where c = aV b.

Lemma: 0 ≤ X ≤ 1 is a r.v. on (Ω , F , P).Let

∑be a sub-σ-field of F .

Let M = EX |∑ and h be a real number.

Then

Eexp(hX) |∑

≤ exp[M(eh − 1)]

proof: f(x) = exp(hx), f ′′(x) = h2ehx ≥ 0So f(x) is convex.

ehX = f(x) ≤ f(0)(1− x) + f(1)x.

= (1− x) + ehx

E[ehX |∑

] ≤ E[(1−X) + ehX |∑

]

= (1−M) + ehM

= 1 + (eh − 1)M ≤ e(eh−1)M .

(Because 1− x ≤ ex, ∀x).Corollary : For each h, define Rn(m,x) = exp[hx− (eh − 1)m].Then

Rh(Tn, Sn) is a super-martingale.

99

proof:

Rh(Tn, Sn) = Rh(Tn−1, Sn−1) exp[hXn − (eh − 1)Mn]

So E[Rh(Tn, Sn) | Fn−1]

≤ Rh(Tn−1, Sn−1)E[exp hXn | Fn−1] exp[−(eh − 1)Mn]

≤ Rh(Tn−1, Sn−1) (By lemma).

In the following, we use exp(∞) = ∞, exp(−∞) = 0, thenRh(m,x) is a continuous function on [0,∞]2 − (∞,∞).Lemma: Let τ be a stopping time.

G = Tτ <∞ or Sτ <∞

Then

∫G

Rh(Tτ , Sτ )dP ≤ 1.

proof: By the super-martingale property,∀ n, ERh(Tτ∧n, Sτ∧n) ≤ 1.

So that, 1 ≥ limn→∞

infE[Rh(Tτ∧n, Sτ∧n)]

≥ E[

limn→∞

infRh(Tτ∧n, Sτ∧n)]

(Fautou′s Lemma).

≥∫G

limn→∞

inf Rh(Tτ∧n, Sτ∧n)

=

∫G

Rh(Tτ , Sτ )dP.

proof of the theorem:

Let u(m,x) =

1, if m ≥ b and x ≤ a,∀ (m,x)ε[0,∞]2

0, o.w.

Qh(m,x) = exp[ha− (1− e−h)b] R−h(m,x),

∀ (m,x)ε[0,∞]2 − (∞,∞), ∀ h ≥ 0

100

Then

PSτ ≤ a and Tτ ≥ b

=

∫u(Tτ , Sτ )dP

=

∫G

(Tτ , Sτ )dP, G = Tτ <∞ or Sτ <∞

≤∫G

Qh(Tτ , Sτ )dP ( Qh ≥ u)

(Qh(m,x) = exp[−h(x− a) + (1− e−h)(m− b)] ≥ 1, if m ≥ b and x < a)

= Qh(0, 0)

∫G

R−h(Tτ , Sτ )dP

≤ Qh(0, 0)

So PSτ ≤ a and Tτ ≥ b ≤ infh≥0

Qh(0, 0)

= inf exp[ha− (1− e−h)b]

= exp

[infh≥0

[ha− (1− e−h)b

].

d/dh[ha− (1− e−h)b] = a− e−hb

minimum point ho satisfies eho = b/a

So that, minh≥0

Qh(0, 0) = exp(hoa) · exp[be−ho − b]

= (eho)a exp[(eho)−1b− b]

= (b/a)a exp[a

b· b− b]

So, PSτ ≤ a and Tτ ≥ b≤ (b/a)ae(a−b).

Another one: Let

u(m,x) =

1, if m ≤ b and x ≥ a0, o.w.

h ≥ 0, Qh(m,x) = exp[−ha+ (eh − 1)b]Rh(m,x)

G = Tτ <∞ and Sτ <∞, a > 0.

101

Lemma1 : a ≥ 0, b ≥ 0, c = a ∨ bThen (b/a)aea−b ≤ exp[−(a− b)2/2c]

Lemma1′: 0 < ε < 1, f(ε) = (

1

1− ε)1−εe−ε, g(ε) = (1− ε)eε.

we have

f(ε) < exp[−ε2/2] < 1 and

g(ε) < exp[−ε2/2] < 1.

proof : log f(ε) = −(1− ε) log(1− ε)− ε

(Because − log(1− x) = x+x2

2+x3

3+ · · · , 0 < x < 1).

= (1− ε)[ε+ε2

2+ε3

3+ · · · ]− ε

= [ε+ε2

2+ε3

3+ · · · ]− ε2 − ε2

2− · · · − ε

≤ −ε2/2

log g(ε) = log(1− ε) + ε

= −(ε+ε2

2+ε3

3+ · · · ) + ε

≤ −ε2/2

proof of Lemma 1:(i) a=b (trivial).(ii) case 1: 0 < a < b, let ε = (b− a)/b = 1− a/b.

(b/a)a ea−b = [(1− ε)−1](1−ε)beb (−ε)

= [(1/(1− ε))1−εe−ε]b

= f b(ε) ≤ exp[−bε2

2]

= exp

[−b(b− a)2

2b2

]= exp[−(b− a)2/2b]

102

case 2: 0 < b < a.

ε = (a− b)/a = 1− b/a

(b/a)aea−b = (1− ε)aeaε

= ga(ε) ≤ exp

[−aε

2

2

]= exp

[−a(·(a− b)2

2a2

)]= exp

[−(a− b)2

2a

]If 0 ≤ a ≤ b then

P

τ∑i=1

Xi ≤ a andτ∑i=1

Mi ≥ b

≤ exp[−(a− b)2/2(a ∨ b)]

Application:Let Xn = ρXn−1 + εn, n = 1, 2, · · · , | ρ |< 1.εn,Fn is a martingale difference sequence such that E[ε2

n | Fn−1] = σ2 , and

supnE[(ε2

n)p | Fn−1] ≤ c <∞

where p > 1 , c is a constant.we know that

(i) 1/nn∑i=1

X2i−1 → c2 a.s.

(ii)

(n∑i=1

X2i−1

) 12

(ρn − ρ)D→ N(0, σ2)

where ρn is the L.S.E. of ρ.Question: when Xi is random variable

E

(n∑i=1

X2i−1

)(ρn − ρ)2 n→∞−→ σ2 ?

ρn − ρ =

(n∑i=1

X2i

)−1( n∑i=1

Xi−1εi

)(

n∑i=1

X2i−1

)(ρn − ρ)2 =

(∑n

i=1Xi−1εi)2∑n

i=1X2i−1

103

difficult:n∑i=1

X2i−1 is a random variable.

This problem how to calculate.The corresponding χ2-statistic is

Qn =n∑i=1

X2i−1(ρn − ρ)2 =

(n∑i=1

Xi−1εi

)2/ n∑i=1

X2i−1 (Cauchy − Schwarz inequality)

( n∑i=1

X2i−1

)1/2( n∑i=1

ε2i

)1/22

n∑i=1

X2i−1

=n∑i=1

ε2i

E(Qpn)

?→ σ2pE | N(0, 1) |2p .

A sufficient condition is to show Qpn is uniformly integrable. It is sufficient to

show that

∃ p′ > p 3 supnE[Qp′

n ] <∞

Assume that ∃ q > p 3 E | Qn |2q<∞.

104

Ideas:

(i) ε2i = (Xi − ρXi−1)

2 ≤ 2(X2i + ρ2X2

i−1)n∑i=1

ε2i ≤ 2

(n∑i=1

X2i + ρ2

n∑i=1

X2i−1

)

≤ 2(1 + ρ2)

(n+1∑i=1

X2i−1

)

So thatn−1∑i=1

ε2i ≤ 2(1 + ρ2)

(n∑i=1

X2i−1

)

(ii) Qn ≤n∑i=1

(Xi − ρXi−1)2

=n∑i=1

ε2i

implies Qn ≤n∑i=1

ε2i

Sincen∑i=1

ε2i =

n∑i=1

(Xi − ρnXi−1)2 +Qn

implies

∑ni=1Xi−1εi∑ni=1X

2i−1

≤ 2(1 + ρ2) (∑n

i=1Xi−1εi)2∑n−1

i=1 ε2i

(iii) Qn ≤

(n∑i=1

ε2i

)IAn +

2(1 + ρ2) (∑n

i=1Xi−1εi)2∑n−1

i=1 ε2i

IAnc

↑ ↑(By (ii)) (By (i))

(iv) Let 0 < τ < σ2 , choose k so that

E(ε2i I[ε2i≤k]

)= σ2 − E

[ε2i I[ε2i>k]

]≥ σ2 − E | εi |2q

k2q−2, let α = σ2 − E | εi |2q

k2q−2

> τ.

105

Then P

n∑i=1

ε2i ≤ nτ

≤ P

n∑i=1

ε2i I[ε2i≤k] ≤ nτ

≤ P

n∑i=1

(ε2i /k)I[ε2i≤k] ≤ n τ/k

= P

[n∑i=1

(ε2i /k)I[ε2i /k≤1] ≤ n τ/k

],

[n∑i=1

E

[ε2i

kI[ε2i /k<1] | Fi−1

]≥ n

](nE[ε2i /k I[ε2i /k≤1]

]≥ n

kα >

n

kτ)

≤ exp

[−

((n/k) α− nkτ)2

2(nkα)

]= exp[−n(α− τ)2/2kα]

=

exp

[−(α− τ)2

2kα

]n= r−n

r = exp

[(α− τ)2

2kα

]> 1.

106

(v) Let An =

[n−1∑i=1

ε2i ≤ (n− 1)τ

], and q > p′ > p ≥ 1.E

(n∑i=1

ε2i

)p′

IAn

1/p′

≤n∑i=1

(E(ε2

i )p′IAn

)1/p′

≤n∑i=1

((E[ε2i ]q)

p′q (EIsAn)

1s )

1p′ ,

1

q+

1

s= 1.

(Holder inequality)

≤E(ε2

i )q 1q · np(An)

1sp′

≤ c · n · r−n1sp′ → 0.

(vi) EQp′

n IcAn ≤ c′

E |∑n

i=1Xi−1εi|2p′

(n− 1)p′

Recall : (1987) Wei, Ann. Stat. 1667∼ 1687.

Xn =n∑i=1

uiεi, ui −Fi−1 measurable.

εi,Fi is a martingale difference sequence.

p ≥ 2

supnE| εn |p| Fn−1 ≤ c a.s.

Then E

(sup

1≤i≤n| Xi |p

)≤ k E

(n∑i=1

u2i

) p2

, k depends only on p, c.

So, E

∣∣∣∣∣n∑i=1

Xi−1εi

∣∣∣∣∣2p′

≤ k E

(n∑i=1

X2i−1

)p′

≤ k ‖n∑i=1

X2i−1 ‖

p′

p′

≤ k

(n∑i=1

‖ Xi ‖p′)p′

107

Now, Xn = ρXn−1 + εn = εn + ρεn−1 + · · ·+ ρn−1ε1 + ρnXo

= Yn + ρnXo.

E | Yn + ρnXo |2p′

≤ 22p′ [E | Yn |2p′+(| ρ |n| Xo |)2p′ ]

It is sufficient to show that supnE | Yn |2p

′<∞

Since this implies

E

∣∣∣∣∣n∑i=1

Xi−1εi

∣∣∣∣∣2p

= O(np′) and

E[Qp′

n IAcn ] = O(1)

By the same inequality again,

E | Yn |2p′

= E | εn + ρεn−1 + · · ·+ ρn−1ε1 |2p′

≤ k E(12 + ρ2 + · · ·+ ρ2n−2)p′

= k

(1− ρ2n

1− ρ2

)p′≤ k[1/(1− ρ2)p

′] <∞

108

Chapter 2

Stochastic Regression Theory

2.1 Introduction:

Model yn = β1xn,1 + · · ·+ βnxn,p + εnwhere εn,Fn is a martingale difference sequence and ~x = (xn,1, · · · , xn,p) is Fn−1

-measurable.Issue: Based on the observations ~x1, y1, · · · , ~xn, yn, make inference on ~β.Examples:(i) Classical Regression Model(Fixed Design, i.e. ~x′is are constant vectors).(ii) Time series: AR(p) modelyn = β1yn−1 + β2yn−2 + · · · βpyn−p + εnwhere εn are i.i.d. N(0, σ2).~xn = (yn−1, · · · , yn−p)′.(iii) Input-Output Dynamic System.

(1) System Identification (Economic of Control)

yn = α1yn−1 + · · ·+ αpyn−p + β1un−1 + · · ·+ βqun−q + εn

~xn = (yn−1, · · · , yn−p, un−1, · · · , un−q)′

~un = (un−1, · · · , un−q)′ ∼ exogeneous variable

(2) Control:~u Fn−1-measurable.Example:yn = αyn−1 + βun−1 + εnGoal: yn ≡ T, T fixed constant.If α, β are known.

109

After observing u1, y1, · · · , un−1, yn−1Define un−1 so that

T = αyn−1 + βun−1, i.e. un−1 =T − αyn−1

β, (β 6= 0)

ε Fn−1−measurable.

If α, β unknown:Based on u1, y1, · · · , un−1, yn−1Let α and β (say by αn−1, βn−1).Define un−1 = T−αn−1yn−1

βn−1

Question:Is the system under control?

Is 1m

m∑n=1

(yn − εn − T )2 small?

(iv) Transformed Model:

Branching Pocess with Immigration: Xn+1 =Xn∑i=1

Yn+1,i + In+1

Xn : the population size of n-th generation.Yn+1,i : the size of the decends of i-th number in n-th generation.In+1,i : the size of the immigration in (n+1)th generation.Assumptions:

(i) Yn,i, 1 ≤ n <∞, 1 ≤ i <∞ are i.i.d. random variables.

with m = EYn,i, σ2 = EY 2n,i

(ii) In i.i.d. r.v. with b = EIn, V ar(In) = σ2I

(iii) In is independent of Yn,i

110

E(Xn+1 | Fn) =Xn∑i=1

E[Yn+1,i | Fn] + E[In+1 | Fn]

= mXn + b

V ar(Xn+1 | Fn) =Xn∑i=1

(E((Yn+1,i −m)2 | Fn))

+E((In+1 − b)2 | Fn)= Xnσ

2 + σ2I

Let εn+1 =

Xn∑i=1

(Yn+1,i −m) + (In+1 − b)√σ2Xn + σ2

I

Then εn,Fn is a martingale difference sequence with E[ε2n | Fn−1] = 1.

The model becomes

Xn+1 = mXn + b+ (√σ2Xn + σ2

I )εn+1

If σ2 and σ2I are known,

Yn+1 = Xn+1/(σ2Xn + σ2

I )12 = m

Xn√σ2Xn + σ2

I

+ b1√

σ2Xi + σ2I

+ εn+1

In general we may use

Yn+1 = Xn+1/(1 +Xn)12 = m

Xn√1 +Xn

+ b1√

1 +Xn

+ ε′n+1

where ε′n+1 =

√σ2Xn + σ2

I

1 +Xn

εn+1,

V ar(ε′n | Fn−1) =σ2Xn + σ2

I

1 +Xn

≤ c.

In both cases, the inference on m and b can be handed by the Stochastic Regres-sion Theory.Reference:Least Squares Estimation Stochastic Regression Models with Applications to Identi-fication and Control of Dynamic Systems.

111

T.L. Lai and C.Z. Wei (1982).Ann. Stat., 10, 154 ∼ 166.Model: yi = ~β′~xi + εiεi,Fi is a sequence of martingale difference and ~xi is Fi−1-measurable.

Bassic Issue : Make inference on ~β , based on observations ~x1, y1, · · · , ~xn, ynEstimation:(a) εi ∼ i.i.d. N(0, σ2)~x1 fixed, ~xiεσ(y1, · · · , yi−1), i = 2, 3, · · ·MLE of ~β :

L(~β) = L(~β, y1, · · · , yn)= L(~β, y1, · · · , yn−1)L(~β, yn | y1, · · · , yn−1)

= L(~β, y1, · · · , yn−1)1√2πσ

e−(yn−~β′~xn)2/2σ2

...

= (1/√

2πσ)ne

n∑i=1

(yi − ~β′~xi)2/2σ2

.

So, M.L.E. ~βn =

(n∑i=1

~xi~x′i

)−1 n∑i=1

~xiyi

σ2n = 1/n

n∑i=1

(yi − ~β~xi)2

(b) Least squares:

minimum h(~β) =n∑i=1

(yi − ~β′~xi)2 over ~β.

∂h(~β)/∂~β =n∑i=1

(yi − ~β′~xi)~xi

=

(n∑i=1

yi~xi

)−

(n∑i=1

~xi~x′i

)~β

Solve the equation, we obtain ~βn.Computation Aspect:

112

• Recursive Formula

~βn+1 = ~βn + (yn+1 − ~β′n~x′n+1)/(1 + ~x′n+1 Vn~xn+1)Vn ~xn+1

Vn+1 = Vn − Vn~xn+1~x′n+1Vn/(1 + ~xn+1 Vn~xn+1)

Vn =

(n∑i=1

~xi~x′i

)−1

Kalman filter type estimator:(~βn+1

Vn+1

)= f

((~βnVn

), ~xn+1, n+ 1

)

f : hardware or program.(~βnVn

): stored in the memory.

~xn+1 : new data

Real Time Calculation:• automatic• large data set.what is filter?

yi = ~β′~xi + εi (state process.)

Oi = yi + δi (Observation process)

Filter Theory : Estimation state.Predict state.

State History : F Y

Observation History : FO

Global History : F = F Y ∪ FO.h is F -measurableh = E[h | FO].Author:P. Bremaud : Point Process and Queues : Martingale Dynamic., Spring-Verlag, Ch.IV : Filtering.Matrix Lemma:

113

(1) If A, m× m matrix, is nonsingular υ, V ε <mThen

(A+ υV ′)−1 = A−1 − (A−1υ)(V ′A−1)

1 + V ′A−1υ

proof :

[A−1 − (A−1υ)(V ′A−1)

1 + V ′A−1υ

][A+ υV ′]

= I − (A−1υ)(V ′A−1)

1 + V ′A−1υA+ A−1υV ′ − (A−1υ)(V ′A−1)υV ′

1 + V ′A−1υ

= I − A−1υV ′

1 + V ′A−1υ+ A−1υV ′ − (A−1υ)(V ′A−1υ)V ′

1 + V ′A−1υ

= I − 1

1 + V ′A−1υA−1υV ′ − A−1υV ′

−V ′A−1υA−1υV ′ + (V ′Aυ)AυV ′υV ′ = I

Corollary:

P−1n+1 =

(n+1∑i=1

~xi~x′i

)−1

=

(n∑i=1

~xi~x′i + ~xn+1~x

′n+1

)−1

= P−1n −

(P−1n ~xn+1)(~x

′n+1P

−1n )

1 + ~x′n+1P−1n ~xn+1

~βn+1 =

(n+1∑i=1

~xi~x′i

)−1 n+1∑i=1

~xiyi

=

(n+1∑i=1

~xi~x′i

)−1 n∑i=1

~xiyi + P−1n+1~xn+1yn+1.

=

P−1n −

(P−1n ~xn+1)(~x

′n+1P

−1n )

1 + ~x′n+1P−1n ~xn+1

n∑i=1

~xiyi + P−1n+1~xn+1yn+1

= ~βn −P−1n ~xn+1~x

′n+1

1 + ~x′n+1P−1n ~xn+1

~βn +

[P−1n ~xn+1 −

(P−1n ~xn+1)(x

′n+1P

−1n ~xn+1)

1 + ~x′n+1P−1n ~xn+1

]yn+1

= ~βn −P−1n ~xn+1

1 + ~x′n+1P−1n ~xn+1

(~β′n~xn+1) +P−1n ~xn+1

1 + ~x′n+1P−1n ~xn+1

yn+1

= ~βn + (yn+1 − ~βn~xn+1)P−1n ~xn+1)/(1 + ~x′n+1P

−1n ~xn+1)

114

If we set VPn =

(Po∑i=1

~xi~x′i

)−1

, ~βPo=Least square estimator. Then Vn+1 =(n+1∑i=1

~xi~x′n

)−1

and

~βn are least square estimator of ~β.Engineer : Set initial valueVo = CI, C is very small.

~βo : guess.(2) If A = B + ~w~w′ is nonsingular

Then ~w′A~w = |A|−|B||A|

Notice:

as an ↑ ∞, an−1

an→ 1,

N∑i=1

an − an−1

an∼ log aN

Special Case :n+1∑i=1

x2i =

(n∑i=1

x2i + x2

n+1

).

proof : | B |=| A− ~w~w′ |=∣∣∣∣ A ~w~w′ 1

∣∣∣∣ (∗)

Lemma : If A is nonsingular,

Then

∣∣∣∣ A CB D

∣∣∣∣ =| A || D −BA−1C |

proof : det

(I O

−BA−1 I

)(A CB D

)= det

(A C0 −BA−1C +D

)So, (∗) = | A || 1− ~w′A−1 ~w |

2. Strong Consistency:Conditional Fisher′s information matrix:

L(~β, yi | y1, · · · , yi−1)

=n∏i=1

L(~β, yi | y1, · · · , yi−1), implies

log L(~β, y1, y2, · · · , yn) =n∑i=1

logL(~β, yi, | y1, · · · , yi−1)

115

Definition:

Ji = E

∂ logL(~β, yi | y1, · · · , yi−1)

∂~β

[∂ logL(~β, yi | y1, · · · , yi−1)]′

∂~β

∣∣∣∣∣ y1, · · · , yi−1

Conditional Fisher′s information matrix is

In =n∑i=1

Ji

Model : yn = ~β′~xn + εn

εn i.i.d. ∼ N(0, σ2)

~xn ε σy1, · · · , yn−1 = Fn−1

logL(~β, yi | y1, · · · , yi−1) = log

[1√2πσ

e−(yi−~β

′~xi)2

2σ2

]= − log

√2πσ − (yi − ~β′~xi)

2

2σ2

Ji = E

(yi − ~β′~xi)

σ2~xi~x

′i

(yi − ~β′~xi)

σ2|Fi−1

= Eε2i~xi~x

′i | Fi−1/σ4 = ~xi~x

′iEε2

i | Fi−1/σ4

= ~xi~x′i/σ

2,

In =n∑i=1

~xi~x′i/σ

2

Recall that when ~xi are constant vectors,

cov(~βn) = cov

( n∑i=1

~xi~x′i

)−1 n∑i=1

~xiεi

=

(n∑i=1

~xi~x′i

)−1

σ2 = I−1n

Therefore, for any unit vector ~e ,

V ar(~e′ ~βn) = ~e′

(n∑i=1

~xi~x′i

)−1

~e σ2

= ~e′I−1n ~e

116

Let δn(~e∗) be the minimum eigenvalue (eigenvector) of In. Then Var(~e′∗ ~βn) =

~e′∗I−1n ~e∗ = 1/δn ≥ ~e′I−1

n ~e, ∀ ~e.

So, the data set ~x1, y1, ~x2, y2, · · · , ~xn, yn provides least information for estimat-

ing ~β along the direction ~e∗, we can interpretate the maximum-eigenvaluce similarly.

When the L.S.E. ~βn is (strongly) consistent? Heuristically, if the most difficult direc-

tion has “infinite” information, we should be able to estimate ~β consistently. Moreprecisely, if

λmin(In) →∞, we expect ~βn → ~β a.s.

Weak consistently is trivial when ~xi are constants, since

cov(~βn) = I−1n and ‖ I−1

n ‖= 1

λmin(In)→ 0.

For strong consistency, this is shown by Lai, Robbins and Wei(1979), JournalMultivariate Analysis, 9, 340 ∼ 361.

Theorem : In the fixed design case if limn→∞

λmin

(n∑i=1

~xi~x′i

)→∞

Then ~βn → ~β a.s. if εi is a convergence system.Definition : εn is a convergence system if

n∑i=1

ciεi converges a.s. for alln∑i=1

c2i <∞.

Example:εi ∼i.i.d. Eεi = 0, V ar(εi) <∞.More general, εn,Fn is a martingale difference sequence such that

supiE[ε2

i | Fi−1] <∞ and

supiE[ε2

i ] <∞.

Stochastie Case:< 1 > First Attempt : (Reduce to 1-dimension case).

~βn − ~β =

(n∑i=1

~xi~x′i

)−1 n∑i=1

~xiεi

117

Recall that : εi,Fi martingale difference sequence uiεFi−1 .

n∑i=1

uiεi

converges a.s. on

∑∞i=1 u

2i <∞

0((∑n

i=1 u2i )

1/2[log (

∑ni=1 u

2i )]

1+δ2

)a.s. ∀ δ > 0

p = dim(~β) = 1.

Conclusion: ~βn converges a.s.

The limit is ~β on the set In =n∑i=1

x2i →∞. In fact on this set

~βn − ~β = 0

(logn∑i=1

x2i

) 1+δ2

/

(n∑i=1

x2i

)1/2 a.s. ∀ δ > 0.

Let Pn =

(n∑i=1

~xi~x′i

), Vn = P−1

n , Dn = diag(Pn).

~βn − ~β = (P−1n Dn)(D

−1n

n∑i=1

~xiεi)

= P−1n Dn

n∑i=1

xi1, εi/n∑i=1

x2i1

...∑ni=1 xipεi/

∑ni=1 x

2ip

So

‖ ~βn − ~β ‖ ≤ ‖ P−1n ‖‖ Dn ‖ max

1≤j≤P

(log

n∑i=1

x2ij

) 1+δ2

(∑ni=1 x

2ij

)1/2= O

(1/λn · λ∗n ·

(log λ∗n)1+δ2

λ1/2n

), λ∗n : max. eigen.

118

since

(0, · · · , 0, 1, 0, · · · , 0)Pn

000...010...0

≥ λn

= O(λ∗n(log λ∗n)1+δ2 /λ

32n ). (∗)

Conclusion: ~βn → ~β a.s. on the setlimn→∞

λ∗n(log λ∗n)(1+δ)/2/λ

32n = 0, for some δ > 0

= C

Remark: C ⊂

limn→∞

λ∗n/λ32n = 0

If λn ∼ n, then the order of λ∗n should be smaller than n3/2.(

λn/2 ≤detPntr(Pn)

=λ∗nλnλ∗n + λn

≤ λn

)

119

Example 1 : yi = β1 + β2i+ εi

i = 1, 2, 3, · · · , n.

~xi =

(1i

)

Pn =n∑i=1

~xi~x′i =

n

n∑i=1

i

n∑i=1

i

n∑i=1

i2

implies tr(Pn) = n+

n∑i=1

i2 ∼ n3.

det(Pn) = n

n∑i=1

i2 −

(n∑i=1

i

)2

∼ n n3/3−(n2

2

)2

=n4

3− n4

4=n4

12.

implies λ∗n ∼ n3

λn ∼ n

implies (∗) is not satisfy.Example 2 : AR (2)zn = β1zn−1 + β2zn−2 + εnCharacteristic polynomialP (λ) = λ2 − β1λ− β2

The roots of P (λ) determine the behavior of zn , assume that

P (λ) = (λ− ρ1)(λ− ρ2)

= λ2 − (ρ1 + ρ2)λ+ ρ1ρ2

β1 = ρ1 + ρ2, β2 = −ρ1ρ2

yn = zn, ~xn =

(zn−1

zn−2

)Depcomposition:(

vnwn

)=

(1 −ρ1

1 −ρ2

)(znzn−1

)=

(zn − ρ1zn−1

zn − ρ2zn−1

)120

Claim : vn = ρ2vn−1 = εn

wn = ρ1wn−1 = εn

vn − ρ2Vn−1 = (zn − ρ1zn−1)− ρ2(zn−1 − ρ1zn−2)

= zn − (ρ1 + ρ2)zn−1 + ρ1ρ2zn−2

= zn − β1zn−1 − β2zn−2 = εn

ρ2 = 1, ρ1 = 0, then vn − vn−1 = εn

=n∑i=1

εi + vo

and wn = εn

Pn =n∑i=1

(zi−1

zi−2

)(zi−1, zi−2)(

1− ρ1

1− ρ2

)Pn

(1− ρ1

1− ρ2

)=

n∑i=1

(vi−1

wi−1

)(vi−1, wi−1)

=

n∑i=1

v2i

n∑i=1

viwi

n∑i=1

viwi

n∑i=1

w2i

vo = 0 implies vn =n∑i=1

εi, wi = εi

εi i.i.d. Eεi = 0, and V ar(εi) <∞.

121

tr(Pn) on order

(n∑i=1

v2i

)+

(n∑i=1

ε2i

)

det(Pn) =

(n∑i=1

v2i

)(n∑i=1

ε2i

)−

(n∑i=1

viεi

)2

=

(n∑i=1

v2i

)(n∑i=1

ε2i

)−

(n∑i=1

ε2i +

n∑i=1

vi−1εi

)2

Because vi = vi−1 + εi.

limn→∞

supn∑i=1

v2i /n(2n log log n) <∞ a.s. (Donsker Theorem)

limn→∞

inf(log log n)n∑i=1

v2i

n2> 0 a.s.

implies tr(Pn) ∼n∑i=1

v2i

Becausen∑i=1

vi−1εi = 0

( n∑i=1

v2i−1

)(log

[n∑i=1

v2i−1

]) 1+δ2

.

det(Pn) = −O

n2 +

(n∑i=1

v2i−1

)(log

n∑i=1

v2i−1

) 1+δ2

+

(n∑i=1

v2i

)(n∑i=1

ε2i

).

=

(n∑i=1

v2i

)(n∑i=1

ε2i

)1−O

n2 +

(n∑i=1

v2i−1

)(log

n∑i=1

v2i−1

)1+δ

(n∑i=1

v2i=1

)(n∑i=1

ε2i

)

122

n2

/(n∑i=1

v2i−1

)(n∑i=1

ε2i

)∼ n(

n∑i=1

v2i−1

)

= O(n/(n2/ log log n)) = O

(log log n

n

)[log

(n∑i=1

v2i−1

)]1+δ/ n∑i=1

ε2i = O

((log n)1+δ

n

)= o(1)

implies

tr(Pn) ∼n∑i=1

v2i

det(Pn) ∼

(n∑i=1

v2i

)· n

Not application I< 2 > Second ApproachEnergy function, ε-Liapounov′s function.dε(x(t))/dt < 0Roughly speaking, construct a constant function.

V : <P → <V (~x) > 0, if ~x 6= ~0

V (~0) = 0

inf|~x|>M

V (~x) > 0

If ~wn is a sequence of vectors in <ns.t.

V (~wn+1) ≤ V (~wn) and limn→∞

V (~ωn) = 0

then limn→

~wn = ~0.

123

Two essential ideas:(1) decreasing(2) never ending unless it reaches zero.What are the probability analogous ?Decreasing → supermartingale .

→ almost supermartingle.Recall the following theorem (Robbins and Siegmund) 1971, Optimization Methodsin stat. ed. by Rustgi, 233∼.Lemma : (Important Theorem )Let an, bn, cn, dn, be Fn-measurable nonnegative random varaibles s.t. E[an+1 | Fn] ≤

an(1 + bn) + cn − dn. Then on the event

∞∑i=1

bi <∞,

∞∑i=1

ci <∞

limn→∞

an exists and finite a.s. andn∑i=1

di <∞ a.s.

What is the supermartingale in above ?Ans: bn = 0, cn = 0, dn = 0.We start with the residual sum of squares.

n∑i=1

(yi − ~β′n~xi)2 =

n∑i=1

ε2i −Qn

where Qn =n∑i=1

(~βn~xi − ~β′~xi)2

= (~βn − ~β)′

(n∑i=1

~xi~x′i

)(~βn − ~β)

Heuristic : If the least squares functions is good, one would expect

n∑i=1

(yi − ~β′i~xi)2 ∼=

n∑i=1

ε2i .

That is, relative ton∑i=1

ε2i , Qn should be smaller. Therefore, Qn/a

∗n may be a

right consideration for the “energying function ”. Another aspect of Qn is that it is

a quadratic function of (~βn − ~β), which reaches zero only when ~βn = ~β.

124

How to choose a∗n ?

Qn ≥‖ ~βn − ~β ‖2 ·λnor Qn/λn ≥‖ ~βn − ~β ‖, choose : a∗n = λn.

Theorem : In the stochastic regression model.

yn = ~β′~xi + εi

if supnE[ε2

n | Fn−1] <∞ a.s.

then on the event∞∑n=p

~x′n

(n∑i=1

~xi~x′i

)−1

~xn/λn <∞, limn→∞

λn = ∞

proof : an = Qn/λn, bn = 0.

Qn =

(n∑i=1

~xiεi

)′( n∑i=1

~xi~x′i

)−1( n∑i=1

~xiεi

)

E[an | Fn−1] =

(n−1∑i=1

~xiεi

)′

Vn

(n−1∑i=1

~xiεi

)/λn

+2E[~x′nεnVn

(n−1∑i=1

~xiεi

)| Fn−1]/λn

+E(~x′nVnεn | Fn−1)/λn.

=

(n∑i=1

~xiεi

)′

Vn

(n∑i=1

~xiεi

)/λn

+~x′nVn~xnE[ε2n | Fn−1]/λn

(n−1∑i=1

~xiεi

)′

Vn−1

(n−1∑i=1

~xiεi

)/λn + cn−1

= Qn−1/λn + cn−1

= Qn−1/λn−1 −Qn−1

(1

λn−1

− 1

λn

)+ cn−1

= an−1 − an−1(1− λn−1/λn) + cn−1

125

By the almost supermartingale theorem.

limn→∞

an <∞ and

(∑an−1

(λn − λn−1

λn

))<∞

a.s. on ∑

cn−1 <∞ =

∑ ~x′nVn~xnλn

E[ε2n | Fn−1] <∞

∑ ~x′nVn~xnλn

<∞

If limn→∞

an = a > 0

Then ∃N s.t. an ≥ a/2, ∀ n > N

So∞∑i=1

ai−1λi − λi−1

λi≥ a

2

(∞∑i=N

λi − λi−1

λi

)

≥ a

2

∞∑i=N

∫ λi

λi−1

dx

x· λn/λn−1

≥ a

2

(infn≥N

λn/λn−1

)∫ ∞

λn−1

1

xdx = ∞

Note 1: If λn−1/λn has limit point λ < 1 then there exists

nj 3 limj→∞

λnj−1/λnj = λ, lim

j→∞

λnj − λnj−1

λnj= 1− λ.

This contradicts.

Note 2 : If∑i

λi − λi−1

λi<∞

Then λn−λn−1

λn→ 0

λn−1/λn → 1.Therefore, on the event ∑ ~xnVn~xn

λ<∞, λn →∞

,

an → 0 a.s.

since an ≥‖ ~βn − ~β ‖2

~βn → ~β a.s. on the same event.

126

Corollary : On the event

λn →∞, (log λ∗n)1+δ = O(λn) for some δ > 0

Then limn→∞

~βn = ~β a.s.

proof :∞∑n=p

~x′n

(n∑i=1

~xi~x′i

)−1

~xn/λn <∞

=∞∑n=p

~x′nVn~xnλn

≤∞∑n=p

| Pn | − | Pn−1 || Pn | λn

(By Pn = Pn−1 + ~xn~x′n)

= O

(∞∑n=p

| Pn | − | Pn−1 || Pn | (log λ∗n)1+δ

)

= O

(∞∑n=p

| Pn | − | Pn−1 || Pn | (log | Pn |)1+δ

)= O(1)

Since | Pn |= λ∗n · · ·λn →∞.implies log | Pn |≤ p log(λ∗n).•• Knopp : Sequence and Series.

as an ↑

implies∑ an − an−1

an(log an)1+δ<∞∫ ∞

2

1

x(log x)1+δdx <∞

Because ~x′nVn = ~x′nVn−1/(1 + ~x′nVn−1~xn)

~x′nVn = ~x′nVn−1 −~x′nVn−1~xn~x

′nVn−1

1 + ~x′nVn−1~xn

127

< 3 > Third Approach:

Qk =

(k∑i=1

~xiεi

)′

Vk

(k∑i=1

~xiεi

)

=

(k−1∑i=1

~xiεi

)′

Vk

(k−1∑i=1

~xiεi

)

+~x′kVk~xkε2k + 2(~x′k~xk

k−1∑i=1

~xiεi)εk

= Qk−1 − (~x′kVk−1

k−1∑i=1

~xiεi)2/(1 + ~x′kVk−1~xk)

+~x′kVk~xkε2k + 2(~x′kVk

k−1∑i=1

~xiεi)εk.

Qn −QN =n∑

j=N+1

(Qj −Qj−1)

= −n∑

k=N+1

(~x′kVk−1

k−1∑i=1

(~xiεi)2

)2/(1 + ~x′kVk−1~xk)

+n∑

k=N+1

~x′kVk~xkε2k + 2

n∑k=N+1

(~x′kVk

k−1∑i=1

~xiεi

)εk

128

implies Qn −QN +n∑

k=N+1

(~x′kVk−1

k−1∑i=1

~xiεi

)2

/(1 + ~x′kVk−1~xk)

(1) =n∑

k=N+1

~x′kVk~xkε2k + 2

n∑k=N+1

(~x′kVk−1

k−1∑k=1

~xiεi

)1 + ~x′kVk−1~xk

εk

(2) =n∑

k=N+1

(~x′kVk−1

k−1∑i=1

~xiεi

)2

/(1 + ~x′kVk−1~xk)

=n∑

i=N+1

(~x′kVk−1

k−1∑i=1

~xiεi

)1 + ~x′kVk−1~xk

εk

(1) finite if and only if (2) finite.Theorem: If sup

nE[ε2

n | Fn−1] <∞ a.s.

Then

−QN +Qn +n∑

k=N+1

(~x′kVk−1

k−1∑i=1

~xiεi

)2

1 + ~x′kVk−1~xk

∼n∑

k=N+1

~x′kVk~xkε2k a.s.

on the set where one of it approaches ∞.proof: Let

Uk =

~x′kVk−1

k−1∑i=1

~xiεi

1 + ~x′kVk−1~xk

Then Uk is Fk−1-measurable.

129

Therefore

n∑k=N+1

Ukεk =

O

(n∑

k=N+1

U2k

)on

[n∑

k=N+1

U2k <∞

]

o

(n∑

k=N+1

U2k

)on

[∞∑

k=N+1

U2k = ∞

]

Butn∑

N+1

U2k ≤

n∑N+1

U2k (1 + ~x′kVk−1~xk)

=n∑

N+1

(~x′kVk−1

k−1∑i=1

~xiεi

)2

/(1 + ~x′kVk−1~xk)

Special case ~xi = 1, Pn = n.

(n∑i=1

εi

)2/n+

n∑k=N+1

k−1∑i=1

εi

k − 1

2

/(1 +

1

k − 1

)

∼n∑

k=N+1

ε2k

kn∑

k=N+1

k−1∑1

εi

k − 1

2/(

1 +1

k − 1

)=

n∑k=N+1

(k − 1

k

)(εk−1)

2

)

130

Because∑

(εk)2 ∼ (log n)σ2.

Qn +n∑

k=N+1

(~x′kVk+1

k−1∑i=1

~xiεi)2/(1 + ~x′kVk−1~xk)

∼n∑

k=N+1

~x′kVk~xkε2k, if one of it →∞, where

Qn = (~βn − ~β)

(n∑i=1

~xi~x′i

)(~βn − ~β)

=

(n∑i=1

~xiεi

)′

Vn

(n∑i=1

~xiεi

).

Lemma : Assume that εk,Fk is a martingale difference sequence and Vk is Fk−1-measurable all k.(i) Assume that sup

nE[ε2

n | Fn−1] <∞ a.s.

Then∞∑k=1

| uk | ε2k <∞ a.s. on

∞∑k=1

| uk |<∞

and∞∑k=1

| uk | ε2k = o

( n∑k=1

| uk |

)(log

n∑k=1

| uk |

)1+δ .

on the set

∞∑k=1

| uk |= ∞

, for all δ > 0.

(ii) Assume that supnE[| εn |α| Fn−1] <∞, for some α > 2. Then

n∑k=1

| uk | ε2k −

n∑k=1

| uk | E[ε2k | Fk−1]

= o

(n∑k=1

| uk |

)a.s. on

∞∑k=1

| uk |= ∞, supn| un |<∞

.

131

Therefore, if limk→∞

E[ε2k | Fk−1] = σ2 a.s.

Then limn→∞

n∑k=1

| uk | ε2k/

n∑k=1

| uk |= σ2 a.s.

on

∞∑k=1

| uk |= ∞, supn| un |<∞

Note:Basic idea is to ask : zi ≥ 0, the relation of

n∑i=1

zi andn∑i=1

E[zi | Fi−1]

Becausen∑k=1

E(| uk | ε2k | Fk−1) =

n∑k=1

| uk | E(ε2k | Fk−1)

(Freedman. D. (1973). Ann. Prob. 1, 910∼925.).proof: (i) Take an large enough so that

∞∑k=1

P [| uk |> ak] <∞

Let u∗k = ukI[|uk|≤ak]

Then Puk = u∗k eventually =1.If we can show our results for u∗k then the results also hold for uk.Therefore, we can assume that each uk is a bounded random variables.∀ M > 0, define

vk = ukI[E(ε2k|Fk−1)≤M ]Ik∑i=1

| ui |≤M

then vk is Fk−1-measurable.

Then E

(∞∑i=1

| vi | ε2i

)=

(∞∑i=1

E(| vi | ε2i | Fi−1)

)

= E

(∞∑i=1

| vi | E[ε2i | Fi−1]

)

132

≤ E

∞∑i=1

| ui | Ii∑

j=1

| uj |≤M

·M

≤M2 <∞

So∞∑i=1

| vi | ε2i <∞ a.s.

Observe that vk = uk, ∀ k on

supnE[ε2

n | Fn−1] ≤M,∞∑n=1

| un |≤M

= ΩM .

So∞∑i=1

| ui | ε2i <∞ a.s. on ΩM , ∀ M .

But∞⋃

M=1

ΩM =

supnE[ε2

n | Fn−1] <∞,∞∑n=1

| un |<∞

.

=

∞∑n=1

| un |<∞

The proof is first part.

Let sn =n∑i=1

| ui |

considern∑k=1

| uk | ε2k

sk(log sk)1+δ

Since∞∑n=1

| un |sn(log sn)1+δ

<∞ a.s.

≤∞∑n=1

∫ sn

sn−1

dx

x(log x)1+δ

implies∞∑k=1

| uk |sk(log sk)1+δ

ε2k <∞ a.s.

133

By Kronecker′s Lemma, on

sn =

n∑i=1

| ui |→ ∞

limn→∞

n∑k=1

| uk | ε2k

sn(log sn)1+δ= 0 a.s.

(ii) (Chow (1965), local convergence theorem).For a martingale difference sequence δk, Fkn∑k=1

εk converges a.s. on∞∑k=1

E(| δk |r| Fk−1) <∞

.

where 1 ≤ r ≤ 2.Set δk = u2

k[ε2k − E(ε2

k | Fk−1)]Then δk,Fk is a martingale difference sequence without loss of generality,

we can assume that 2 < α ≤ 4. If α ≥ 4, then E14 (ε4

i | Fi−1) ≤ E1α (| εi |α| Fi−1).

Set r = α/2.Let tn =

∑ni=1 | ui |2r .

E[| δk |r| Fk−1]

=| uk |2r E| ε2k − E[ε2

k | Fk−1] |r| Fk−1≤ | uk |2r E[max

k(| ε2

k |, E[ε2k | Fk−1]

r | Fk−1

≤ | uk |2r E| εk |2r +Er[ε2k | Fk−1] | Fk−1

= | uk |2r E[| εk |2r| Fk−1] + Er[ε2k | Fk−1]

≤ 2 | uk |2r E[| εk |2r| Fk−1]

Son∑k=1

E(| δk/tk |r| Fk−1)

≤ 2

(n∑k=1

| uk |2r

trk

)supnE[| εn |α| Fn−1] <∞ a.s.

Son∑k=1

δk = o(tn) a.s. on tn →∞

Butn∑k=1

δk converges a.s. on

∞∑i=1

| ui |2r= limn→∞

tn <∞

.

134

by Chow′s Theorem onn∑i=1

δi.

Observe that on supn | un |<∞.

tn ≤

(n∑i=1

| ui |

)(supn| un |2r−1

)Combining all those results

n∑i=1

δi = o

(n∑i=1

| ui |

)a.s. on

∞∑i=1

| ui |= ∞, supn| un |<∞

.

It is not difficult to see that

n∑k=1

| uk | ε2k = O

(n∑k=1

| uk |

)a.s. on

supn| un |<∞

This is because

(a) On

n∑i=1

| ui | < ∞, supn| un |<∞

,

n∑k=1

| uk | ε2k = O(1) = O

(n∑k=1

| uk |

)(by (i))

(b) On

n∑k=1

| uk | = ∞, supn| un |<∞ ,

n∑k=1

| uk | ε2k =

n∑k=1

| uk | E(ε2k | Fk−1) + o

(n∑k=1

| uk |

)

(n∑i=1

| ui |

)supnE(ε2

n | Fn−1) + o

(n∑k=1

| uk |

)

=

(n∑i=1

| ui |

)(supnE(ε2

n | Fn−1) + o(1)

)

= O

(n∑i=1

| ui |

).

135

Now, if limn→∞

E[ε2n | Fn−1] = σ2.

Thenn∑k=1

| uk | E[ε2k | Fk−1]/

n∑k=1

| uk |→ σ2 a.s. on

∞∑k=1

| uk |= ∞

.

By an ≥ 0, bn ≥ 0, bn → b,

n∑i=1

ai →∞

Thenn∑i=1

aibi/n∑i=1

ai → b.

Son∑k=1

| uk | ε2k/

n∑k=1

| uk |

=

n∑k=1

| uk | E[ε2k | Fk−1]

n∑k=1

| uk |+ o(1)

→ σ2, a.s. on

supn| un |<∞,

∞∑k=1

| uk |= ∞

.

Lemma 2: Let wn be a p× 1 vectors and

An =n∑i=1

~wi ~w′i. Assume that AN is nonsingular for some N . Let λ∗n and | An | denote

the maximum evgenvalue and determinant of An.

Then (i) λ∗n ↑ .

(ii) limn→∞

λ∗n <∞ implies∞∑i=N

~w′iAi ~wi <∞.

(iii) limn→∞

λ∗n = ∞, impliesn∑

i=N

~w′iA

−1i ~wi = O(log λ∗n).

(iv) limn→∞

λ∗n = ∞, ~w′iA

−1i ~wi → 0, implies

n∑i=N

~w′iA

−1i ~wi ∼ log | An | .

136

proof : (i) trivial.

(ii) ~w′n A

−1n ~wn =

| An | − | An−1 || An |

(λ∗n)p ≥| An | and | An |≥ λ∗nλ

p−1n

Where λn is the minimum eigenvalue of An.

If λ∗n <∞, then limn→∞

| An |<∞.

So∞∑i=N

~w′iA

−1i ~wi =

∞∑i=N

| Ai | − | Ai−1 || Ai |

∞∑i=N

(| Ai | − | Ai−1 |)

| Ai |=

limn→∞

| An | − | AN−1 |

| AN |<∞.

(iii) Note thatn∑

i=N

~w′iA

−1i ~wi =

n∑i=N

| Ai | − | Ai−1 || Ai |

≤n∑

i=N+1

∫ |Ai|

|Ai−1|

1

xdx+ 1

= 1 + log | An | − log | AN |= O(log | An |) = O(log λ∗).

(iv) Note that λ∗n →∞, | An |→ ∞.

Now| An | − | An−1 |

| An |→ 0 implies

n∑i=N

| Ai | − | Ai−1 || Ai |

∼ log | An |

137

Corollaryl : (1) If supnE[ε2

n | Fn−1] <∞ a.s.

Thenn∑

k=N+1

~x′kVkε2k

= O((log λ∗n)1+δ) a.s.

(2) If supnE[| εn |2+δ| Fn−1] <∞, for some δ > 0.

Then

(i)n∑

k=N+1

~x′kVk~xkε2k = O(log λ∗n) a.s.

(ii) limn→∞

E[ε2n | Fn−1] = σ2. Then

n∑k=N+1

~x′kVk~xkε2k ∼ log

(det

(n∑k=1

~xk~x′k

))on

limn→∞

~x′nVn~xn = 0, λ∗n →∞.

proof : 0 ≤ uk = ~x′kVk~xk =| Pk | − | Pk−1 |

| Pk |≤ 1

(1) If limn→∞

λ∗n <∞ then∑∞

k=1 uk <∞ (lemma 2 - (ii)).

Therefore∞∑k=1

ukε2k <∞ (by lemma 1-(i)).

Son∑k=1

ukε2k = O((log λ∗n)

1+δ) on (λ∗n →∞)

If λ∗n →∞,n∑i=1

ui = O(log λ∗n).

andn∑i=1

uiε2i = O(

(n∑i=1

ui

)[log

(n∑i=1

ui

)]1+δ)

= O(log λ∗n(log log λ∗n)1+δ)

= O((log λ∗n)1+δ).

138

(2) Note that 0 ≤ ui ≤ 1.

un → 0 on Ωo, Ωo = limn→∞~x′nVn~xn = 0, λ∗n →∞ .

n∑i=1

ui →∞ on Ωo

By lemma 1 - (ii),n∑i=1

uiε2i /

n∑i=1

ui → σ2 a.s.

onn∑i=1

uiε2i ∼ (log | Pn |)σ2

Remark:

1o Rn = Qn +n∑

k=N+1

(~x′kVk

k−1∑i=1

~xiεi

)2

/(1 + ~x′kVk−1~xk)

∼n∑

k=N+1

~x′kVk~xkε2k if one of it →∞.

2o (i) Assume that supnE[ε2

n | Fn−1] <∞ a.s.

Then Rn = O((log λ∗n)1+δ) a.s. for δ > 0

(ii) If supnE[| εn |2+δ| Fn−1] <∞ a.s. for some α > 2,

Then Rn = O(log λ∗n)

3o If supnE[| εn |α| Fn−1] <∞ a.s. and lim

n→∞E[ε2

n | Fn−1] <∞ a.s.

then on ~x′nVn~xn → 0, λ∗n →∞

Rn ∼ [log det

(n∑i=1

~xi~x′i

)]σ2 a.s.

Corollary 1 : (i) If supnE[ε2

n | Fn−1] <∞ a.s.

Then Qn =‖

(n∑i=1

~xi~x′i

)−1/2 n∑i=1

~xiεi ‖2 (∗)

= O((log λ∗n)1+δ) a.s. (∗∗)

139

and ‖ ~bn − ~β ‖2= O((log λ∗n)1+δ/λn) a.s., for all δ > 0.

(ii) If supnE[| εn |α| Fn−1] <∞ a.s. for some α > 2,

then (∗) and (∗∗) holds with δ = 0

proof : Qn ≤ Rn (implies (∗) follow from Remark− 2o)

Qn =

(n∑i=1

~xiεi

)′( n∑i=1

~xi~x′i

)−1( n∑i=1

~xiεi

)

= (~bn − ~β)′

(n∑i=1

~xi~x′i

)(~bn − ~β)

≥ λn(~bn − ~β)′(~bn − ~β)

= λn ‖ ~bn − ~β ‖2 .

So (∗∗) follow from (∗).Corroblary 2: (Adaptive prediction)If lim

n→∞E[ε2

n | Fn−1] = σ2 a.s. and

supnE[| εn |α| Fn−1] <∞ for some α > 2

then on the set

~x′nVn~xn → 0, λ∗n →∞, we have that

Qn +n∑

k=N+1

(~bk−1 − ~β)′~xk2.

∼ σ2 log

[det

(n∑i=1

~xi~x′i

)]a.s.

Therefore, if Qn = 0(log λ∗n), then

n∑k=N+1

(yk −~b′

k−1~xk − εk)2 ∼ σ2 log[det

(n∑i=1

~xi~x′i

)] a.s.

140

proof: By Remark- 3o ,

Qn +n∑

k=N+1

(~x′kVk

k−1∑i=1

~xiεi

)2

/(1 + ~x′kVk−1~xk)

Qn +n∑

k=N+1

~x′k(~bk−1 − ~β)2/(1 + ~x′kVk−1~xk)

∼ σ2 log[det

(n∑i=1

~xi~x′i

)] a.s.

n∑k=N+1

[~x′k(~bk−1 − ~β)]2/(1 + ~xkVk−1~xk)

∼n∑

k=N+1

[~x′k(~bk−1 − ~β)]2 if it →∞ and ~x′kVk−1~xk → 0,

since 1 + ~x′kVk−1~xk =1

1− ~x′kVk~xk→ 1.

andn∑i=1

aibi ∼n∑i=1

ai (aibi > 0)

if bi → 1 andn∑i=1

ai →∞

(Because yk = ~β′~xk + εk)

Predict:At stage n, we already above y1, ~x1, · · · , yn, ~xn since we can not forsee the

future, we have to use observed data to predict yn+1.i.e. The predictor yn+1 is Fn-measurable.

If we are only interested in a single period prediction, we may use (yn+1− yn+1)2 as

a measure of performance. In the adaptive prediction case, it may be more appropriateto use the accumulated prectiction errors

Ln =n∑k=1

(yk+1 − yk+1)2

141

In the stochastic regression model,

Ln =n∑k=1

(~β′~xk+1 − yk+1)2

+2n∑k=1

(~β′~xk+1 − yk+1)εk+1 +n∑k=1

ε2k+1

By Chow′s local convergence Theorem,

Ln ∼n∑k=1

(~β′~xk+1 − yk+1)2 +

n+1∑k=1

εk a.s. if any side →∞.

Therefore, to compare difference predictors, it is sufficient to compare

n∑k=1

(~β′~xk+1 − yk+1)2 = Cn

The least square predictor yk+1 = ~b′k~xk+1.

Note :n∑

i=P+1

(yi −~b′i−1~xi)2(1− ~x′iVi~xi)

=n∑i=1

ε2i (n)−

n∑i=1

ε2i (p), where εi(n) = yi −~b′n~xi

Example : AR(1)

xk = ρxk−1 + εk, εk ∼ i.i.d..

E[εi] = 0, V ar(εi) = σ2, E | εi |3<∞

(i) | ρ |< 1,n∑i=1

x2i /n→ σ2/(1− ρ2) a.s.

(ii) | ρ |= 1,n∑i=1

x2i = O(n2 log log n)

142

limn→∞

inf

(log log n)

(n∑1

x2i

)n2

> 0 a.s.

λ∗n = O(n3) a.s., | ρ |≤ 1.

limn→∞

inf λn/n > 0

ρn − ρ = 0

(log n

n

)1/2

(By Corollary1.)

x2n/

n∑i=1

x2i → 0

(i) | ρ |< 1, x2n/

n∑i=1

x2i =

n∑i=1

x2i /n−

n−1∑i=1

x2i /n

n∑i=1

x2i /n

→ 0

1/(1− ρ2)= 0

(ii) | ρ |= 1,

x2n/

n∑i=1

x2i = O

( n∑i=1

εi

)2

/(log log n/n2)−1

= O

(log log n

n2(√

2n log log n)2

)= O

((log log n)2

n

)= o(1)

143

Qn =

(n∑i=1

xiεi

)2

/n∑i=1

x2i

=

1(n∑i=1

x2i

)( n∑

i=1

x2i

)1/2(log

n∑i=1

x2i

)1/32

=

(log

n∑i=1

x2i

)2/3

= (log n)2/3 = 0(log λ∗n)

By Corolary 2,

n∑i=2

(ρn − ρ)x2i+1 ∼ σ2 log

(n+1∑i=1

x2i

)a.s.

∼σ2 log n, a.s. if | ρ |< 1.2σ2 log n, a.s. if | ρ |= 1.

log[n2 log log n] = 2 log n+ log(log log n)

log[n2/ log log n] = 2 log n− log(log log n).

To find the eigenvalue (maximum and minimum)

inf‖~x‖=1

~x′Bn~x nonnegative positive

1o limn→∞

inf

inf‖~x‖=1

~x′Bn~x

6= inf

‖~x‖=1

limn→∞

~x′Bn~x

(The place of difficulity)

2o Lemma : Assume that Fn be a sequence of ↑ σ -fields and ~yn = ~xn + ~εn,when

~xn is Fn−`-measurable, ~εn =∑j=1

~εn(j) and E~εn(j) | Fn−j−1 = 0.

144

supnE[‖~εn(j)‖α | Fn−j−1] < ∞ a.s. for some α > 2. Also assume that λn =

λ

(n∑i=1

~xi~x′i +

n∑i=1

~εi~ε′i

)→∞ a.s. and log λ∗

(n∑i=1

~xi~x′i

)= 0 (λn) a.s.

Then limn→∞

λ

(n∑i=1

~yi~y′i

)/λn = 1 a.s.

proof : Let Rn =n∑i=1

~xi~x′i and Gn =

n∑i=1

~εi~ε′i

Thenn∑i=1

~yi~y′i = Rn +

n∑i=1

~xi~ε′i +

n∑i=1

~εi~xi +Gn

We can assume that Rn is nonsingular.

Otherwise, add ~yo =

10...0

= ~xo

~y−1 = ~x−1 =

010...0

...

~y1−P = ~x1−P =

00...01

εo = ε−1 = · · · = ε−P+1 = 0

‖R− 12

n

n∑1

~xi~ε′i(j)‖2 = O(log(λ∗n)), (By Corollary 1.)

= o(λn)

145

Therefore ‖R− 12

n

n∑1

~xi~εi‖2 = O(log λ∗n)

Given any unit vector ~u ,

~u′

(n∑1

~xi~εi

)~u

= ~u′R12nR

− 12

n

(n∑1

~xi~ε′i

)~u

≤ ‖~u′R12n‖‖R

− 12

n

(n∑1

~xi~ε′i

)‖

= ‖~u′R12n‖O((log λ∗n)

12 )

= (~u′Rn~u)12O((log λ∗)

12 )

≤ (~u′(Rn +Gn)~u)12O(log

12 λ∗n)

≤ (~u′(Rn +Gn)~u/λ12n ) O(log

12 λ∗n)

(Because 1 ≤ ~u′(Rn +Gn)~u)/λn)

= ~u′(Rn +Gn)~u O((log λ∗n/λn)12 )

= (~u′(Rn +Gn)~u)o(1)

So ~u′

(n∑1

~yi~y′i

)~u = ~u′(Rn +Gn)~u(1 + o(1))

Since o(1) does not depend on ~u, we complete this proof.Example :AR(p).

yi = β1yi−1 + · · ·+ βpyi−p + εi

ψ(z) = zp − β1zp−1 · · · − βp.

All the roots of ψ have magnitudes less than or equal to 1.

Let ~yn =

ypyp+1

...yn−p+1

146

Then L.S.E.

~bn =

(n∑i=1

~yi−1~y′i−1

)−1( n∑i=1

yi−1εi

)+ ~β

Assume that εi are i.i.d.

E[εi] = 0 and E[| εi |2+δ] <∞, Eε2i = σ2 > 0.

Let B =

[β1 · · · βpIp−1 O

]

~yn =

ynyn−1

...yn−p+1

=

β1 β2 · · · βp1 0 · · · 00 1 · · · 0...

......

0 0 1 0

yn−1

yn−2...

yn−p

+

εn00...0

implies ~yn = B ~yn−1 + ~e εn, where e =

10...00

~yn = Bnyo +Bn−1~eεn + · · ·+Bo~eεn

B can be written as

B = C−1DC, where D = diag [D1, · · · , Dq]

Dj =

λj 1 0 · · · 00 λj 1 · · · 0...

.... . .

...0 0 · · · λj

is an mj ×mj matrix, mj is the multiplicity of λj.

147

,

q∑1

mj = p, λj are roots of ψ and C is a nonsingular matrix.

Dkj =

λkj

(k1

)λk−1j

(k2

)λk−2j · · ·

(k

mj−1

)λk−mj+1

0 λkj 0 · · · 0

0 0. . .

......

......

. . .

0 0 0 · · · λkj

Bn = C−1DnC

= C−1diag[Dn1 , · · · , Dn

q ]C

‖Bn‖ ≤ ‖C−1‖‖C‖ max‖Dn1‖, · · · , ‖Dn

q ‖

≤ k np (By

(n

p

)=

n!

p!(n− p)!∼ np)

‖~yn‖ ≤ ‖Bn‖‖~yo‖+ · · ·+ ‖Bo~e‖ | εn |≤ k np‖~yo‖+ | ε1 | + · · ·+ | εn |= O(np+1)

λmax

(n∑i=1

~yi−1~y′i−1

)

≤ ‖n∑i=1

~yi−1~y′i−1‖

≤n∑i=1

‖~yi−1~y′i−1‖ ≤

n∑i=1

‖~yi−1‖2

= O

(n∑i=1

ip+1

)a.s.

= O(np+2) a.s.

148

implies λmax = O(np+2)

~yn = B2~yn−2 +B~eεn−1 + ~eεn

= Bp~yn−p +Bp−1~eεn−p+1 + · · ·+ ~eεn

= ~xn + ~εn, where

~xn = Bp~yn−p, ~εn = Bp−1~e εn−p+1 + · · ·+ ~e εn

` = p.

Claim : limn→∞

1

n

n∑i=1

~εi~ε′i = σ2

p−1∑j=0

Bj~e ~e′ (B′)j ≡ Γ, a.s.

where Γ is positive definite.

Therefore, λmin

(n∑i=1

~εi~ε′i

)/n→ λmin(Γ) > 0 a.s.

~εi ~ε′i =

p−1∑j=0

Bj~e~e′(B′)jε2i−j

+

p−1∑j 6=`

Bj~e ~e′(B′)`εi−jεi−`

Using the properties that

1/nn∑i=1

ε2i−j = σ2

1/nn∑i=1

εi−`εi−j = 0 a.s. ∀ ` 6= j.

(From Martingale form and by Chow′s theorem.)

We have limn→∞

1

n

n∑i=1

~εi~ε′i = Γ. a.s.

149

Observe that

Γ = (~e, B~e, · · · , Bp−1~e)

~e′

~e′B′

...~e′(B′)p−1

To show Γ is nonsingular, it is sufficient to show (~e,B~e, · · · , Bp−1~e) is nonsingular.

(~e,B~e, · · · , Bp−1~e) =

1 β1 ∗ ∗ · · · ∗0 1 β1 ∗ · · · ∗0 0 1...

......

0 0 0 · · · · · · 1

is nonsingular.

~xn = Bp~yn−p

λ∗

(n∑i=p

~xi~x′i

)≤ ‖Bp‖2

n∑i=p

~yi−p~y′i−p‖

= O(np+2) a.s.

But λn ≥ λ∗

(n∑i=1

~εi~ε′i

)∼ nλ∗(Γ)

So log λ∗

(n∑i=1

~xi~x′i

)= O(log n) = o(λn) a.s.

By previous theorem,

limn→∞

λ∗

(n∑i=1

~yi−1~y′i−1

)λn

= 1 a.s.

Therefore, limn→∞

inf λ∗

(n∑i=1

~yi−1~y′i−1

)/n > 0 a.s.

150

So log λ∗

(n∑i=1

~yi−1~y′i−1

)

= o

(λ∗

(n∑i=1

~yi−1~y′i−1

))and

limn→∞

~bn = ~β a.s.

3. Limiting Distribution :

yn,i = β′nxn,i + εn,i, i = 1, 2, · · · , n

Assume that ∀ n,∃ ↑ σ-fields Fn,j; j = 0, 1, 2, · · · , ns.t. ∀ n εn,j,Fn,j is a martingale difference sequence and xn,j is Fn,j−1-measurable.Assume that:

(i) E[ε2n,j | Fn,j−1] = σ2 a.s. ∀ n, j.

(ii) sup1≤j≤n

E[| εn,j |α| Fn,j−1] = OD(1), α > 2.

(iii) ∃ nonsingular matrices An s.t.

An

(n∑i=1

~xi,n~x′i,n

)A′n

D→ Γ, where Γ is p.d.

(iv) sup1≤i≤n

‖An~xn,i‖D→ 0.

Then if ~bn =

(n∑i=1

~xn,i~x′n,i

)−1( n∑i=1

~xn,iyn,i

), we have

(A′n)−1(~bn − ~β)

D→ N(0, σ2Γ−1)

take i = 1, 2, · · · , kn

151

Note: If Xn,j,Fn,j, 1 ≤ j ≤ kn is a martingale difference sequence s.t.

(i)kn∑j=1

E[X2n,j | Fn,j−1]

D→ C, constant

(ii)kn∑j=1

E[X2n,jIX2

n,j>ε | Fn,j−1]D→ 0

Thenkn∑j=1

Xn,jD→ N(0, C)

proof: W.L.O.G, we can assume thatxni is bounded,∀ n, i.

since (A′n)−1(~bn − ~β)

=

(An

kn∑i=1

~xn,i~x′n,iA

′n

)(An

kn∑i=1

~xn,iεn,i

)It is sufficient to show that

An

kn∑i=1

~xn,iεn,iD→ N(~o, σ2Γ)

By Wald′s device, it is sufficient to show that

∀ ~t 6= ~0

~t′An

kn∑i=1

~xn,iεn,iD→ N(0, σ2~t′Γ~t)

Let un,i = ~t′An~xn,iεn,iThen un,i,Fn,i is martingale difference s.t.

kn∑i=1

E(u2n,i | Fn,i−1) =

kn∑i=1

(~t′An~xn,i)2E[ε2

n,i | Fn,i−1]

= σ2

kn∑i=1

~t′An~xn,i~x′n,iA

′n~t

= σ2~t′An

kn∑1

~xn,i~x′n,iA

′nt

D→ σ2~t′Γ~t = C, say.

152

andkn∑i=1

E[u2n,iIu2

n,i>ε | Fn,i−1

]≤

kn∑i=1

E[| un,i |α| Fn,i−1]

/εα−2

2

=1

εα−2

2

kn∑i=1

| ~t′An~xn,i |α E[| εn,i |α| Fn,i−1]

≤ ε−(α−22 ) sup

1≤i≤knE[| εn,i |2| Fn,i−1]

kn∑i=1

| ~t′An~xn,i |2

· sup1≤i≤kn

| ~t′An~xn,i |α−2 .

≤ ε−(α−22 ) sup

1≤i≤knE[| εn,i |α| Fn,i−1] · ~t′An

(n∑i=1

~xn,i~xn,i

)A′n~t

·‖~t‖ sup1≤i≤kn

‖An~xn,i‖D→ 0.

Example : yo = 0

yn = α+ βyn−1 + εn, where | β |< 1, εn i.i.d., E[εn] = 0,

V ar[εn] = σα, E[| εn |2] <∞, for some α > 2.

yn = α+ β[α+ βyn−2 + εn−1] + εn

= α+ βα+ β2yn−2 + βεn−1 + εn

= α+ βα+ β2α+ · · ·+ βn−1α+ βn−1εn−1 + · · ·+ εn

Since α+ βα + β2α+ · · ·+ βn−1α+ · · ·= α(1 + β + β2 + · · ·+ βn−1 + · · · )

= α1

1− β.

153

implies1

n

n∑i=1

y2i →

1− β

)2

+σ2

(1− β)2

1

n

n∑i=1

yi →α

1− βa.s.

yn = (α, β)

(1

yn−1

)= ~β′~xn

1

n

n∑i=1

(1yi−1

)(1, yi−1)

=1

n

n

n∑i=1

yi−1

n∑i=1

yi−1

n∑i=1

y2i−1

(1 α/(1− β)

α/(1− β)(

α1−β

)2

+ σ2

(1−β)2

)≡ Γ.

take (√n)−1 = A

Now, kn = n

sup1≤i≤n

‖ 1√n

(1yi−1

)‖

≤ 1√n

+1√n

sup1≤i≤n

| yi−1 |

It is sufficient to show that

yn−1/√n→ 0 a.s.

y2n−1/n =

n−1∑i=1

y2i −

n−2∑i=1

y2i

n→ 0 a.s.

An

(kn∑1

~xn,i~x′n,i

)A′n → Γ a.s.

An/An−1 → 1 a.s.

implies sup1≤i≤kn

‖An~xn,i‖D→ 0.

154