mass production (super-k)

34
Mass production (Super-K) Setup of jnubeam 3 horn 250 kA 30-GeV proton beam of Gaussian distribution (s x,y = 0.4243 cm) On center, parallel beam and no divergence. Proton generation upstream of the baffle Normalization for a file: 1.0 x 10 21 POT 1 x 10 5 POT/file x 100 files Only use 100 good random seeds. Store only SK ntuple w/ nominal variables. K. Matsuoka

Upload: ilori

Post on 15-Feb-2016

41 views

Category:

Documents


0 download

DESCRIPTION

Mass production (Super-K). K. Matsuoka. Setup of jnubeam 3 horn 250 kA 30-GeV proton beam of Gaussian distribution ( s x,y = 0.4243 cm) On center, parallel beam and no divergence. Proton generation upstream of the baffle Normalization for a file: 1.0 x 10 21 POT - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Mass production (Super-K)

Mass production (Super-K)• Setup of jnubeam

– 3 horn 250 kA– 30-GeV proton beam of Gaussian distribution (sx,y = 0.4243 cm)– On center, parallel beam and no divergence.– Proton generation upstream of the baffle– Normalization for a file: 1.0 x 1021 POT– 1 x 105 POT/file x 100 files– Only use 100 good random seeds.– Store only SK ntuple w/ nominal variables.

K. Matsuoka

Page 2: Mass production (Super-K)

Mass production (INGRID)• Nominal setup of jnubeam

– 3 horn 250 kA– 30-GeV proton beam of Gaussian distribution (sx,y = 0.4243 cm)– On center, parallel beam and no divergence.– Proton generation upstream of the baffle– ND3: 10.44 x 1.44 m2 ND4: 1.44 x 10.44 m2

– Normalization for a file: 1.0 x 1021 POT– 5 x 104 POT/file x 200 files– Only use 200 good random seeds.– Store only ND3 and 4 ntuple w/ nominal variables.1. Nominal2. Nominal but shifted beam by +2mm in y direction.3. Nominal but flat beam of f36 mm4. Same as 3 but horn 0 kA

K. Matsuoka

Page 3: Mass production (Super-K)

Repository• Neutrino flux files

login.cc.kek.jp:/nfs/g/t2k/beam/mc/beamMC/flux10a/(Mirror1) icrhome6:/kam/work2/kodai/jnubeam/data_10a/(Mirror2) http://www.icrr.u-tokyo.ac.jp/~kodai/jnubeam/– There is a README describing the contents in the directory.

• Ntuple variables description– http://www.t2k.org/beam/NuFlux/FluxRelease/10a/NtpDef

• Main change is addition of the proton vector information

K. Matsuoka

Page 4: Mass production (Super-K)

Plots for Super-K

K. Matsuoka

Page 5: Mass production (Super-K)

nm energy spectrum at Super-K

10a (250 kA)

K. Matsuoka

Page 6: Mass production (Super-K)

nm energy spectrum at Super-K• Comparison btw 10a (320 kA), 09c and 07a.

• Geometry update of the 1st horn (09a 09b) increased the peak flux by about 4%.

K. Matsuoka

Page 7: Mass production (Super-K)

nm energy spectrum at Super-K• Comparison btw 10a (250 kA) and 10a (320 kA).

• Due to the less horn focusing w/ 250 kA, the lower energy neutrinos below 1 GeV decrease, while the higher energy neutrinos increase.

K. Matsuoka

Page 8: Mass production (Super-K)

q-p distr. of parent p+ at the target• Polar angle and momentum distr. at the production point in

the target for parent p+ whose daughter nm goes to Super-K..• Comparison btw 10a (250 kA) and 10a (320 kA)

10a (250 kA) 10a (320 kA)

• The horns comes to collect pions w/ lower momenta and larger angles when the current increases.

K. Matsuoka

Page 9: Mass production (Super-K)

ne energy spectrum at Super-K• Comparison btw 10a (250 kA) and 10a (320 kA).

K. Matsuoka

Page 10: Mass production (Super-K)

Ratio of ne to nm at Super-K

ne/nm = 0.43% at the nm spectrum peak

10a (250 kA)

K. Matsuoka

Page 11: Mass production (Super-K)

• Comparison btw 10a (320 kA) and 07a.

Ratio of ne to nm at Super-K

10a (320 kA) 07a

n e/n m = 0.35% at the n m spectrum peakn e/n m = 0.38% at the n m spectrum peak

K. Matsuoka

Page 12: Mass production (Super-K)

Parents of n at Super-Km+ m– p+ p– KL

0 K+ K–

nm 10a (250 kA) 0.014% 95.06% 0.10% 4.83%10a (320 kA) 0.013% 95.01% 0.10% 4.88%07a 0.014% 95.18% 4.80%

nm 10a (250 kA) 7.2% 86.5% 1.2% 5.1%10a (320 kA) 8.0% 85.8% 1.3% 4.9%07a 7.8% 87.2% 5.0%

ne 10a (250 kA) 54.1% 1.0% 13.1% 31.8%10a (320 kA) 53.1% 1.0% 12.7% 33.2%07a 53.7% 13.0% 33.3%

ne 10a (250 kA) 6.7% 0.45% 76.6% 16.3%10a (320 kA) 7.6% 0.41% 77.7% 14.2%07a 7.9% 77.3% 14.8%

• Few difference btw different horn currents and different versions.• K+

m3, K–m3, K0

m3 and p e ne decays are included in 10a.

K. Matsuoka

Page 13: Mass production (Super-K)

Decay pos. of parent p+/– of n at Super-K

cf. ct = 7.8 m (PDG)

K. Matsuoka

Page 14: Mass production (Super-K)

Decay pos. of parent p+/– of n at Super-K

• Mean decay point: 41 m from the target• ct from the fitting: 6.3 m (peak energy at z = 40-90 m: 1.6 GeV g: 11.4)

K. Matsuoka

Page 15: Mass production (Super-K)

Decay pos. of parent K+/– of n at Super-K

cf. ct = 3.7 m (PDG)

K. Matsuoka

Page 16: Mass production (Super-K)

Decay pos. of parent K+/– of n at Super-K

• Mean decay point: 28.9 m from the target• ct from the fitting: 3.2 m (peak energy at z = 40-90 m: 6 GeV g: 12.2)

K. Matsuoka

Page 17: Mass production (Super-K)

Plots for INGRID

K. Matsuoka

Page 18: Mass production (Super-K)

nm profile at INGRID

The horizontal The vertical

10a (250 kA) 10a (250 kA)

RMS: 284 cm RMS: 285 cm

The difference of the peak flux btw ND3 and 4 is due to the difference of the z-position.(ND3 is located 4-m downstream of ND4; (230/234)^2 = 96.6%)

K. Matsuoka

Page 19: Mass production (Super-K)

nm profile at INGRID• Comparison btw 10a (250 kA) and 10a (320 kA).

The horizontal The vertical

Peak flux (/cm2/1021 POT):• (4.98±0.01) x 1013 @ 250 kA• (5.89±0.01) x 1013 @ 320 kA

Ratio = 0.846

Peak flux (/cm2/1021 POT):• (5.09±0.01) x 1013 @ 250 kA• (6.11±0.01) x 1013 @ 320 kA

Ratio = 0.833

K. Matsuoka

Page 20: Mass production (Super-K)

nm profile at INGRID• Comparison btw 10a (320 kA), 09c and 07a.

The horizontal The vertical

• Magnetic field in the horn inner conductors (09c 10a) increased the peak flux by about 2%.

* ND2 is used for 07a, 09c* ND2 is used for 07a, 09c

K. Matsuoka

Page 21: Mass production (Super-K)

nm energy spectrum at INGRID

The horizontal The vertical

10a (250 kA) 10a (250 kA)

Peak: (1.37±0.01) x 1012 @ 0.9-0.95 GeV Peak: (1.42±0.01) x 1012 @ 0.95-1.0 GeV

K. Matsuoka

Page 22: Mass production (Super-K)

nm energy spectrum at INGRID• Comparison btw 10a (250 kA) and 10a (320 kA) for the horizontal.

K. Matsuoka

Page 23: Mass production (Super-K)

Random number generation- H. Kubo-

• For mass production, we are already facing duplication problem of random numbers.

• In 10a version, 215 default(good-separated) seed pairs are used. -> We found that the separation is not enough. For the moment, another independent random number generator is implemented to avoid duplication of events.

• For the next mass production,– better way of seeds generation (already method is

proposed.)– save seeds for each event

Page 24: Mass production (Super-K)

Transfer matrix-K. Sakashita -

• With New ND-fill algorithm, it became easy to get a correspondence of parent pion/K for near detectors and Super-K. -> transfer matrix can be constructed easily.

NDn

ND

ND

ND

nnnnn

n

n

n

SKn

SK

SK

SK

N

NNN

MMMM

MMMMMMMMMMMM

N

NNN

3

2

1

321

3332231

2232221

1131211

3

2

1

Page 25: Mass production (Super-K)

ProspectMass production• Flux for Off-axis magnet region will be prepared soon as ND6• Flux for Off-axis basket region will follow.Development till April• Transfer matrix• Remaining geometry update• some technical upgrade

– random numbers– root output

Study till April• Clarify beam-related systematic errors based on the commissioning result.Next flux mass production would happen on ~April

Page 26: Mass production (Super-K)

supplement

Page 27: Mass production (Super-K)

q-p distr. of parent K+ at the target• Polar angle and momentum distr. at the production point in

the target for parent K+ whose daughter nm goes to Super-K..• Comparison btw 10a (250 kA) and 10a (320 kA)

10a (250 kA) 10a (320 kA)

K. Matsuoka

Page 28: Mass production (Super-K)

Mom. distr. of parents of n at Super-K• 10a horn 250 kA

Parents of nm Parents of nm

Parents of neParents of ne

K. Matsuoka

Page 29: Mass production (Super-K)

Mom. distr. of parents of n at Super-K• 10a horn 250 kA

Parents of nm Parents of nm

Parents of neParents of ne

K. Matsuoka

Page 30: Mass production (Super-K)

Mom. distr. of parents of n at Super-K• Comparison btw 10a (250 kA) and 10a (320 kA).

Parent p+ of nm Parent m+ of ne

p+ mean momentum:• 2.72 GeV/c (10a 250 kA)• 2.70 GeV/c (10a 320 kA)

K. Matsuoka

Page 31: Mass production (Super-K)

Mom. distr. of parents of n at Super-K• Comparison btw 10a (320 kA), 09c and 07a.

Parent m+ of neParent p+ of nm

K. Matsuoka

Page 32: Mass production (Super-K)

nm energy spectrum at INGRID• Comparison btw 10a (250 kA) and 10a (320 kA) for the

vertical.

K. Matsuoka

Page 33: Mass production (Super-K)

nm energy spectrum at INGRID• Comparison btw 10a (320 kA), 09c and 07a for the horizontal.

K. Matsuoka

Page 34: Mass production (Super-K)

nm energy spectrum at INGRID• Comparison btw 10a (320 kA), 09c and 07a for the vertical.

K. Matsuoka