master’s&thesis&defense&...

75
Finite Element Analysis for the Damage Detec5on of Light Pole Structures Qixiang Tang Master’s Candidate Advisor: Prof. TzuYang Yu Department of Civil and Environmental Engineering The University of MassachuseDs Lowell Lowell, MassachuseDs, 01854 July 18 th , 2014 Master’s Thesis Defense

Upload: others

Post on 11-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Finite  Element  Analysis  for  the  Damage  Detec5on  of  Light  Pole  Structures  

Qixiang  Tang  Master’s  Candidate  

Advisor:  Prof.  TzuYang  Yu  Department  of  Civil  and  Environmental  Engineering  

The  University  of  MassachuseDs  Lowell  Lowell,  MassachuseDs,  01854  

     

July  18th,  2014      

Master’s  Thesis  Defense  

Page 2: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Outline  •  IntroducPon  •  ObjecPve  •  Literature  Review  •  Approach  •  Finite  Element  Modeling  •  Results  and  Discussion  •  Proposed    Damage  DetecPon  Methodology  •  Conclusions  •  ContribuPons  •  Future  Work  •  References  •  Acknowledgement  

2

Page 3: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Introduc5on  In  December  2009,  a  200-­‐pound  corroded  light  pole  fell  across  the  southeast  expressway  in  MassachuseDs.[1]  

(Source:  [1]  I-­‐team:  Aging  light  poles  a  safety  concern  on  mass.  roads)  

3

Page 4: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Introduc5on  1.  Failure  of  light  poles  are  criPcal  as  they  are  typically  located  

adjacent  to  roadways,  highway  and  bridges.    2.  Failures  of  aging  light  poles  can  jeopardize  the  safety  of  

residents  and  damage  adjacent  structures.  (e.g.,  residenPal  houses,  and  electricity  boxes.)  

(Photo  source:  www.news-­‐leader.com)  

4

(Photo  source:  www.news-­‐leader.com)  

Therefore,  aging  light  poles  need  to  be  repaired  or  removed  before  residents  get  hurt.    

Page 5: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Objec5ve  

To   develop   a   damage   detecPon   methodology   for   light   pole  structures   using   modal   frequencies   and   mode   shapes   extracted  from  their  free  vibraPon  responses  

5

Page 6: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

•  How  do  damages  affect  light  poles  in  terms  of  mechanical  responses?  

 •  Where  do  damages  usually  occur  in  a  light  pole?  

 •  How  can  we  locate  and  quanPfy  damages  using  the  

mechanical  responses  of  light  pole?              

6

Literature  Review  

Page 7: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Literature  Review  1.  There  are  three  most  common/possible  damage  locaPons  in  

light  poles  (Garlich  and  Thorkildsen  (2005)  [14]  ,  Caracoglia  and  Jones  (2004)[7];  Conner  et.  al.  (2005)[6])  (i)  pole-­‐to-­‐baseplate  connecPon,    (ii)  handhole  detail,  and  (iii)  anchor  bolts  (not  considered  in  this  study);              

Cracks  at  handhole  detail  Cracks  at  boDom  of  the  pole  

(i)  (i)   (i)  

(ii)  

7 (Photo  source:  hDp://polesafety.com)   (Photo  source:  hDp://polesafety.com)  

Page 8: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Literature  Review  2.  Changes  in  modal  frequencies  and  mode  shapes  are  

expected  while  introducing  damages  into  structures.  (Lee  and  Chung  (2000)  [44];  Abdo  and  Hori  (2002)[4])  

ω=√𝑘/𝑚    

For  example,  the  modal  frequency  of  an  undamped  single  degree  of  freedom  (SDoF)  structure  can  be  determined  by  following  equaPon:  

Since  the  presence  of  damages  reduces  k  (  sPffness)  of  the  structure.    

ω  𝑘  

where  ω  is  the  modal  frequency,  k  is  sPffness  of  the  structure,  and  m  is  mass  of  structure.  

8

Consequently,    

Page 9: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Literature  Review  3.  Structural  damages  in  light  poles  can  be  simulated  by  reducing  materials'  properPes  (i.e.  Young's  modulus)  in  numerical  simulaPon.  (Yan  et.  al.  (2006)  [42])  

𝑘=3𝐸𝐼/ℎ3   

For  example,  the  sPffness  of  a  canPlever  beam  (SDoF)  can  be  wriDen  as:  

where  𝐸  is  Young’s  modulus  of  material,  and  𝐼  is  the  mass  moment  of  inerPa,  and  h  is  the  height  of  this  beam.  

𝑘  𝐸  

9

Page 10: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Literature  Review  4.  Experimentally  capturing  dynamic  characterisPcs  (such  as  modal  frequencies  and  mode  shapes)  of  light  poles  is  difficult  and  Pme  consuming.  (Yan  et.  al.  (2007)[43])  

 

10

Page 11: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

•  How  do  damages  affect  light  poles  in  terms  of  mechanical  responses?  

         à  There  will  be  changes  in  modal  frequencies  and  mode  shapes.    •  Where  do  damages  usually  appear  in  a  light  pole?  •  à  There  are  three  common  damage  locaPons.    

 •  How  can  we  locate  and  quanPfy  damages  using  the  mechanical  

response  of  light  poles?            à  Need  a  damage  detecPon  method.              à  Use  numerical  simulaPon  to  develop  the  method.                  

11

Literature  Review  

Page 12: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Proposed  research  approach  is  determined  based  on:  

1.  Assuming  damages  only  occur  at  three  most  common  damage  locaPons.  

2.  Using  dynamic  responses  (i.e.,  modal  frequencies  and  mode  shapes)  as  parameters  for  invesPgaPng  differences  between  intact  and  damaged  light  poles.  

3.  Using  numerical  methods  (i.e.,  finite  element  (FE)  method).  

12

Approach  

Page 13: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Approach  Simulate  intact  and  damaged  light  poles  by  the  FE  method,  and  study  the  differences  in  modal  frequencies  and  mode  shapes  between  intact  and  arPficially  damaged  FE  models.  

Differences  in    

modal  frequencies  and  mode  shapes  

Intact  light  pole  FE  model   Damaged  light  pole  FE  model  

13

ArPficial  Damage  

Page 14: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

•  First  ten  modal  frequencies  are  available.  •  FE  light  poles  are  undamped.  •  Damages  only  occur  at  pole-­‐to-­‐baseplate  connecPon,  and  

handhole  detail.  •  There  is  only  one  damage  in  each  arPficially  damaged  light  

pole  model.  •  A  commercial  FE  package  ABAQUS®  (Dassault  Systèmes)  is  

used.  

 14

Approach  AssumpPons  :  

Page 15: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Research  Methodology  

15 Develop  a  damage  detecPon  methodology  using  determined  relaPonships  

Page 16: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Roadmap  Intact  model  

Modal  parameters  

First  10  modes  modal  frequencies/  mode  shapes  

Find  differences  between  intact  an  damaged  models  

Study  the  differences  

Determine  the  relaPonships  between  arPficial  damages  and  modal  frequencies/  mode  shapes  

Using  the  relaPonships  to  develop  a  damage  detecPon  methodology    

Damaged  models  

Modal  parameters  

First  10  modes  modal  frequencies/  mode  shapes  

16

Page 17: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Configura5ons  of  an  Example  Light  Pole  

(source:  ELEKTROMONTAŻ  RZESZÓW  SA:  Ligh,ng  poles  and  masts,2009  )  17

Finite  Element  Modeling  

Page 18: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

(source:  ELEKTROMONTAŻ  RZESZÓW  SA:  Ligh,ng  poles  and  masts,2009  )  

-­‐-­‐  Chosen  geometry  

18

Finite  Element  Modeling  

Page 19: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Materials  (steel)  &  Geometries  

19  

                                     Density:                        7.85E-­‐09  ton/mm3        Young’s  Modulus:                        207,000  MPa                Poisson’s  raPo:                        0.3                            Yield  stress:                        450  MPa    Length  of  the  pole:                        6,000  mm          Diameter  at  top:                          60  mm                                        BoDom:                        140  mm  

6000  m

m  

140  mm  

Finite  Element  Modeling  

Page 20: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Baseplate  Model  

•  Baseplate  size:  L  x  W  x  H:  300x300x30  (mm)  •  Boundary  condiPon:  Tie  constraint  is  used  to  

assemble  the  pole  and  the  baseplate.  

20

Page 21: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Bolt  Models  

Fixed  

Tie  constraint  

Surface  to  surface  contact  

10  m

m  

30  mm  

20  mm  

30  mm  

20  mm  

21

Page 22: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

22

Baseplate  Model  

Surface to surface contact

Surface to surface contact

Page 23: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Handhole  size:  250x105  25

0  105  

600  

Handhole  

23

(Dimension:  mm)  

Page 24: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Verifica5on  of  an  Intact  FE  Pole  Model  

First  modal  frequency  of  the  FE  pole  model  created  in  ABAQUS®    is    :          4.236  Hz  (FE  result).  

An  intact  FE  pole  model  was  verified  by  comparing  the  first  modal  frequency  between  the  FE  result  and  theorePcal  calculaPon.    

24

Page 25: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Theore5cal  Calcula5on  Density:                                                        7.85E-­‐09  Ton/mm2    Young’s  Modulus:                      207000  MPa  Poisson’s  raPo:                                0.3  Yield  strength:                                  450  MPa  Length  of  the  pole:                  6000  mm  

Cross  secPon  at  boDom  of  the  pole(x=0)  

R=70mm;  r=66mm  

X=0  

Given:  

X=6000  

25

R=70mm;  r=66mm  

R=30mm;  r=26mm  

Page 26: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Theore5cally  Computed  First  Modal  Frequency  1.Radius  funcPons  

 2.DistribuPon  funcPons  for  mass  and  mass  moment  of  inerPa  

r x( ) R x( ) 4−:=

R x( )1150−

x⋅ 70+:=

m x( ) π R x( )2 r x( )2−( )⋅ 7.85⋅ 10 9−⋅:=

I x( ) R x( )4 r x( )4−( ) π4⋅:=

Radius  of  external  edge:  

Radius  of  internal  edge:  

26

4  

=  

=  

m(x)=  

=  

Page 27: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Theore5cally  Computed  First  Modal  Frequency  

3.Generalized  mass,  and  generalized  sPffness  

m'0

L

xm x( )ψ x( )2⌠⎮⌡

d:=

k'

0

L

xE I x( )⋅ 2xψ x( )d

d

2⎛⎜⎜⎝

⎞⎟⎟⎠

2

⌠⎮⎮⎮⌡

d:=

Eq.  8.3.12  

Anil  K  Chopra.  Dynamics  of  structures-­‐Theory  and  applica,ons  to  earthquake  engineering.  Pg.312  

where  ψ(x)  is  shape  funcPon  of  canPlever  beams.  The  best-­‐fit  shape  funcPon  is  the  one  which  provides  lowest  value  of  first  modal  frequency  among  three  given  shape  funcPons.   27

=  

=  

Page 28: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

 Shape  funcPon  

 f    (Hz)  

 4.361  

 4.298  

 4.396  

ψ x( )3x2

2 60002⋅

x3

2 60003⋅

−:= ψ x( ) 1 cosπ x⋅2 6000⋅

⎛⎜⎝

⎞⎟⎠

−:= ψ x( )x2

60002:=

Theore5cal  result:  The  lowest  value  of  first  modal  frequency  is  4.298  Hz.    FE  result:  4.236  Hz  Only  1.4%  of  difference.  This  means  the  FE  result  is  correct  and  accurate.  

ωk'm'⎛⎜⎝

⎞⎟⎠

0.5:=First  modal  frequency:  

28

Theore5cally  Computed  First  Modal  Frequency  

Page 29: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Roadmap  Intact  model  

Modal  parameters  

First  10  modes  modal  frequencies/  mode  shapes  

Find  differences  between  intact  an  damaged  models  

Study  the  differences  

Determine  the  relaPonships  between  arPficial  damages  and  modal  frequencies/  mode  shapes  

Using  the  relaPonships  to  develop  a  damage  detecPon  methodology    

Damaged  models  

Modal  parameters  

First  10  modes  modal  frequencies/  mode  shapes  

29

Page 30: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Damaged  models  

Finite  Element  Models  

Damaged  models  were  simulated  by  introducing  arPficial  damages  to  intact  light  pole  models.  

30

Page 31: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

(Source:  NCHRP  Report,  Cost-­‐Effec,ve  Connec,on  Details  for  Highway  Sign,  Luminaire,  and  Traffic  Signal  Structures)  

Most  common  damage  locaPons:  

Damage  Simula5ons  

31

Page 32: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

ArPficial  damage  

L1   L2   L3  

1.  LocaPon  (Lj):  ArPficial  damages  have  three  damage  locaPon:L1,  L2  and  L3.  

Damage  Simula5ons  

32

Page 33: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Damage  Simula5ons  2.  Damage  sizes  (ΔA):  ArPficial  damages  have  five  different  sizes,  including:  ΔAϵ[0.2A,  0.4A,  0.6A,  0.8A,  1.0A]  ,  where  A  is  the  total  cross-­‐secPonal  area.  

 

 

0.2A  –  20%  Cross-­‐secPonal  area  is  damaged    (at  locaPon  L3)  

0.6A  -­‐-­‐  60%  Cross-­‐secPonal  area  is  damaged  (at  locaPon  L3)  

33

ArPficial  damage  

Page 34: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

3.  Damage  level  (ΔE):          Damages  are  simulated  by  reducing  Young’s  Modulus  in  

damaged  regions.  There  are  five  levels:  ΔEϵ[0.1,  0.3,  0.5,  0.7,  0.9]*E,  where  E  is  the  Young’s  modulus  of  materials.  

Damage  Simula5ons  

34

Page 35: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Obtain  first  ten  modal  frequencies  and  mode  shapes  from  different  damaged  models  (listed  above)  and  the  intact  model.  

35

Page 36: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

36

Damage  Simula5ons  

Modal  frequency  

Mode  number  

Page 37: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Intact  model  

Modal  parameters  

First  10  modes  modal  frequencies/  mode  shapes  

Find  differences  between  intact  and  damaged  models  

Study  the  differences  

Determine  the  relaPonships  between  arPficial  damages  and  modal  frequencies/  mode  shapes  

Using  the  relaPonships  to  develop  a  damage  detecPon  methodology    

Damaged  models  

Modal  parameters  

First  10  modes  modal  frequencies/  mode  shapes  

Roadmap  

37

Page 38: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Results  and  Discussion  

When  an  intact  light  pole  is  known,  modal  frequency  difference  can  be  computed  by  the  following  equaPon:    

38

where                  is  the  model  frequency  difference  of  a  damaged  pole  in  ith  mode  with  a  damage  locaPng  at  Lj,                        is  modal  frequency  of  the  intact  model,  and                                is  the  modal  frequency  of  a  damaged  model.  

Defini5on:  

Page 39: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Defini5on:  

         SensiPve  modes:            Out  of  the  first  ten  modes,  the  modes  whose  modal  

frequency  differences  exceed  a  defined  threshold  value  ts.      

Threshold  value  ts  :  1.25  Pmes  the  average  modal  frequency  differences  of  the  first  ten  modes.  

 

39

ts=1.25∑𝑖=1↑10▒𝑓𝑖𝑗 /10   

Results  and  Discussion  

Page 40: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Results  and  Discussion  

         InsensiPve  modes:  Out  of  first  ten  modes,  the  modes  whose  modal  frequency  differences  are  lower  than  a  defined  threshold  value  ti.      Threshold  value  ti  :  0.25  Pmes  the  average  modal  frequency  differences  of  the  first  ten  modes.    

  t𝑖=0.25∑𝑖=1↑10▒𝑓𝑖𝑗 /10   

40

Defini5on:  

Page 41: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Results  and  Discussion  

Curvature  of  mode  shapes  can  be  computed  by  Central  Difference  equaPon:    

where  φ(x)  is  the  displacement  of  mode  shape  at  node  n,   d   is   the   distance   between   two   nodes,   and  φ”(x)   is  the  curvature  of  mode  shape  at  node  n.  

Changes  in  curvature  of  mode  shapes  (Δrφ”)  can  be  computed  by  the  following  equaPon:    

41

Defini5on:  

Page 42: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Roadmap  Intact  model  

Modal  parameters  

First  10  modes  modal  frequencies/  mode  shapes  

Find  differences  between  intact  an  damaged  models  

Study  the  differences  

Determine  the  relaPonships  between  arPficial  damages  and  modal  frequencies/  mode  shapes  

Using  the  relaPonships  to  develop  a  damage  detecPon  methodology    

Damaged  models  

Modal  parameters  

First  10  modes  modal  frequencies/  mode  shapes  

42

Page 43: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Summary  of  FE  Results  

1.  In  different  damage  scenarios  with  same  damage  locaPon,  some  modes  always  have  highest/lowest  value  in  modal  frequency  differences  (Δfij).  

         

0  

0.2  

0.4  

0.6  

0.8  

1  

1.2  

1.4  

1.6  

1.8  

1   2   3   4   5   6   7   8   9   10  0  

0.2  

0.4  

0.6  

0.8  

1  

1.2  

1.4  

1.6  

1.8  

1   2   3   4   5   6   7   8   9   10  

Damage  locaPon:  L1  Damage  size:  40%  A  Damage  level:  50%  E  

Damage  locaPon:  L1  Damage  size:  100%  A  Damage  level:  50%  E  

Mode  Number   Mode  Number  

Three  paDerns  were  found  from  FE  results  on  modal  frequencies  and  mode  shapes.  

Δfij  Δfij  

43

Page 44: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Sensi5ve/  insensi5ve  modes  for  each  damage  loca5on:  

The  combina5on  of  sensi5ve  modes  and  insensi5ve  modes  is  unique  for  each  damage  loca5on.    

44

Summary  of  FE  Results  

Table  of  sensiPve/insensiPve  modes  

Page 45: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Summary  of  FE  Results  2-­‐1.  Linear  relaPonships  were  developed  between  damage  size  

and  modal  frequency  difference.              

45

ΔA  

Modal  frequency  difference  (Δf21)  

Page 46: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Quan5fica5on  of  Damages  

Linear  relaPonships  can  be  described  by  the  following  equaPon:    

46

Damage  size:  

QuanPficaPon  of  damage  size  α:    

Page 47: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

 2-­‐2.    Nonlinear  relaPonships  were  developed  between  damage  level  (reducPon  in  Young’s  modulus)  and  modal  frequency  difference.  

47

ΔE  

Modal  frequency  difference  (Δf21)  

Quan5fica5on  of  Damages  

Page 48: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

QuanPficaPon  of  damage  level  β:    

48

RelaPonship  between  damage  level  and  modal  frequency  differences  can  be  described  by  the  following  equaPon:    

Damage  level:  

Quan5fica5on  of  Damages  

Page 49: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Summary  of  FE  results  3.  Curvatures  of  the  second  mode  shape  changes  the  most  

(Δrφ”,max)  at  damage  locaPon.  

49

Page 50: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

50

Summary  of  FE  results  

Page 51: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Special  Case:  Blind-­‐test  •  The  intact  light  pole  is  unavailable.  •  Modal  frequencies  of  mulPple  light  poles  can  always  

be  obtained.    1)  Pick  an  arbitrary  light  pole  as  a  baseline  instead  of  the  intact  light  pole.  2)  Use  adjusted  equaPon  to  compute  modal  frequency  differences.  

3)  Determine  the  sensiPve/insensiPve  modes  using  moving  thresholds  ts  and  ti.  4)  Check  the  following  table  and  determine  the  damage  locaPon.  

51

Page 52: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Constraints:  •  Damages  can  only  occur  at  L1,  L2  or  L3.  

•  First  ten  modal  frequencies  of  light  pole  are  required.  

•  Damages  can  not  be  quanPfied.  

52

Special  Case:  Blind-­‐test  

Page 53: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Roadmap  Intact  model  

Modal  parameters  

First  10  modes  modal  frequencies/  mode  shapes  

Find  differences  between  intact  an  damaged  models  

Study  the  differences  

Determine  the  relaPonships  among  arPficial  damages  and  modal  frequencies/  mode  shapes  

Using  the  relaPonships  to  develop  a  damage  detecPon  methodology    

Damaged  models  

Modal  parameters  

First  10  modes  modal  frequencies/  mode  shapes  

53

Page 54: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Proposed    Damage  Detec5on  Methodology  

 1.  Extract  first  10  modal  frequencies/  mode  shapes  from  an  intact  model  &  unknown  models;  

2.  Compute  the  modal  frequency  differences  and  changes  in  mode  shapes  of  the  unknown  light  poles;  

3.  Compute  thresholds  ts  and  ti,  and  use  them  to  idenPfy  sensiPve/insensiPve  modes;  

4.  Locate  the  damage  by  checking  the  combinaPon  of  sensiPve  and  insensiPve  modes  of  unknown  light  poles  in  Table  of  sensi,ve/insensi,ve  modes;  or  locate  the  damage  by  finding  Δrφ”,max;  

5.  Use  obtained  empirical  equaPons  to  quanPfy  the  damage.  

54

Page 55: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Conclusions  1.  Locate  damage  using  modal  frequency  -­‐-­‐  Since  the  combinaPon  of  sensiPve  modes  and  insensiPve  modes  is  unique  for  each  damage  locaPon,  one  can  locate  the  damage  of  light  pole  by  checking  the  following  table:  

55

Table  of  sensiPve/insensiPve  modes  

Page 56: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Conclusions  2.  QuanPfy  damage  -­‐-­‐  SubsPtute  modal  frequency  

difference  into  following  equaPons:  

Damage  size:  

Damage  level:  

56

Page 57: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Conclusions  3.  Locate  damage  using  mode  shape  curvature  -­‐-­‐  In  the  second  

mode,  maximum  curvature  change  (Δrφ”,max)  indicates  damage  locaPon.  Therefore,  one  can  use  changes  in  curvature  of  the  second  mode  shape  to  locate  damages.  However,  this  method  is  limited.  • When  damage  size  is  greater  than  80%  of  cross-­‐secPonal  area,  the  maximum  curvature  changes  accurately  indicate  damage  locaPons.  

57

ΔA=80%A  ΔE=50%E  

Page 58: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

• When  damage  size  is  between  40%  to  60%  of  cross-­‐secPonal  area,  there  will  be  shi�s  between  the  maximum  curvature  change  locaPon  and  damage  locaPon.  

58

Conclusions  

ΔA=60%A  ΔE=50%E  

Page 59: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

• When  damage  size  is  smaller  than  20%  of  cross-­‐secPonal  area,  the  curvature  change  is  not  sensiPve  enough  to  locate  the  damage.    

59

Conclusions  

When  ΔA  is  smaller  than  80%A,  maximum  curvature  change  (Δrφ”,max)    of  the  second  mode  is  not  sensiPve  enough  to  locate  damage.  

ΔA=20%A  ΔE=50%E  

Page 60: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

•  SensiPve  modes  and  insensiPve  modes  of  light  poles  are  defined,  and  their  combinaPons  are  found  to  be  unique  for  each  damage  locaPon.    

•  Two  empirical  equaPons  were  proposed  for  damage  quanPficaPon.  

•  A  damage  detecPon  methodology  is  proposed  to  idenPfy  the  damages  in  a  light  pole  structure  using  its  dynamic  responses  (modal  frequencies  and  mode  shapes)  in  free  vibraPon.    

60

Contribu5ons  

Page 61: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

•  Conduct  experiments  to  confirm  the  FE  simulaPon  results.    •  Develop  a  method  to  quanPfy  the  damages  (specifically,  

damage's  size  and  level)  using  changes  in  mode  shape  curvature.  

•  Develop  a  damage  detecPon  methodology  using  fewer  (e.g.,  4)  modal  frequencies.  

•  Explore  more  damage  locaPons  (e.g.,  the  conjuncPve  weld  between  pole  and  base  plate).  

61

Future  Work  

Page 62: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

62

•  I  would  like  to  express  my  sincere  graPtude  to  my  advisor  Professor  Tzuyang  Yu  for  his  invaluable  help  and  support  as  well  as  his  technical  guidance,  endless  forbearance,  and  constant  encouragement.    

•  I  would  like  to  thank  my  thesis  commiDee:  Prof.  Avitabile  and  Prof.  Inalpolat  and  Prof.  Faraji  for  their  insigh�ul  comments.  

•  My  sincere  thanks  also  go  to  my  friends  Jones  Owusu  Twumasi  and  Ross  Gladstone,  for  their  kind  helps  and  useful  suggesPons.  

Acknowledgement  

Page 63: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

References  [1]  M.  A.  B.  Abdo  and  M.  Hori.  A  numerical  study  of  structural  damage  detecPon  using  changes  in  the  rotaPon  of  mode  shapes.  Journal  of  

Sound  and  VibraPon,  251  (2):227–239,  2002.  [2]  Y.  Aoki  and  O.  I.  Byon.  Damage  detecPon  of  cfrp  pipes  and  shells  by  using  localized  flexibility  method.  Advanced  Composite  Materials,  

10  (2-­‐3):189–198,  2001.  [3]  D.  Armon,  Y.  Ben-­‐Haim,  and  S.  Braun.    Crack  detecPon  in  beams  by  rank-­‐  ordering  of  eigenfrequency  shi�.  Mechanical  Systems  and  

Signal  Processing,  8:81–91,  1994.  [4]  L.  Caracoglia  and  N.  P.  Jones.  Analysis  of  light  pole  failures  in  illinois  -­‐  final  report.  Technical  Report  UILU-­‐ENG-­‐2004-­‐2007,  Department  

of  Civil  and  Envi-­‐  ronmental  Engineering  University  of  Illinois  at  Urbana-­‐Champaign,  2004.  [5]  E.  P.  Carden  and  P.  Fanning.  VibraPon  based  condiPon  monitoring:  A  review.                  Structural  Health  Monitoring,  3  (4):355–377,  2004.  [6]  Q.  Chen  and  K.  W.  Y.  W.  Chan.  Structural  fault  diagnosis  and  isolaPon  using  neural  networks  based  on  response-­‐only  data.  Computers  

Structures,  81  (22-­‐  23):2165–2172,  2003.  [7]    A.  K.  Chopra.  Dynamics  of  structures.  Third  ediPon  ediPon,  2007.  [8]  J.  H.  Chou  and  J.  Ghaboussi.    GenePc  algorithm  in  structural  damage  detecPon.  Computers  Structures,  79  (14):1335–1353,  2001.  [9]  Dassault  Syste´mes,  10  rue  Marcel  Dassault,  CS  40501,  78946  Ve´lizy-­‐  Villacoublay  Cedex  -­‐  France.  Abaqus/CAE  User’s  Manual  Version  

6.11,  hDp://abaqus.ethz.ch:2080/v6.11/.  [10]  H.  V.  der  Auweraer.  InternaPonal  research  projects  on  structural  damage  detec-­‐  Pon.  Damage  Assessment  of  Structures  Key  

Engineering  Materials,  204-­‐2:97–  112,  2001.  [11]  M.  R.  K.  et  al.  NCHRP  report  412:  FaPgue-­‐resistant  design  of  canPlevered  sig-­‐  nal,  sign  and  light  supports.  Technical  Report  HR  10-­‐38,      

ATLSS  Engineering  Research  Center,  1998.  [12]  M.  L.  Fugate,  H.  Sohn,  and  C.  R.  Farrar.  VibraPon-­‐based  damage  detecPon  us-­‐  ing  staPsPcal  process  control.  Mechanical  Systems  and  

Signal  Processing,  15  (4):707–721,  2001.  [13]  A.  Furukawa,  H.  Otsuka,  and  J.  Kiyono.  Structural  damage  detecPon  method  using  uncertain  frequency  response  funcPons.  

Computer-­‐  Aided  Civil  And  Infras-­‐  tructure  Engineering,  21  (4):292–305,  2006.  [14]  M.  J.  Garlich  and  E.  T.  Thorkildsen.  Guidelines  for  the  installaPon,  inspecPon,  maintenance  and  repair  of  structural  supports  for  

highway  signs,  luminaires,  and  traffic  signals.  Technical  Report  FHWA  NHI  05-­‐036,  Office  of  Bridge  Technology  Federal  Highway  AdministraPon,  2005.    

63

Page 64: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

References  [15]  P.  Gudmundson.  Eigenfrequency  changes  of  strutures  due  to  cracks,  notches  or  other  geometrical  changes.  Journal  of  Mechanics  and  

Physics  of  Solids,  30:339–  53,  1982.  [16]  J.  He  and  Z.  F.  Fu.  Modal  Analysis.  BuDerworth  Heiemann,  2001.  [17]  A.  Iwasaki,  A.  Todoroki,  Y.  Shimamura,  and  H.  Kobayashi.  Unsupervised  struc-­‐  tural  damage  diagnosis  based  on  change  of  response  

surface  using  staPsPcal  tool  (applicaPon  to  damage  detecPon  of  composite  structure).  SME  InternaPonal  Jour-­‐  nal  Series  A-­‐Solid  Mechanics  and  Material  Engineering,  47  (1):1–7,  2004.  

[18]  C.  Y.  Kao  and  S.  L.  Hung.  DetecPon  of  structural  damage  via  free  vibraPon  re-­‐  sponses  generated  by  approximaPng  arPficial  neural  networks.  Computers  Struc-­‐  tures,  81  (28-­‐29):2631–2644,  2003.  

[19]  L.  M.  Khoo,  P.  R.  Mantena,  and  P.  Jadhav.  Structural  damage  assessment  using  vibraPon  modal  analysis.  Structural  Health  Monitoring,  3  (2):177–194,  2004.  

[20]  J.  T.  Kim,  Y.  S.  Ryu,  H.  M.  Cho,  and  N.  Stubbs.  Damage  idenPficaPon  in  beam-­‐  type  structures:  frequency-­‐based  method  vs.  mode-­‐shapebased  method.  Engineer-­‐  ing  Structures,  25  (1):57–67,  2003.  

[21]  J.-­‐T.  Kim  and  N.  Stubbs.  Crack  detecPon  in  beam-­‐type  structures  using  frequency  data.  Journal  of  Sound  and  VibraPon,  259  (1):145–160,  2003.  

[22]  J.  T.  Kim,  H.  M.  C.  Y.  S.  Ryu,  and  N.  Stubbs.  Damage  idenPficaPon  in  beam-­‐type  structures:  frequency-­‐based  method  vs  mode-­‐shape-­‐based  method.  Engineering  Structures,  25:57–67,  2003.  

[23]  S.  S.  Law,  X.  Y.  Li,  X.  Q.  Zhu,  and  S.  L.  Chan.  Structural  damage  detecPon  from  wavelet  packet  sensiPvity.  Engineering  Structures,  27  (9):1339–1348,  2005.  

[24]  T.  Lea,  A.  Abolmaalia,  S.  A.  Motaharia,  W.  Yeihb,  and  R.  Fernandezc.  Finite  element-­‐based  analyses  of  natural  frequencies  of  long  tapered  hollow  steel  poles.  Journal  of  ConstrucPonal  Steel  Research,  64:275–284,  2008.  

[25]  Y.  Lee  and  M.  Chung.  A  study  on  crack  detecPon  using  eigenfrequency  test  data.  Computers  and  Structures,  64:327–342,  2000.  [26]  Y.  S.  Lee  and  M.  J.  Chung.  A  study  on  crack  detecPon  using  eigenfrequency  test  data.  Computers  Structures,  77  (3):327–342,  2000.  [27]  T.  Y.  Li,  T.  Zhang,  J.  X.  Liu,  and  W.  H.  Zhang.  VibraPonal  wave  analysis  of  infinite  damaged  beams  using  structure-­‐borne  power  flow.  

Applied  AcousPcs,  65  (1):91–100,  2004.  [28]  J.  Lopez-­‐Diez,  M.  Torrealba,  A.  Guemes,  and  C.  Cuerno.  ApplicaPon  of  sta-­‐  PsPcal  energy  analysis  for  damage  detecPon  in  spacecra�  

structures.  Damage  Assessment  of  Structures  Vi  Key  Engineering  Materials,  525-­‐532:1-­‐7,  2005.  

64

Page 65: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

65

References  [29]  C.  J.  Lu  and  Y.  T.  Hsu.  VibraPon  analysis  of  an  inhomogeneous  string  for  damage  detecPon  by  wavelet  transform.  InternaPonal  

Journal  of  Mechanical  Sciences,  44  (4):745–754,  2002.  [30]  D.  Mahapatra  and  S.  Gopalakrishnan.  Spectral  finite  element  analysis  of  cou-­‐  pled  wave  propagaPon  in  composite  beams  with  

mulPple  delaminaPons  and  strip  inclusions.  InternaPonal  Journal  of  Solids  and  Structures  41,  5-­‐6:1173–1208,  2004.  [31]    K.  Moslem  and  R.  Nafaspour.  Structural  damage  detecPon  by  genePc  algorithms.  AIAA  Journal,  40  (7):1395–1401,  2002.  [32]  G.  M.  Owolabi,  A.  S.  J.  Swamidas,  and  R.  Seshadri.  Crack  detecPon  in  beams  using  changes  in  frequencies  and  amplitudes  of  

frequency  response  funcPons.  Journal  of  Sound  and  VibraPon,  265:1–22,  2003.  [33]  N.  G.  Park  and  Y.  S.  Park.  IdenPficaPon  of  damage  on  a  substructure  with  mea-­‐  sured  frequency  response  funcPons.  Journal  of  

Mechanical  Science  and  Technol-­‐  ogy,  19  (10):1891–1901,  2005.  [34]    V.  A.  Pino.  FaPgue  life  predicPon  of  canPlevered  light  pole  structures,  2010.  [35]  S.  Rajasekaran  and  S.  P.  Varghese.  Damage  detecPon  in  beams  and  plates  using  wavelet  transforms.  Computers  and  Concrete,  2  (6):

481–498,  2005.  [36]  B.  R.  Reese.  Non-­‐destrucPve  examinaPon  techniques  of  tubular  steel  pole  sports  lighPng  structures.  [37]  R.J.Connor,  J.Ocel,    and  B.Brakke.  FaPgue  cracking  and  inspecPon  of  high-­‐  mast  lighPng  towers.  Technical  Report  IBC-­‐05-­‐31,  Iowa  and  

Pennsylvania  De-­‐  partments  of  TransportaPon,  Pennsylvania  Infrastructure  Technology  Alliance  (PITA),  2005.  [38]  R.  P.  C.  Sampaio,  N.  M.  M.  Maia,  and  J.  M.  M.  Silva.  The  frequency  domain  assurance  criterion  as  a  tool  for  damage  detecPon.  

Proceedings  Key  Engineering  Materials,  245-­‐2:69–76,  2003.  [39]  Z.  Y.  Shi,  S.  S.  Law,  and  L.  Zhang.  Structural  damage  detecPon  form  modal  strain  energy  change.  Journal  of  Engineering  Mechanics  

ASCE,  26:1216–1223,  2000.  [40]  Z.  Y.  Shi,  S.  S.  Law,  and  L.  M.  Zhang.  Structural  damage  detecPon  from  modal  strain  energy  change.  Journal  of  Engineering  

Mechanics-­‐  ASCE,  126  (12):1216–  1223,  2000.  [41]  J.  Shortsleeve.  I-­‐team:  Aging  light  poles  a  safety  concern  on  Mass.  roads.  hDp://boston.cbslocal.com/2012/10/31/,      2012.  [42]  L.  H.  Yam,  Y.  J.  Yan,  and  Z.  Wei.  VibraPon-­‐based  non-­‐destrucPve  structural  dam-­‐  age  detecPon,  advances  in  nondestrucPve  

evaluaPon.  Key  Engineering  Materials,  270-­‐273:1446–1453,  2004.  [43]  A.  M.  Yan  and  J.  C.  Golinval.  Structural  damage  localizaPon  by  combining  flexi-­‐  bility  and  sPffness  methods.  Engineering  Structures,  

27  (12):1752–1761,  2005.      

Page 66: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

66

References  [44]  Y.  J.  Yan,  Z.  Y.  W.  L.  Cheng,  and  L.  H.  Yam.  Development  in  vibraPon-­‐based  structural  damage  detecPon  technique.  Mechanical  

Systems  and  Signal  Process-­‐  ing,  21:2198–2211,  2007.  [45]  Y.  J.  Yan  and  L.  H.  Yam.  Online  detecPon  of  crack  damage  in  composite  plates  using  embedded  piezoelectric  actuators/sensors  and  

wavelet  analysis.  Composite  Structures,  58  (1):29–38,  2002.  [46]  Y.  J.  Yan,  L.  H.  Yam,  L.  Cheng,  and  L.  Yu.  Fem  modeling  method  of  damage  structures  for  structural  damage  detecPon.  Composite  

Structures,  72:193–199,  2006.  [47]  H.  Z.  Yang,  H.  J.  Li,  and  S.  Q.  Wang.  Damage  localizaPon  of  offshore  pla�orms  under  ambient  excitaPon.  China  Ocean  Engineering,  17  

(4):495–504,  2003.  [48]  M.  K.  Yoon,  D.  Heider,  J.  W.  Gillespie,  C.  P.  Ratcliffe,  and  R.  M.  Crane.  Local  damage  detecPon  using  the  two-­‐dimensional  gapped  

smoothing  method.  Journal  of  Sound  and  VibraPon,  279:2198–2211,  2005.  [49]  K.  Yuen  and  H.  Lam.  On  the  complexity  of  arPficial  neural  networks  for  smart  structures  monitoring.  Engineering  Structures,  28:977–

984,  2006.  

Page 67: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

ValidaPon  of  sensiPve  modes:  Gudmunson  [15]  proposed  the  following  equaPon  which  relates  fracPonal  changes  in  modal  strain  energy  and  modal  frequency:    

67

Appendix  

where  Wi  is  the  ith  modal  strain  energy  of  the  intact  structure,  δWi  is  the  loss  in  the  ith  modal  strain  energy  a�er  damage,  and    δω2/  ω2  is  the  fracPonal  change  in  the  ith  eigenvalue  (modal  frequency  difference)  due  to  the  damage.    

δWi   δωi2  

Page 68: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

68

Kim  et.  al.[20]  proposed  following  equaPon  to  compute  δWi  of  a  simple  supported  beam  structure:  

in  which,  for  the  ith  mode,  ak  represents  the  damage  size  (depth)  at  locaPon  k  and    σk  represents  the  maximum  flexural  stress  at  locaPon  k  along  the  beam’s  longitudinal  axis,  t  is  the  beam  thickness,  E  is  Young’s  modulus,  ν  is  Poisson’s  raPo  and  F  is  a  geometrical  factor  depending  on  the  dimensionless  crack-­‐length/beam-­‐depth  raPo  a/H.    π,  t,  ν,  E,  F,  ak  are  constant.  

δWi  σk   δωi2  

Appendix  

Page 69: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

69

Therefore,  the  mode  which  have  largest  modal  frequency  difference  δωi  has  the  maximum  value  of  ∆σk2  (difference  between  intact  and  damaged  structures).    

δωi2,max   ∆σk,  max  

Appendix  

Page 70: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

For  an  Euler-­‐Bernoulli  beam,  its  bending  moment  at  locaPon  x  is:  

70

where  E  is  Young’s  modulus,  I  is  moment  of  inerPa  of  the  beam  cross-­‐secPon  at  locaPon  x,  φ(x)  is  the  displacement  of  the  beam  and  φ’’(x)  is  the  curvature  of  the  mode  shape.  

The  longitudinal  stress  of  an  arbitrary  point  m  in  this  cross-­‐secPon  is:  

Appendix  

Page 71: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

then,      where  E∗  is  Young’s  modulus  of  damaged  materials,  and  j  is  the  raPo  between  E  and  E∗.  Also,    

71

Appendix  

Page 72: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Let  φ∗(x)n    =  φ(x)  n  +  δn,  where  δn    is  the  differenPal  displacement  between  φ∗(x)n  and  φ(x)n,    

72

δn+1  −  2δn  +  δn−1  |min   |min  ∆σk,  max   δωi

2max  

Appendix  

Page 73: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

Example:  Damage  scenario  A-­‐5  (∆A=100%,  ∆E=50%).  The  modes  with  the  minimum  value  of  δn+1  −  2δn  +  δn−1  for  each  damage  locaPon  are:  L1–7th  Mode;  L2–7th  Mode;  and  L3–10th  mode.  

73 L1–7th  Mode  

Appendix  

Page 74: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

74

L2–7th  Mode   L3–10th  mode  

Appendix  

Page 75: Master’s&Thesis&Defense& …faculty.uml.edu/.../documents/Thesis_defense_Qixiang.pdfFinite&Element&Analysis&for&the&Damage& DeteconofLightPoleStructures& Qixiang’Tang’ Master’s’Candidate’

75

    Most  sensitive  mode   Minimum  δaverage  

L1   7th  mode   7th  mode  

L2   7th  mode   7th  mode  

L3   10th  mode   10th  mode  

Compare  with  the  most  sensiPve  modes  idenPfied  from  FE  models,  the  theorePcal  derivaPon  results  show  a  good  agreement  with  FE  results.  

Appendix