masters capstone project paper

19
Pratt 1 Thomas Pratt Marine Conservation and Policy Title : The Riverhead Foundation: Using necropsies to increase awareness of marine conservation issues. Sea turtle biology Sea turtles have been around for more than 100 million years (Lutz et al. 2002). Today, there are seven species of sea turtles in existence which includes green sea turtles (Chelonia mydas), loggerhead sea turtles (Caretta caretta), leatherback sea turtles (Dermochelys coriacea), olive ridley sea turtles (Lepidochelys olivacea), kemp’s ridley sea turtles (Lepidochelys kempii), flatback sea turtles (Natador depressus) and hawksbill sea turtles (Eretmochelys imbracata). There is a myriad of of different things that sea turtles eat. Every sea turtle species is different, and has its own unique diet. Leatherback sea turtles predominantly consume gelatinous plankton such as jellyfish and even salps, while green sea turtles are herbivores and eat a diet of mostly seagrass and algae that even changes their adipose tissue slightly green (Bjorndal 1997, Mrosovsky et al. 2009). Loggerhead sea turtles have a varied diet depending on their life stage, and tend to eat prey items such as crustaceans, gastropods, sargassum, jellyfish, and even terrestrial insects (Bjorndal 1997). In New York State, species of sea turtles that are found include green sea turtles (Chelonia mydas), loggerhead sea turtles (Caretta caretta), leatherback sea turtles (Dermochelys coriacea) and kemp’s ridley sea turtles (Lepidochelys kempii). Many sea turtle diets depend upon their movements and habitat that they are in. Hawksbill sea turtles (Eretmochelys imbracata) are often pelagic species, yet tend to migrate towards the shore to forage off of coral reefs and mangroves (Bjorndal 1997). Hawksbill sea

Upload: thomas-pratt

Post on 15-Jul-2015

136 views

Category:

Documents


0 download

TRANSCRIPT

Pratt 1 

Thomas Pratt 

Marine Conservation and Policy 

Title: The Riverhead Foundation: Using necropsies to increase awareness of marine conservation 

issues. 

Sea turtle biology 

Sea turtles have been around for more than 100 million years (Lutz et al. 2002). Today, 

there are seven species of sea turtles in existence which includes green sea turtles (Chelonia 

mydas), loggerhead sea turtles (Caretta caretta), leatherback sea turtles (Dermochelys coriacea), 

olive ridley sea turtles (Lepidochelys olivacea), kemp’s ridley sea turtles (Lepidochelys kempii), 

flatback sea turtles (Natador depressus) and hawksbill sea turtles (Eretmochelys imbracata). 

There is a myriad of of different things that sea turtles eat. Every sea turtle species is different, 

and has its own unique diet. Leatherback sea turtles predominantly consume gelatinous plankton 

such as jellyfish and even salps, while green sea turtles are herbivores and eat a diet of mostly 

seagrass and algae that even changes their adipose tissue slightly green (Bjorndal 1997, 

Mrosovsky et al. 2009). Loggerhead sea turtles have a varied diet depending on their life stage, 

and tend to eat prey items such as crustaceans, gastropods, sargassum, jellyfish, and even 

terrestrial insects (Bjorndal 1997). In New York State, species of sea turtles that are found 

include green sea turtles (Chelonia mydas), loggerhead sea turtles (Caretta caretta), leatherback 

sea turtles (Dermochelys coriacea) and kemp’s ridley sea turtles (Lepidochelys kempii). 

Many sea turtle diets depend upon their movements and habitat that they are in. 

Hawksbill sea turtles (Eretmochelys imbracata) are often pelagic species, yet tend to migrate 

towards the shore to forage off of coral reefs and mangroves (Bjorndal 1997). Hawksbill sea 

Pratt 2 

turtles are omnivores, and forage in seagrass beds and coral reefs for crustaceans, sponges, and 

even seagrass and algae (Bjorndal 1997). Green sea turtles (Chelonia mydas) forage in seagrass 

beds as adults, and their adipose tissue evens turns a hue of green since they are vegetarians 

(Bjorndal 1997). Kemp’s ridley sea turtles (Lepidochelys kempii) forage in sargassum as pelagic 

juveniles, yet move closer to the shore as adults and tend to eat crustaceans such as crabs 

(Bjorndal 1997). The ridley turtles that were necropsied this summer often had crab and snail 

shells, which shows that crustaceans comprise of the majority of their diet. Olive ridley sea 

turtles (Lepidochelys olivacea) primarily live in the Gulf of Mexico, and eat a mixture of salps, 

fish, crustaceans and molluscs (Bjorndal 1997). Leatherback sea turtles consume gelatinous prey 

such as jellyfish and salps, and when necropsied most of their gastrointestinal tract is filled with 

decomposed jellyfish. Other than Leatherback sea turtles, many species of sea turtles tend to 

move towards coastal regions to forage near coral reefs, seagrass beds, or mangroves (Bjorndal 

1997). 

Sea turtles are highly migratory marine animals, especially species such as Leatherback 

sea turtles which are regarded as one of the most thoroughly distributed reptile species in the 

world (Mrosovsky et al. 2009). Leatherback sea turtles are unique in the fact that they don’t have 

a hard­shelled carapace with scutes, they can be found in temperate and even sub­arctic waters 

due to their enhanced adipose tissue and gigantothermy (Eckert 2006, Mrosovsky et al. 2009). 

Leatherback sea turtles are found in New York waters all year round, while other species are 

mostly found during the warmer months in the summer for foraging (Wallace et al. 2013). In the 

summer months, loggerhead and green sea turtles are found stranded as a result of fisheries 

interaction or boat strikes. Recently, the Riverhead Foundation for Marine Research and 

Pratt 3 

Preservation has been finding many kemp’s ridley sea turtles cold­stunned during the winter 

from October to March. The Riverhead Foundation is a non­governmental organization and New 

York State’s only marine mammal and sea turtle rescue center. With a mission statement to 

“preserve and protect our marine environment through rescue and rehabilitation, research and 

education,” the Riverhead Foundation uses scientific research to educate the public about marine 

mammals and sea turtle conservation. 

Although Leatherback sea turtles can withstand cooler water temperatures due to their 

immense size, sea temperatures can have a dramatic effect on all species of sea turtles. Sea 

turtles are reptiles that lay eggs that incubate in nests, and are affected by temperature in a few 

ways (Davenport 1997). Sea turtle hatchlings will only survive the incubation period in certain 

temperature ranges, and the incubation process is even sped up in warmer temperatures 

(Davenport 1997). In the final stretch of incubation the eggs are especially sensitive to 

temperature, and will primarily hatch only in temperatures 23 to 33oC (Davenport 1997). 

Temperature­dependent sex determination (TDSD) is determined in the middle part of of 

incubation during embryonic development, with an average of 29oC as the pivotal temperature 

(Davenport 1997). At this pivotal temperature is where the sex ratio of female:male sea turtles is 

1:1, and as the temperature becomes greater than 29oC male hatchlings become more rare 

(Davenport 1997). As the ocean and atmospheric temperatures rise, the threat of altered sex 

ratios increases (Janzen 1994). The higher the temperatures during incubation could possibly 

mean that more sea turtle strandings will become predominantly female. 

Pratt 4 

 

(Davenport 1997) 

Objectives 

My objectives in this internship with the Riverhead Foundation were to: 1) examine 

trends in sex ratios, cause of death, and human impacts by analyzing sea turtle strandings data 2) 

learn about sea turtle anatomy first­hand by conducting necropsies and 3) observe and 

understand threats to sea turtle species 

Sea turtles as keystone species 

Sea turtles are a fundamental keystone species in marine ecosystems (Tisdell and Wilson 

2002). They help contribute to the balance and maintenance of marine ecosystems that have 

biological, economic and cultural significance (Tisdell and Wilson 2002). Essentially, a keystone 

species is any species that has a substantially large effect on its ecosystem, comparative to its 

abundance (Tisdell and Wilson 2002). Sea turtles have many different roles in marine habitats 

that help contribute to the function and stability of its ecosystem. The green sea turtle (Chelonia 

mydas) eat sea grass and graze in seagrass beds, which helps that ecosystem become more 

productive (Tisdell and Wilson 2002). Hawksbill sea turtles (Eretmochelys imbracata) consume 

sponges, which helps conserve the production and diversity of coral reef systems (Tisdell and 

Wilson 2002). Not only do sea turtles help maintain diversity to a healthy marine ecosystem, but 

Pratt 5 

they have a large economic and cultural importance because of it (Lutz 2002). Since these 

species are crucial to marine ecosystems, it is important to fully understand them through 

scientific research in order to help their conservation status. The Riverhead Foundation 

recognizes that these species are crucial to the balance of marine habitats, thus helps rescue and 

rehabilitate sick and injured sea turtles back into the marine environment. 

Threats 

In recent years, ocean ecosystems have gone through a lot of changes, which threatens 

many species such as sea turtles with extinction (Halpern et al. 2008). With the increase in sea 

temperatures, acidification of the ocean, and pollution of plastic, oil and gas to many marine 

habitats, these threats can become detrimental to marine organisms. Human impacts on marine 

ecosystems have threatened many species that are vulnerable to extinction (Davenport 1997, 

Halpern et al. 2008, Janzen 1994). These impacts take on myriad forms, including activities such 

as greenhouse gas emissions, fisheries bycatch, sea surface temperature and direct habitat 

degradation (Halpern et al. 2008). With all of the dramatic effects that humans have on global 

marine ecosystems, it is important to help recognize this ecological change. Even though the 

direct impact that humans have on our marine ecosystems is extensive, we have the ability to 

educate others that aren’t aware of sea turtle threats and conservative techniques. The Riverhead 

Foundation helps increase conservation awareness by holding lectures, attending fairs and 

events, and educating the public. The scientific research done by the Riverhead Foundation helps 

contribute to the knowledge and education brought to the public. 

Many threats that humans have on sea turtles include fisheries interaction, marine 

pollution, habitat degradation, and global climate change. Many Loggerhead and leatherback sea 

Pratt 6 

turtles have been found to be caught in gillnets, hooked on long­line hooks and even caught 

incidentally (Lewison et al. 2004). Bycatch from pelagic longlines help represent a significant 

portion of the 80­95% declines in populations for both Leatherback and Loggerhead sea turtles 

(Lewison et al, 2004). Not only are fisheries a substantial threat to the populations of sea turtles, 

but marine debris and pollution as well. Numerous Leatherback sea turtles post­death, have been 

found to ingest plastic bags, plastic containers, and even metal hooks (Mrosovsky et al. 2009). 

The diet of a Leatherback sea turtle primarily comprises of jellyfish, and unfortunately the 

oceans are littered with floating plastics that can look jellyfish­like prey (Mrosovsky et al. 2009). 

Both fishing gear, boats and plastic pollutants have a significant impact on the survival of 

Leatherback and other sea turtles alike. 

Besides direct human impact, one of the main threats to the conservation of sea turtles is 

global climate change. Sea turtles are reptiles, where their sex is dependent not on chromosomes 

but by the temperature of incubation (Davenport 1997). This fundamental determination could 

mean drastic changes in the sex ratio of many species of sea turtles and freshwater turtles alike, 

even with a slight increase in centigrade (Janzen 1994). Statistical evidence has shown that with 

an average global temperature increase of 4oC would essentially eradicate all future male sea 

turtle offspring (Janzen 1994). With the ever changing climate of both the atmosphere and 

marine environment alike, the sex ratio of female to male sea turtles will continue to increase. 

This dramatic change in sea turtle sex ratios can become a threat to the survival of future sea 

turtle populations. By observing the sex of sea turtle strandings over the years, it might be 

possible to see if there is a trend towards this altered sex ratio. Every single sea turtle necropsy is 

Pratt 7 

identified by sex, and stranding data over the years can help scientists determine trends for future 

scientific research. 

Non­governmental organizations 

Non­profit or non­governmental organizations help represent a large sector of the marine 

conservation and policy field. The partnership between the government and non­governmental 

organization is crucial since many organizations deal with many marine conservation issues 

(Groom et al. 2006). NGOs help address conservation issues such as fisheries management, 

scientific modeling, human impacts, and scientific information and education (Groom et al. 

2006). Many NGOs such as Greenpeace, Ocean Conservancy, the Marine Conservation Society, 

and the Worldwide Fund for Nature strive for and obtain grants for conservation research 

(Sutherland et al. 2004). Many conservation issues include habitat management for specific 

species, species diversity, and conservation education and outreach through scientific evidence 

(Sutherland et al. 2004). Non­governmental organizations are imperative to the community 

because they are the link between the scientific community, the public and the surrounding 

environment (Groom et al. 2006). 

The Riverhead Foundation for Marine Research and Preservation is an example of a 

non­profit organization that uses scientific research to not only directly help vulnerable marine 

species but to educate the public as well. The Riverhead Foundation is New York State’s only 

marine mammal and sea turtle rescue and research program. This organization not only helps 

rescue marine animals, but rehabilitates them back into shape before releasing them into their 

native habitats. Animals that the foundation works with includes cetaceans (whales, dolphins, 

porpoises), pinnipeds (seals) and sea turtles. Many seals, dolphins, porpoises, and sea turtles are 

Pratt 8 

found underfed, injured, weak and infected. Trained biologists and doctors not only rescue these 

injured marine animals on the beach, but assist with the rehabilitation process as well. Seals, 

dolphins, and sea turtles are all given proper medicine like antibiotics, fed daily to increase fat 

reserves and strengthen up the animal until it is ready to be released in the wild. Although 

research and education is a big part of the Riverhead Foundation, the rescue and rehabilitation 

aspect is the core of the organization. 

The Riverhead Foundation deals with marine conservation issues that are involved with 

sea turtles. Out of the seven species of sea turtles found throughout the world, the Riverhead 

Foundation works with four species that includes green sea turtles (Chelonia mydas), loggerhead 

sea turtles (Caretta caretta), leatherback sea turtles (Dermochelys coriacea) and kemp’s ridley 

sea turtles (Lepidochelys kempii). Being New York State’s only sea turtle rehabilitation and 

rescue center, The Riverhead Foundation for Marine Research and Preservation has the 

responsibility to help rescue injured or cold­stunned sea turtles in the area. Often in colder 

months, many Green and Kemp’s Ridley sea turtles are found cold stunned, a condition in which 

their core body temperature becomes too cold for locomotion (Davenport 1997). Often, sea 

turtles are found in a coma­like state, where their heart rate drops significantly and can even lead 

to death if their body temperature reaches 10oC (Davenport 1997). In New York state, these 

cold­stunned sea turtle comprise of the majority of stranded sea turtles found in the tri­state area 

due to colder Atlantic waters. 

The evidence­based research that the Riverhead Foundation does not only helps the 

scientific community such as NOAA fisheries and NMFS, but public education as well. The 

main method of scientific research done on stranded sea turtles by the Riverhead Foundation is 

Pratt 9 

necropsies. If a deceased sea turtle is found on a beach or in a fishing net in the New York area, 

the Riverhead Foundation is called in to perform a necropsy. A necropsy is fundamentally a 

post­mortem dissection analysis done to a sea turtle on its back (Wolke and George 1981). Sea 

turtle species are all either vulnerable, endangered or critically endangered in the wild, other than 

the Flatback sea turtle (Natador depressus) which is data deficient (Red List Standards 1996, 

Wallace et al. 2013). Since their conservation status is so critical, it is imperative to analyze and 

understand the cause of death and human impact when stranded. 

Methods 

The main method with this sea turtle research was using necropsies of stranded sea turtles 

in the New York area. Necropsies help scientists to fully understand the cause of death and 

threats to these marine species. With any necropsy there are two main steps done: an external 

examination and the dissection (Wolke and George 1981). The external examination includes 

level­A analysis, which involves measurements of the straight and curved carapace length, 

width, plastron length, as well as the weight. Both straight and curved measurements are done for 

the carapace length and width, even though straight measurements are favored (Wolke and 

George 1981). Other observations are done to check whether there is any fisheries interaction or 

evidence of boat strike. The condition of the skin, plastron and carapace is thoroughly examined 

in order to gain insight about cause of death or human interaction. A pit scanner is used before 

opening up the body cavity to check for evidence of any pit tags as well. 

Using a scalpel blade, an incision is made around the nine plastron bones, starting off 

right below the head but before the epiplastron bones (Wyneken and Witherington 2001). The 

main incision is made following the shape of the plastron bones along the cartilage, and then the 

Pratt 10 

muscle tissues that connect to the plastron is removed and then the body cavity is opened up. 

After the body cavity is opened up the muscle masses over the organs is broken down and moved 

out of the way, or held with a blubber or stevedore’s hook for a large sea turtle (Wolke and 

George 1981). The organ systems are then analyzed for any significant findings such as 

hemorrhaging or blood clots, and the major organs are sampled for further analysis. 

 

(Wyneken and Witherington 2001) 

Using numerous tools such as a scalpel blade and pliers, different samples are taken for 

further analysis. Samples that are taken include the scutes, muscle tissue, GI tract, adipose tissue, 

liver and kidney. Scute samples are analyzed using stable isotope analysis to determine whether 

the animal is a more pelagic or coastal species. Muscle tissue is used for frozen sampling as well 

as genetic research for the National Marine Fisheries Service. The gastrointestinal tract is 

sampled to determine stomach contents of what the turtle was eating such as crabs, molluscs, 

Pratt 11 

jellyfish, or even non­food items such as plastic or hooks. The adipose tissue is the fatty tissue 

that surrounds the plastron and carapace, and is used for contaminant testing. Similar to adipose 

tissue, the liver is taken for toxicology as well to measure for contaminants and organochlorines. 

Lastly, the other main sample that is taken is the kidney which is sampled and collected in order 

to test for the contamination of heavy metals. 

Photo documentation is performed throughout the process of the physical and external 

examination, as well as the dissection. A measuring tape with a photo identification card is put in 

every picture in order to get an idea of how large the sea turtle is for proper documentation. 

Photo documentation of the carapace, plastron, and inside organs are done. In addition, any 

anomalies or implementations for cause of death is photo documented such as broken bones, 

blood clots and hemorrhaging. The last thing that is photo documented are the gonads (ovaries or 

testes) for proper sex determination. 

Findings 

Out of 36 necropsies done, only 8 were identified as male, 27 were identified as female 

sea turtles, and one unknown sea turtle. That representation of female sea turtles is a substantial 

75.0%, a male representation of only 22.22%, and 2.78% unknown or cannot be determined. 

Below is a data table of all 36 necropsies performed which includes information of significant 

findings by species. 

Figure 1­ Notable findings by sea turtle species 

Species 

Boat/prop 

strike 

Nematodes/GI 

tract inflammation 

Broken 

bones/missing 

appendages  Hemorrhages  NSF  Plastic 

Pratt 12 

Dermochelys 

coriacea  1  0  1  1  1  1 

Caretta 

caretta  3  0  1  0  3  0 

Chelonia 

mydas  0  2  0  1  4  0 

Lepidochelys 

kempii  1  2  0  0  17  0 

 

Figure 2 is a data table that includes information based on stranding year from 2010 to 

2014, as well as the sex identified based on each species of sea turtle. Only one loggerhead sea 

turtle (Caretta caretta) was unable to be identified by sex since it was highly decomposed and 

the sex organs were not there. 

Species  2010  2011  2012  2013  2014  Male  Female  Unknown 

Total 

number 

Dermochelys 

coriacea  0  0  0  0  3  2  1  0  3 

Caretta caretta  0  0  0  0  6  1  4  1  6 

Chelonia 

mydas  0  0  2  3  2  1  6  0  7 

Lepidochelys 

kempii  1  0  4  13  2  4  16  0  20 

 

Pratt 13 

Figure 2­ Sex identified and stranding year for each sea turtle species 

 

Figure 3­ Sea turtle sex identified 

Figure 3 shows a stacked bar graph that depicts the number of males and females 

identified for each species. (Left to right) Starting off with the leatherback sea turtle, 2 males and 

one female was identified. 4 females, one male and one unknown for the loggerhead sea turtle. 6 

females and 1 male for the green sea turtle, and 4 males and 16 females for the kemp's ridleys. 

Conclusions 

The threat of endangerment of every species of sea turtles is linked to human recreation 

and influence (Halpern et al 2008, Janzen 1994). With a substantial amount of female sea turtles 

identified of 75.0%, this could signify the threat of global climate change to the survival of sea 

turtle species. The ratio of female to male sea turtles that were necropsied through the Riverhead 

Foundation for Marine Research and Preservation is 27:8. For every male sea turtle that was 

Pratt 14 

identified, 3.375 female sea turtles were identified as well. However, this skewed sex ratio is 

only a small subset of a larger population of sea turtles in the New York State area. Since these 

36 necropsies do not represent the populations in the Northwestern Atlantic Ocean, actual sex 

ratios and population size cannot be determined. Samples extracted are being used for NOAA 

fisheries, National Marine Fisheries Service, and even with Stony Brook University with 

gastrointestinal tract research. Muscle samples preserved in salt and DMSO is used for genetic 

research by NOAA fisheries to determine certain distinct populations for certain species of sea 

turtles. 

The majority of the data found from the necropsies have indications for human impact 

through fisheries and pollution. Out of the 36 necropsies, 5 were definite boat or prop strikes, 

with an additional three showing chances of fisheries interactions with hemorrhaging and blood 

clots found but no definite or substantial evidence. Other than cold stunning, fisheries interaction 

through boat strikes is the number one cause of death for sea turtles in the New York area. In this 

study, about one out of every seven sea turtles dissected has shown considerable evidence of 

fisheries interaction. Additionally, NY5087­2014 (Dermochelys coriacea) was found not only 

with a distinct propellor slice on its carapace, but it had two plastic bags in its stomach. This 

conveys the idea that floating plastics can be an immense threat to Leatherback sea turtles 

(Lewison et al. 2004, Mrosovsky et al. 2009). Leatherback sea turtles rely on a diet that 

comprises of gelatinous plankton such as jellyfish and salps, and floating clear plastics can 

undoubtedly pose a threat to this species (Mrosovsky et al. 2009). With the data found in this 

scientific research, human impact through climate change, bycatch and fisheries interaction, and 

pollution is a distinct threat to the survival of sea turtles. 

Pratt 15 

With regards to marine conservation, sea turtles are undoubtedly the group of species that 

are of most concern due to their conservation status on the IUCN red list of threatened species 

(Tisdell and Wilson 2002). All species of sea turtles are at least vulnerable to extinction, with 

many being listed as endangered or critically endangered (Tisdell and Wilson 2002). Species that 

are listed as vulnerable under the IUCN red list include Olive ridley (Lepidochelys olivacea) and 

Leatherback sea turtles (Dermochelys coriacea) (Abreu­Grobois & Plotkin 2008, Wallace et al. 

2013). Species that are listed as endangered under the IUCN red list include loggerhead (Caretta 

caretta) and green sea turtles(Chelonia mydas) (Marine Turtle Specialist Group 1996, Seminoff 

2004). Two species are even listed as critically endangered which includes hawksbill 

(Eretmochelys imbracata) and kemp’s ridley sea turtles (Lepidochelys kempii) (Marine Turtle 

Specialist Group 1996, Mortimer and Donnelly 2008). Since these species are particularly 

endangered, threats such as fisheries and human impact can become a distinct problem for their 

future populations. 

Current and future research is essential for awareness of these endangered species. Every 

year, more scientific research is being conducted about sea turtles, including research done by 

The Riverhead Foundation. Every year the Riverhead Foundation comprises annual reports about 

cetaceans, pinnipeds and sea turtles. In the reports include all of the sea turtle strandings in the 

New York State area, which dates back to 1980. In the chart below represents sea turtle 

strandings by species from 1980 up to last year. Since 2007, sea turtle strandings have increased 

slightly, and the majority of sea turtles that are found are Loggerhead and Kemp’s ridley sea 

turtles (DiGiovanni Jr. et al. 2013). By observing the amount of sea turtle strandings and the sex 

of sea turtles from the past and years to follow, the threat of climate change can be evaluated. 

Pratt 16 

This scientific data done by the Riverhead Foundation is published annually and used in lectures 

and events to help increase awareness through education. 

 

(DiGiovanni Jr. et al. 2013) 

With regards to other research being done, there are many issues being addressed such as 

bycatch records, sea turtle diet, nesting habitat, and marine pollution and debris. Bycatch 

research is being done through Duke Marine Laboratory and Blue Ocean Institute through Stony 

Brook University (Lewison et al. 2014). Certain bycatch hotspots for many marine megafauna 

such as sea turtles have been identified, and can assist in bycatch management from gear type 

and migration routes (Lewison et al. 2014). Species such as loggerhead and leatherback sea 

turtles are threatened due to pelagic longlines and fisheries bycatch, therefore studied like this is 

important for the future of sea turtles. 

Pratt 17 

There is a variety of research being done on sea turtle diet and habitat. One current study 

uses stable isotope analysis through the use of scute and epidermis samples (Vander Zanden et 

al. 2014). This study is using stable isotope analysis to determine the habitat and diet of sea 

turtles through isotopic composition (Vander Zanden et al. 2014). It is possible through current 

research like this, to help determine migration routes of loggerhead sea turtles through diet and 

habitat use (Vander Zanden et al. 2014). By knowing what and where a sea turtle forages, we 

will know what marine areas to manage and protect. 

Other current research includes analysis of marine debris ingested such as plastic debris. 

Present­day research has shown that out of the seven species of sea turtles, leatherback 

(Dermochelys coriacea) and green (Chelonia mydas) sea turtles are the species that ingest the 

most marine debris (Schuyler et al. 2014). Since green sea turtles are herbivores and leatherback 

sea turtles are gelatinous planktivores, marine debris poses a considerable risk to these species 

(Schuyler et al. 2014). By knowing what marine debris is often found ingested in these animals 

through necropsies, we will know what kinds of pollutants such as plastic to regulate. Since sea 

turtles are highly migratory, pelagic species, the majority of research that has been done is recent 

due to the establishment of modern­day technologies. The future of sea turtles may rely on the 

current conservation research being done, and the action to counteract the effect of human 

impact is just as crucial. The current research on sea turtles, including sea turtle strandings could 

potentially help the management and conservation of future sea turtle populations. 

References 

Abreu­Grobois, A & Plotkin, P. (IUCN SSC Marine Turtle Specialist Group) 2008. Lepidochelys olivacea. The IUCN Red List of Threatened Species. Version 2014.2. <www.iucnredlist.org>. Downloaded on 12 August 2014.  

Pratt 18 

Bjorndal, K. A. (1997). Foraging ecology and nutrition of sea turtles. The biology of sea turtles, 1, pp. 199­231.   Davenport, J. (1997). Temperature and the life­history strategies of sea turtles. Journal of thermal biology, 22(6), pp. 479­488.  DiGiovanni Jr., R., Durham, K., DePerte, A., Ferina, D. The Riverhead Foundation for Marine Research and Preservation Annual Report. (2013). Web. 21 August 2014. <http://www.riverheadfoundation.org/pubfiles/annualreports/2013Report.pdf>   Eckert, S. A. (2006). High­use oceanic areas for Atlantic leatherback sea turtles (Dermochelys coriacea) as identified using satellite telemetered location and dive information. Marine Biology, 149(5), pp. 1257­1267.  Groom, M. J., Meffe, G. K., & Carroll, C. R. (2006). Principles of conservation biology (pp. 174­251). Sunderland: Sinauer Associates.  Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F., D'Agrosa, C., ... & Watson, R. (2008). A global map of human impact on marine ecosystems. Science, 319(5865), pp. 948­952.  Janzen, F. J. (1994). Climate change and temperature­dependent sex determination in reptiles. Proceedings of the National Academy of Sciences,91(16), pp. 7487­7490.  Lewison, R. L., Freeman, S. A., & Crowder, L. B. (2004). Quantifying the effects of fisheries on threatened species: the impact of pelagic longlines on loggerhead and leatherback sea turtles. Ecology letters, 7(3), pp. 221­231.  Lewison, R. L., Crowder, L. B., Wallace, B. P., Moore, J. E., Cox, T., Zydelis, R., ... & Safina, C. (2014). Global patterns of marine mammal, seabird, and sea turtle bycatch reveal taxa­specific and cumulative megafauna hotspots.Proceedings of the National Academy of Sciences, 111(14), pp. 5271­5276.  Lutz, P. L., Musick, J. A., & Wyneken, J. (Eds.). (2002). The biology of sea turtles (Vol. 2). CRC press.  Marine Turtle Specialist Group 1996. Caretta caretta. The IUCN Red List of Threatened Species. Version 2014.2. <www.iucnredlist.org>. Downloaded on 12 August 2014.  Marine Turtle Specialist Group 1996. Lepidochelys kempii. The IUCN Red List of Threatened Species. Version 2014.2. <www.iucnredlist.org>. Downloaded on 12 August 2014.  Mortimer, J.A & Donnelly, M. (IUCN SSC Marine Turtle Specialist Group) 2008. Eretmochelys imbricata. The IUCN Red List of Threatened Species. Version 2014.2. <www.iucnredlist.org>. Downloaded on 12 August 2014. 

Pratt 19 

 Mrosovsky, N., Ryan, G. D., & James, M. C. (2009). Leatherback turtles: The menace of plastic. Marine Pollution Bulletin, 58(2), pp. 287­289.  Red List Standards and Petitions Subcommittee 1996. Natator depressus. The IUCN Red List of Threatened Species. Version 2014.2. <www.iucnredlist.org>. Downloaded on 06 August 2014.  Seminoff, J.A. (Southwest Fisheries Science Center, U.S.) 2004. Chelonia mydas. The IUCN Red List of Threatened Species. Version 2014.2. <www.iucnredlist.org>. Downloaded on 12 August 2014.  Schuyler, Q., Hardesty, B. D., Wilcox, C., & Townsend, K. (2014). Global analysis of anthropogenic debris ingestion by sea turtles. Conservation Biology, 28(1), pp. 129­139.  Sutherland, W. J., Pullin, A. S., Dolman, P. M., & Knight, T. M. (2004). The need for evidence­based conservation. Trends in Ecology & Evolution, 19(6), pp. 305­308.  Tisdell, C., & Wilson, C. (2002). Ecotourism for the survival of sea turtles and other wildlife. Biodiversity & Conservation, 11(9), 1521­1538.  Vander Zanden, H. B., Tucker, A. D., Bolten, A. B., Reich, K. J., & Bjorndal, K. A. (2014). Stable isotopic comparison between loggerhead sea turtle tissues. Rapid Commun. Mass Spectrom, 28, pp. 1­6.  Wallace, B.P., Tiwari, M. & Girondot, M. 2013. Dermochelys coriacea. The IUCN Red List of Threatened Species. Version 2014.2. <www.iucnredlist.org>. Downloaded on 06 August 2014.  Wolke, R. E., & George, A. (1981). Sea turtle necropsy manual. US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Center, Panama City Laboratory, pp 1­20.  Wyneken, J., & Witherington, D. (2001). The anatomy of sea turtles (p. 172). Southeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, US Department of Commerce. pp. 1­52.