matemática elementar ii

110
Sumário 1 O Método Axiomático 1 1.1 Introdução Histórica .............................. 1 1.2 Modelos Axiomáticos .............................. 5 1.3 Caracterização de um Sistema de Axiomas .................. 12 2 Conjuntos 25 2.1 Introdução Histórica .............................. 25 2.2 Conjuntos .................................... 27 2.3 Grácos e Famílias ............................... 32 2.4 Funções ..................................... 41 3 Conjuntos Parcialmente Ordenados 65 3.1 Conjuntos Parcialmente Ordenados ...................... 65 3.2 Isomorsmos ................................... 71 3.3 Elementos Notáveis e Dualidade ........................ 75 3.4 Conjuntos Bem Ordenados ........................... 85 4 Axioma da Escolha e Aplicações 107 4.1 Axioma da Escolha ............................... 107 4.2 Aplicações .................................... 114 5 Os Números Naturais 125 5.1 Os Números Naturais .............................. 125 5.2 Aritmética dos Números Naturais ....................... 131 6 Números Cardinais 137 6.1 Conjuntos Equipotentes ............................ 137 6.2 Números Cardinais ............................... 145 Bibliograa 151 i

Upload: andreia-lima

Post on 05-Sep-2015

78 views

Category:

Documents


41 download

DESCRIPTION

Conjuntos

TRANSCRIPT

  • Sumrio

    1 O Mtodo Axiomtico 11.1 Introduo Histrica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.2 Modelos Axiomticos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    1.3 Caracterizao de um Sistema de Axiomas . . . . . . . . . . . . . . . . . . 12

    2 Conjuntos 252.1 Introduo Histrica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    2.2 Conjuntos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    2.3 Grficos e Famlias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    2.4 Funes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    3 Conjuntos Parcialmente Ordenados 653.1 Conjuntos Parcialmente Ordenados . . . . . . . . . . . . . . . . . . . . . . 65

    3.2 Isomorfismos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

    3.3 Elementos Notveis e Dualidade . . . . . . . . . . . . . . . . . . . . . . . . 75

    3.4 Conjuntos Bem Ordenados . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

    4 Axioma da Escolha e Aplicaes 1074.1 Axioma da Escolha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

    4.2 Aplicaes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

    5 Os Nmeros Naturais 1255.1 Os Nmeros Naturais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

    5.2 Aritmtica dos Nmeros Naturais . . . . . . . . . . . . . . . . . . . . . . . 131

    6 Nmeros Cardinais 1376.1 Conjuntos Equipotentes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

    6.2 Nmeros Cardinais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

    Bibliografia 151

    i

  • ii SUMRIO

    Prefcio

    Este texto surgiriu da experincia do autor quando este ministrou algumas vezes a

    disciplina para os cursos de Matemtica e na Licenciatura em Matemtica a Distncia.

    O principal objetivo deste texto levar o leitor a compreender os axiomas da Teoria dos

    Conjuntos, segundo Zermelo-Fraenkel, a ponto de aplic-los em diferentes contextos tais

    como o axioma da escolha, modelagem de situaes-problema envolvendo o princpio do

    mximo de Hausdor, Lema de Zorn, conjuntos bem ordenados, construo dos nmerosnaturais e nmeros cardinais.

    O texto dividido em seis captulos, dos quais o primeiro responsvel pela introduo

    do mtodo axiomtico e resultados utilizados em todo o texto. Em cada estudo espec-

    fico, busca-se a caracterizao do objeto por meio de propriedades que possibilitem ao

    leitor estabelecer correspondncias entre determinadas situaes-problema da vida real e

    a espcie de funo focalizada, objetivando sua utilizao na construo de uma traduo

    matemtica da respectiva situao.

    nossa expectativa que este texto assuma o carter de espinha dorsal de uma expe-

    rincia permanentemente renovvel, sendo, portanto, bem vindas s crticas e/ou sugestes

    apresentadas por todos - professores ou alunos quantos dele fizerem uso.

    Para desenvolver a capacidade do leitor de pensar por si mesmo em termos das novas

    definies, inclumos no final de cada seo uma extensa lista de exerccios, onde a maioria

    dos exerccios dessas listas foram selecionados dos livros citados no final do texto. Deve-

    mos, porm, alertar aos leitores que os exerccios variam muito em grau de dificuldade,

    sendo assim, no necessrio resolver todos numa primeira leitura.

    No captulo 1 apresentaremos um pouco da histria do surgimento do mtodo a-

    xiomtico na matemtica, que sero necessrias para o entendimento das prximas cap-

    tulos.

    No captulo 2 apresentaremos, via mtodo axiomtico, os elementos bsicos da Teoria

    dos Conjuntos atravs dos sete primeiros axiomas. Alm disso, definimos as operaes

    com conjuntos: unio, interseo, complementar, diferena, grficos, famlias, produto

    cartesiano e algumas propriedades algbricas.

    No captulo 3 estudaremos os problemas de aplicaes ordinrias de matemtica tais

    como: relao de ordem, conjuntos parcialmente ordenados, elementos maximais e mini-

    mais, maior e menor elemento, supremo e nfimo de um conjunto. Alm disso, estudaremos

    reticulados e conjuntos bem ordenados.

    No captulo 4 apresentaremos as formulaes clssicas do axioma da escolha dada por

    Zermelo e suas principais consequncias.

    No captulo 5 construiremos, formalmente, o conjunto dos nmeros naturais, o qual

    ser munido com todas as propriedades que so associadas com os nmeros naturais do

  • SUMRIO iii

    nosso pensamento. Alm disso, com o axioma da infinidade completaremos a Teoria

    Axiomtica dos Conjuntos, segundo Zermelo.

    Finalmente, no captulo 6 apresentaremos o conceito de conjuntos equipotentes e o

    conceito formal de nmeros cardinais via mtodo axiomtico. Tambm, veremos que o

    conjunto dos nmeros cardinais possui quase todas as propriedades algbricas do conjunto

    dos nmeros naturais.

    Agradecemos aos colegas e alunos do Departamento de Matemtica que direta ou

    indiretamente contriburam para a realizao deste trabalho.

    Antnio de Andrade e Silva.

  • iv SUMRIO

  • Captulo 1

    O Mtodo Axiomtico

    Quando falamos que um objeto pertence a outro objeto, queremos dizer, simplesmente,

    que o primeiro deles depende do segundo. Situaes de pertinncia fazem-se presentes

    constantemente em nossa vida. Por exemplo, um ponto pertence a uma reta.

    A partir de agora, voc est convidado a nos acompanhar neste passeio pelo mundo

    dos axiomas e postulados. Juntos analisaremos detalhadamente as caracterizaes de um

    sistema de axiomas e a independncia de um axioma.

    importante salientar que alguma familiaridade com conceitos tais como: conjuntos,

    conjuntos numricos, espao vetorial, grupo, etc., necessrio para uma boa leitura deste

    captulo.

    No nosso dia-a-dia, os axiomas e postulados aparecem com mais frequncia na Geome-

    tria Plana.Considere, por exemplo,

    Se uma linha reta intercepta duas outras linhas retas formando ngulos interiores

    no mesmo lado menor do que dois ngulos retos, as duas linhas retas, se prolongadas

    indefinidamente se interceptaro no lado em que a soma menor que dois ngulos retos.

    Este e outros axiomas da Geometria Plana sero tratados neste captulo.

    1.1 Introduo Histrica

    Nesta seo apresentaremos um pouco da histria do surgimento do mtodo axiomtico

    na matemtica. O leitor interessado em mais detalhes pode consultar Wilder, R. L. [6].

    Nos textos de Geometria Plana, visto no ensino fundamental, encontramos dois grupos

    fundamentais de afirmaes, um chamado de axiomas e outro chamado de postulados.

    Formalmente:

    Um axioma uma afirmao que dispensa explicao, ou seja, uma verdade universal.

    Exemplo 1.1

    1. O todo maior do que cada uma de suas partes.

    2. O todo a soma de suas partes.

    1

  • 2 CAPTULO 1. O MTODO AXIOMTICO

    3. Coisas iguais a uma outra coisa so iguais entre si.

    Um postulado um fato geomtrico simples e bvio que podemos supor sua validade.

    Exemplo 1.2

    1. Dois pontos distintos determinam uma e somente uma reta.

    2. Uma reta pode ser estendida indefinidamente.

    3. Se r uma reta e P um ponto fora de r, ento existe uma nica reta s paralela reta r e passando por P .

    Um teorema uma verdade que no se torna evidente seno por meio de uma prova.

    Observao 1.3 Um teorema composto de duas partes:

    1.a Hiptese - o conjunto de suposies.

    2.a Tese - a consequncia que o raciocnio deduz da hiptese, por meio de verdades jconhecidas.

    Exemplo 1.4 A soma dos ngulos internos de um tringulo vale dois ngulos retos.

    Um lema um teorema auxiliar. Finalmente, um corolrio uma proposio que

    uma consequncia de um teorema previamante provado.

    Esses agrupamentos de axiomas e postulados j eram conhecidos em Aristteles (384-

    321, a.C.) e em Euclides (330-260, a.C.) como noes comuns e postulados. A partir

    dessas afirmaes e de um certo nmero de definies, Euclides demonstrou 465 teoremas

    em uma sequncia lgica. Por exemplo, o quinto postulado de Euclides, em sua forma

    original, foi enunciado como:

    E5 - Se uma linha reta intercepta duas outras linhas retas formando ngulos interioresno mesmo lado menor do que dois ngulos retos, as duas linhas retas, se prolongadas

    indefinidamente se interceptaro no lado em que a soma menor que dois ngulos retos.

    Proclus (Proclus Lycaeus, 412-485, d.C, filsofo grego) descreveu a controvrsia que

    estava se formando com relao a esse postulado mesmo nessa poca, sendo ele prprio a

    favor da eliminao do postulado por classific-lo de ingnuo, plausvel e sem carter de

    necessidade lgica.

    No perodo Renascentista inciou-se novo perodo de controvrcias com relao ao

    quinto postulado a partir dos outros postulados, ou seja, demonstr-lo a partir dos outros

    postulados e axiomas da geometria usando princpios da lgica.

    Duas retas distintas r e s, em Geometria Plana, so chamadas de paralelas se elas nose interceptam, isto , r s = . Assim, atualmente, o quinto postulado de Euclides enunciado como:

  • 1.1. INTRODUO HISTRICA 3

    E5 - Dada uma reta r e um ponto P fora de r, existe uma e somente uma reta s quecontm P e parelela reta r.

    Figura 1.1: Geometria Euclidiana.

    Note que esse postulado afirma que retas paralelas existem.

    No sculo dezenove, Lobachevsky (Nikolai Ivanovich Lobachevsky, 1792-1856, matem-

    tico russo) em 1820, Gauss (Carl Friedrich Gauss 1777-1855, matemtico alemo) e Bolyai

    (Jnos Bolyai, 1802-1860, matemtico hngaro) em 1823, descobriam que poderiam obter

    uma teoria matemtica consistente partindo de um postulado que afirma a existncia

    de infinidade de retas paralelas contendo P .

    Postulado de Lobachwski-Gauss-Bolyai - Dada uma reta r e um ponto P forade r, existem pelo menos duas retas s e t que contm P e so paralelas reta r.

    Figura 1.2: Geometria Hiperblica.

    Riemann (Georg Friedrich Bernhard Riemann, 1826-1866, matemtico alemo), des-

    cobriu uma nova geometria partindo de um postulado que nega a existncia de retas

    paralelas.

    Postulado de Riemann - Duas retas nunca so paralelas.

  • 4 CAPTULO 1. O MTODO AXIOMTICO

    Figura 1.3: Geometria Esfrica.

    Com esses postulados temos trs tipos de geometrias. Em cada uma dessas geometrias

    claro que precisamos de muitos outros postulados.

    Hilbert (David Hilbert, 1862-1943, matemtico alemo), em 1899, no seu clebre tra-

    balho Fundamentos da Geometria, apresenta a ideia de que apenas um nome - axiomas

    - deve ser usado com relao s proposies fundamentais, e que certos termos bsicos

    como ponto e reta so deixados completamente indefinidos.

    Embora esse trabalho de Hilbert seja reconhecido por muitos como sendo o primeiro

    a tratar de mtodo axiomtico em sua forma moderna, devemos reconhecer que ideias

    anlogas tambm apareceram em trabalhos de outros estudiosos da poca.

    Em 1882 apareceu a primeira edio do livro de Pasch (Moritz Pasch, 1843-1930,

    matemtico alemo) Vorlesungen ber Neuere Geometrie. Pasch baseou seu tratamento

    da geometria em um pequeno nmero de conceitos nucleares e proposies nucleares

    que so introduzidas respectivamente sem definio e sem demonstraes, mas que ele

    acredita ter uma base comum de aceitao pela nossa experincia. Depois que o sistema

    bsico de proposies (axiomas) introduzido, a deduo lgica das outras proposies do

    sistema so obtidas de forma rigorosa. Suas ideias foram descritas por ele mesmo como

    segue:

    Na realidade, se a geometria deve ser dedutiva, a deduo deve ser independente do

    significado dos conceitos geomtricos, da mesma forma que deve ser independente de dia-

    gramas; somente as relaes especificadas nas proposies e definies empregadas podem

    ser usadas. Durante a demonstrao til e correto, mas de modo algum necessrio, pen-

    sar no significado dos termos; alis, se for necessrio proceder desse modo a ineficincia

    da prova est clara. Se, entretanto, um teorema rigorosamente derivado de um conjunto

    de proposies (os axiomas), a demonstrao tem um valor que transcende o objetivo ini-

    cial. Pois se substituirmos os termos geomtricos nos axiomas por outros termos certos,

    proposies verdadeiras sero obtidas, ento fazendo substituies anlogas nos teoremas

    obteremos um novo teorema sem termos que repetir a demonstrao.

  • 1.2. MODELOS AXIOMTICOS 5

    1.2 Modelos Axiomticos

    Nesta seo apresentaremos alguns modelos axiomticos que sero necessrios para o

    desenvolvimetos deste texto.

    O modelo axiomtico organiza as matrias (teorias) de um modo sistemtico a partir

    de proposies primitivas e definies, procedendo ao desenvolvimento por via dedutiva.

    Um sistema de axiomas uma coleo formada pelos termos indefinidos, axiomas e

    teoremas. Agora, apresentaremos um sistema parcial de axiomas como uma amostra

    do modelo axiomtico.

    Exemplo 1.5 O sistema axiomas S da Geometria Euclidiana (plana).

    Termos indefinidos: Ponto e Reta.

    E1 - Toda reta uma coleo de pontos.

    E2 - Existem pelo menos dois pontos.

    E3 - Se P e Q so pontos distintos, ento existe uma e somente uma reta contendoP e Q.

    E4 - Se r uma reta, ento existe um ponto fora de r.

    E5 - Se r uma reta e P um ponto fora de r, ento existe uma e somente uma retas contendo P e paralela reta r.

    Observao 1.6 O sistema de axiomas S da Geometria Plana (Euclidiana)

    1. Ponto e reta desempenham o mesmo papel que as variveis em equaes algbricas,

    por exemplo,

    (x+ y)2 = x2 + xy + yx+ y2,

    com x e y representando qualquer objeto (nmero, matriz, etc.) de um certo conjuntoespecificado.

    2. Note que o axioma E1 estabelece uma relao entre os termos indefinidos ponto ereta.

    3. Vamos mostrar, com um exemplo, que o sistema de axiomas S no adequado paraa Geometria Euclidiana. Seja C uma cidade com duas bibliotecas distintas,

    C = {b1, b2} ,

    em que os termos indefinidos so: livro = ponto e biblioteca = reta. Note que

    o axioma E3 no satisfeito, enquanto os outros o so.

  • 6 CAPTULO 1. O MTODO AXIOMTICO

    4. Seja Z uma comunidade formada de quatro pessoas

    Z = {a, b, c, d}

    e seis clubes

    ab, ac, ad, bc, bd e cd,

    em que os termos indefinidos so: pessoa = ponto e clube = reta. Ento todos

    os axiomas so satisfeitos.

    Teorema 1.7 Todo ponto pertence a pelo menos duas retas distintas.

    Prova. Seja P um ponto qualquer. Pelo axioma E2 existe um ponto Q distinto de P .Pelo axioma E3 existe uma e somente uma reta r contendo P e Q. Alm disso, peloaxioma E4 existe um ponto R fora de r. Novamente, pelo axioma E3 existe uma reta scontendo P e R. Finalmente, pelo axioma E1 temos que r 6= s, com r s = {P}.

    Figura 1.4: Esboo da Prova.

    Corolrio 1.8 Toda reta contm pelo menos um ponto.

    Prova. Pelo axioma E2 existe um ponto P e pelo Teorema 1.7 existem duas retas distintasr e s contendo P . Agora, suponhamos, por absurdo, que exista uma reta t sem pontos.Ento, por definio, r e s so paralelas reta t. Como P est fora de t temos, peloaxioma E5 que existe uma e somente uma reta u contendo P e paralela reta t, o que uma contradio.

    Teorema 1.9 Toda reta contm pelo menos dois pontos.

    Prova. Seja r uma reta qualquer. Ento, pelo Corolrio 1.8, r contm um ponto P epelo Teorema 1.7, existe uma reta s distinta de r contendo P . Logo, existe um ponto Qtal que

    (Q r e Q / s) ou (Q / r e Q s).

    Se Q r, ento o Teorema est provado. Se Q s, ento, pelo axioma E4 existe umponto R fora de s. Assim, temos duas possibilidades: se R r, ento o Teorema est

  • 1.2. MODELOS AXIOMTICOS 7

    provado. Se R / r, ento pelo axioma E5 existe uma e somente uma reta t contendo R eparalela reta s.Afirmao. r t 6= .

    De fato, se r t = , ento a reta t paralela reta r. Logo, r e s so retas contendo Pe paralelas reta t, o que contradiz o axioma E5. Seja X r t. Ento X um pontodistinto de P , pois P / t. Portanto, r contm pelo menos dois pontos P e X.

    Figura 1.5: Esboo da Prova.

    Corolrio 1.10 Toda reta fica completamente determinada por quaisquer dois de seuspontos que sejam distintos.

    Prova. Seja r uma reta qualquer. Ento, pelo Teorema 1.9, a reta r contm dois pontosdistintos P e Q. Portanto, pelo axioma E3, a reta r completamente determinada pelospontos P e Q.

    Teorema 1.11 Existem pelo menos quatro pontos distintos.

    Prova. Pelo axioma E2 existem pelo menos dois pontos distintos P e Q. Pelo axioma E3existe uma nica reta r contendo P e Q. Alm disso, pelo axioma E4 existe um ponto Rfora de r e, pelo axioma E5, existe uma reta s contendo R e paralela reta r. Finalmente,pelo Teorema 1.9, s contm um ponto S distinto de R. Portanto, existem pelo menosquatro pontos P , Q, R e S.

    Figura 1.6: Esboo da Prova.

    Teorema 1.12 Existem pelo menos seis retas distintas.

  • 8 CAPTULO 1. O MTODO AXIOMTICO

    Prova. Pela prova do Teorema 1.11, existe uma reta r contendo P e Q; uma reta sparalela reta r contendo pontos distintos R e S. Logo, pelo axioma E3 existem retas u ev contendo Q e S; P e R, respectivamente. Note que Q / v, pois se Q v, ento v = r eR r, o que impossvel. De modo inteiramente anlogo, prova-se que S / v e P,R / u.Novamente, pelo axioma E3 existem retas t e x contendo P e S; Q e R, respectivamente.Observe que Q / t e S / x. Portanto, r, s, t, u, v e x so retas distintas.

    Figura 1.7: Esboo da Prova.

    Note, nas provas dos resultados acima, que as Figuras nos ajudam a memorizar os

    vrios smbolos

    (r, s, P,Q, . . .)

    bem como, seus significados de maneira mais fcil. No obstante, nenhum significado

    especial foi dado aos termos ponto e reta, e, consequentemente, so vlidas se substi-

    tuirmos pessoas por pontos e duas pessoas por reta. Alm disso, claro que no provamos

    acima todos os teoremas possveis.

    Finalizaremos esta seo apresentado mais um exemplo de sistema de axiomas para

    definirmos um corpo.

    Exemplo 1.13 O sistema axiomas F formado por um conjunto no vazio K de objetos(corpo).

    Termo indefinido: Objetos (Elementos).

    O conjunto K munido com duas operaes binrias:

    + : K K K(a, b) 7 a+ b e

    : K K K(a, b) 7 a b

    chamadas adio e multipicao tais que os seguintes axiomas so satisfeitos:

    F1 - Sejam a, b, c, d K. Se a = c e b = d, ento a+ b = c+ d, isto , a operao+ est bem definida.

  • 1.2. MODELOS AXIOMTICOS 9

    F2 - a+ (b+ c) = (a+ b) + c, para todos a, b, c K.

    F3 - Existe 0 K tal que a+ 0 = 0 + a = a, para todo a K.

    F4 - Para cada a K, existe a K tal que a+ (a) = (a) + a = 0.

    F5 - a+ b = b+ a, para todos a, b K.

    F6 - Sejam a, b, c, d K. Se a = c e b = d, ento a b = c d, isto , a operao est bem definida

    F7 - a (b c) = (a b) c, para todos a, b, c K.

    F8 - Existe 1 K tal que a 1 = 1 a = a, para todo a K.

    F9 - O elemento 0 diferente do elemento 1, isto , K possui pelo menos doiselementos.

    F10 - Para cada a K, existe a1 K tal que a a1 = a1 a = 1.

    F11 - a b = b a, para todos a, b K.

    F12 - A operao binria + distributiva sobre a operao binria , isto ,

    a (b+ c) = a c+ a b e (a+ b) c = a c+ b c, a, b, c K.

    Teorema 1.14 Sejam K um corpo e a, b, x K.

    1. Se a+ x = a, ento x = 0.

    2. Se b 6= 0 e b x = b, ento x = 1.

    3. Se a+ b = 0, ento b = a.

    4. A equao a+ x = b possui uma nica soluo x = (a) + b.

    5. Se b 6= 0, ento a equao b x = a possui uma nica soluo

    x = b1 a = ab.

    6. x 0 = 0 x = 0.

    7. x = (1)x.

    8. (a+ b) = (a) + (b).

    9. (x) = x.

    10. (1) (1) = 1.

  • 10 CAPTULO 1. O MTODO AXIOMTICO

    11. No existe y K tal que 0 y = 1.

    Prova. Vamos provar apenas os itens (6), (8) e (11): (6) Pelo axioma F3, 1 = 1 + 0.Logo, pelo axioma F1,

    x 1 = x (1 + 0).Assim, pelos axiomas F8 e F12, x = x+ x 0. Portanto, pelo item (1), x 0 = 0.(8) Pelo item (7), (a+ b) = (1)(a+ b). Pelo axioma F12,

    (1)(a+ b) = (1)a+ (1)b.

    Novamente, pelo item (7),

    (1)a+ (1)b = (a) + (b).

    Portanto, (a+ b) = (a) + (b).(11) Pelo item (6), 0 x = 0, para todo x K. Suponhamos, por absurdo, que exista

    y K tal que 0 y = 1. Ento0 = 0 y = 1,

    o que contradiz o axioma F9.

    EXERCCIOS

    1. O sistema axiomas V formado por um conjunto no vazio V de vetores (espaovetorial).

    Termo indefinido: Vetores.

    O conjunto V munido com duas operaes:

    + : V V V(u, v) 7 u+ v e

    : K V V(a, u) 7 a u

    chamadas adio e multipicao por escalar tais que os seguintes axiomas so

    satisfeitos:

    V1 - Sejam u, v, w, t V . Se u = w e v = t, ento u + v = w + t, isto , aoperao + est bem definida.

    V2 - u+ (v + w) = (u+ v) + w, para todos u, v, w V .

    V3 - Existe 0 V tal que u+ 0 = 0 + u = u, para todo u V .

    V4 - Para cada u V , existe u V tal que u+ (u) = (u) + u = 0.

    V5 - u+ v = v + u, para todos u, v V .

  • 1.2. MODELOS AXIOMTICOS 11

    V6 - Sejam a, b K e u, v V , em que K um corpo. Se a = b e u = v, entoa u = b v, isto , a operao est bem definida.V7 - (ab) u = a(b u), para todo u V e a, b K.V8 - (a+ b) u = a u+ b u, para todo u V e a, b K.V9 - a (u+ v) = a u+ a v, para todos u, v V e a K.V10 - 1 u = u, para todo u V .

    (a) Mostre que o vetor 0 nico em V .

    (b) Mostre que o vetor u nico em V .

    (c) Mostre que existe um nico x V tal que u+ x = v, para todos u, v V .

    (d) Mostre que se u+ u = u, ento u = 0.

    (e) Mostre que a 0 = 0, para todo 0 V e a K.(f) Mostre que 0 u = 0, para todo u V e 0 K.(g) Mostre que se a u = 0, ento a = 0 ou u = 0, com u V e a K.(h) Mostre que u = (1)u, para todo u V .

    (i) Mostre que (a) u = a (u) = (a u), para todo u V e a K.

    2. Mostre que o conjunto dos nmeros complexos

    C = {a+ bi : a, b R e i2 = 1}

    satisfaz o sistema de axiomas V com as operaes usuais, onde K = R.

    3. O sistema de axiomas G formado por um conjunto no vazio G objetos (grupo).

    Termo indefinido: Objetos.

    O conjunto G munido com uma operao binria:

    : GG G(a, b) 7 a b

    chamada produto tais que os seguintes axiomas so satisfeitos:

    G1 - Sejam a, b, c, d G. Se a = c e b = d, ento a b = c d, isto , a operao est bem definida.G2 - a (b c) = (a b) c, para todos a, b, c G.G3 - Existe e G tal que a e = e a = a, para todo a G.G4 - Para cada a G, existe a1 G tal que a a1 = a1 a = e.

    (a) Mostre que o elemento e nico em G.

  • 12 CAPTULO 1. O MTODO AXIOMTICO

    (b) Mostre que o elemento a1 nico em G.

    (c) Para quaisquer a, b G, as equaes a x = b e y a = b possuem soluesnicas x, y G.

    (d) As funes Lc : G G e Rc : G G definidas por Lc(x) = c x eRc(x) = x c, respectivamente, so bijetoras, para todo c G fixado.

    4. Mostre que o conjunto das matrizes invertveis

    GL 2(R) = {A M2(R) : det(A) 6= 0}

    satisfaz o sistema de axiomas G com as operaes usuais de matrizes.

    1.3 Caracterizao de um Sistema de Axiomas

    Quando os termos indefinidos e os axiomas forem selecionados, como poderemos garan-

    tir que o sistema de axiomas obtido adequado aos propsitos para que foi estabelecido?

    Se, por exemplo, ele foi estabelecido para servir de base para os fundamentos da Geometria

    Plana, ento desejaramos saber de alguma maneira se de fato os axiomas estabelecidos

    so suficientes. Outra questo que poderamos abordar, sobre a independncia dos

    axiomas; algum dos axiomas pode ser provado a partir dos outros, e caso isto ocorra, no

    deveramos enunci-lo como um teorema para ser depois demonstrado?

    A experincia tem mostrado, entretanto, que uma questo mais fundamental a

    seguinte: o sistema implica teoremas contraditrios? Se isto ocorre, ento claro que

    alguma coisa est errada, e teremos ento que eliminar este defeito antes de abordarmos

    qualquer outro aspecto. Consideraremos portanto esta questo em primeiro lugar.

    Seja um sistema de axiomas. Diremos que consistente se ele no implicarteoremas contraditrios. Caso contrrio, diremos que inconsistente.

    Observao 1.15 Como cada axioma implicado pelo sistema de axiomas temos, emparticular, que um sistema de axiomas consistentes no pode ter axiomas contraditrios.

    Exemplo 1.16 Se acrescentarmos o axioma, E6 - Existe no mximo trs pontos, aosistema de axiomas S da Observao 1.6, ento S inconsistente, pois, contradiz o Teo-rema 1.11, Existem pelo menos quatro pontos.

    Seja um sistema de axiomas. Uma interpretao de uma atribuio de significa-dos aos termos indefinidos do sistema, de modo que os axiomas se tornem simultaneamente

    proposies verdadeiras para todos os valores variveis (por exemplo, pontos e retas no

    sistema S).

    Exemplo 1.17 O conjunto Z de quatro pessoas uma interpretao para o sistema deaxiomas S da Observao 1.6.

  • 1.3. CARACTERIZAO DE UM SISTEMA DE AXIOMAS 13

    Exemplo 1.18 O conjunto de todos os nmeros reais R uma interpretao para osistema de axiomas F do Exemplo 1.13.

    Seja um sistema de axiomas. Ummodelo para o resultado de uma interpretao.Assim, o conjunto de todos os nmeros reais R um modelo do sistema de axiomas F ,e a coleo de quatro pessoas Z tambm um modelo para o sistema S. Em geral,quando fazemos uma interpretao I de um sistema de axiomas , o modelo resultanteda interpretao ser representado por M(I).Para alguns modelos de um sistema de axiomas , alguns axiomas do sistema podem

    ser verdadeiros por vacuidade, isto , axiomas da forma se . . . , ento . . . (p q),que chamaremos de axiomas condicionais, podem ser verdadeiros quando interpretados

    simplesmente porque a parte condicional se . . . no satisfeita pelo modelo.

    Exemplo 1.19 Sejam p a sentena dois ngulos opostos pelo vrtice e q a sentenadois ngulos congruentes. Ento comprove intuitivamente a tabela da sentena p qsendo verdadeira se pudermos desenhar o diagrama dos ngulos, caso contrrio, falsa.

    p q p q ( p) qV V V V

    V F F F

    F V V V

    F F V V

    Seja um sistema de axiomas. Diremos que satisfatrio se ele admitir umainterpretao.

    Exemplo 1.20 Os sistemas de axiomas S e F da Observao 1.6 e do Exemplo 1.13,respectivamente, so satisfatrios.

    Vamos determinar ummtodo de verificarmos a consistncia de um sistema de axiomas

    . Para isso, vamos relembrar dois princpios da lgica clssica (Aristoteliana). Seja puma sentena (ou proposio). Ento:

    1. Princpio da contradio. Se p verdadeira, ento p falsa, isto , dadasduas proposies contraditrias uma delas falsa.

    2. Princpio do terceiro excludo. p ou p sempre verdadeira, isto , dadasduas proposies contraditrias uma delas sempre verdadeira.

    Exemplo 1.21 Seja p a proposio hoje quarta-feira. O princpio da contradiovale, pois hoje no pode ser ambos quarta-feira e quinta-feira. O princpio do terceiro

    excludo afirma p ou p sempre verdadeira.

  • 14 CAPTULO 1. O MTODO AXIOMTICO

    Exemplo 1.22 Seja A um conjunto e P (x) uma propriedade a qual significativa paracada elemento x em A. O princpio do terceiro excludo afirma ou existe um x A talque P (x) verdadeira ou ao contrrio, P (x) falsa, para todo x A.

    Seja um sistema de axiomas. Uma -proposio uma proposio que pode serexpressa com base nos termos indefinidos e universais de .

    Exemplo 1.23 Os axiomas e teoremas de so -proposio.

    Vamos enunciar mais dois princpios da lgica aplicados ao sistema de axiomas .

    I. Todas as proposies implicadas pelos axiomas de , so verdadeiras para todos osmodelos de .

    II. O princpio da contradio se aplica a todas as proposies sobre um modelo de ,desde que elas sejam -proposies cujos termos tcnicos tenham os siginificadosdados na interpretao.

    Sejam um sistema de axiomas e I uma interpretao de . Uma (, I)-proposico o resultado de atribuirmos aos termos tcnicos em uma -proposio seus significadosem I. Assim, os princpios (I) e (II) podem ser enunciados como seguem:

    I. Toda (, I)-proposio, tal que a correspondente -proposio implicada por , verdadeira para M(I).

    II. (, I)-proposies contraditrias no podem ser ambas verdadeiras para M(I).

    Teorema 1.24 Seja um sistema de axiomas. Se satisfatrio, ento ele consis-tente.

    Prova. Suponhamos, por absurdo, que seja inconsistente. Ento existe duas -proposies contraditrias em . Logo, pelo princpio (I0), essas proposies podem servistas como (, I)-proposies e so ambas verdadeiras para M(I), o que contradiz oprincpio (II). Portanto, um sistema consistente.

    Observao 1.25 Seja um sistema de axiomas. A existncia de uma interpretaoem garante a sua consistncia.

    Exemplo 1.26 A interpretao I = R garante a consistncia do sistema de axiomas Fdo Exemplo 1.13.

    Sejam um sistema de axiomas satisfatrio e A1, . . . , An os axiomas de . Diremosque um axioma Aj independente em se o sistema de axiomas

    (Aj) + ( Aj)

    for satisfatrio, ou seja, o sistema de axiomas exclundo o axioma Aj mais a negaodo axioma Aj satisfatrio.

  • 1.3. CARACTERIZAO DE UM SISTEMA DE AXIOMAS 15

    Observao 1.27 Sejam um sistema de axiomas e A1, . . . , An os axiomas de . SeAj for provado pelo sistema de axiomas Aj, ento Aj no independente. Neste caso,todo modelo que satisfaa Aj satisfaz necessariamente Aj (prove isso!) e, portanto,no podemos achar uma interpretao para Aj, que no seja interpretao de Aj.

    Exemplo 1.28 O axioma E5 do sistema de axiomas S da Observao 1.6 independente.

    Soluo. Seja E6 o seguinte axioma: existe uma reta r e um ponto P fora de r tal queno existe nenhuma reta s contendo P e paralela reta r.Afirmao. E6 = E5 e (S E5) +E6 um sistema de axiomas satisfatrio.

    De fato, seja M o conjunto de trs moedas distintas, em que moeda = ponto e par demoedas = reta. Ento fcil verificar que os axiomas E1, E2, E3 e E4 de S so satisfeitos,mas o axioma E5 no satisfeito. Assim, M uma interpretao para (S E5) + E6.Portanto, (S E5) +E6 satisfatrio e E5 independente em S.

    Exemplo 1.29 O axioma F10 do sistema axiomas F do Exemplo 1.13 independente.

    Soluo. Seja F13 o axioma: para cada a K, no existe a1 K tal que a a1 =a1 a = 1.Afirmao. F13 = F10 e (F F10) + F13 um sistema de axiomas satisfatrio.

    De fato, o conjunto dos nmeros inteiros Z, com as operaes usuais de adio e multipli-cao, uma interpretao para (F F10)+F13. Portanto, (F F10)+F13 satisfatrioe F10 independente em F .

    Exemplo 1.30 O axioma F5 do sistema axiomas F do Exemplo 1.13 no independente.

    Soluo. Primeiro vamos desenvolver (a+ b) (1 + 1) de duas maneiras: Pelos axiomasF12, F8 e F2, obtemos

    (a+ b) (1 + 1) = (a+ b) 1 + (a+ b) 1 = (a+ b) 1 + (a+ b) = a+ (b+ a) + b.

    Por outro lado, pelos axiomas F12, F8 e F2, obtemos

    (a+ b)(1 + 1) = a(1 + 1) + b(1 + 1) = (a+ a) + (b+ b) = a+ (a+ b) + b.

    Logo,

    a+ (b+ a) + b = a+ (a+ b) + b.

    Portanto, pelos axiomas F3, F4 e F2, obtemos

    a+ b = [0 + (a+ b)] + 0 = (a) + [a+ (a+ b) + b] + (b)= (a) + [a+ (b+ a) + b] + (b) = [0 + (b+ a)] + 0= b+ a,

  • 16 CAPTULO 1. O MTODO AXIOMTICO

    que o resultado desejado.

    Sabemos que com o sistema axiomas S no podemos provar todos os teoremas daGeometria Plana (Euclidiana). Na realidade vimos uma interpretao para o sistema Scom apenas um nmero finito de pontos. claro que isto no deveria ocorrer se fosse um

    sistema adequado para o estudo da Geometria Plana.

    Agora, vamos iniciar a noo de completividade de um sistema de axiomas, com a

    ideia de serem os axiomas desses sistemas suficientes para provarmos todos os teoremas,

    podemos afirmar que se encontrarmos um teorema tal que, tanto ele como sua negao

    no podem ser provados no sistema, ento esse teorema um candidato a um novo

    axioma do sistema.

    Seja um sistema de axiomas. Diremos que independente se todos os axiomas de o so.

    Exemplo 1.31 O sistema axiomas F do Exemplo 1.13 no independente.

    Seja um sistema de axiomas. Diremos que completo se no existir uma -proposio p tal que p seja um axioma independente em + p, isto , os sistemas deaxiomas + p e + ( p) sejam satisfatrios.

    Observao 1.32 Seja um sistema de axiomas. Vimos que completo se for impos-svel adicion-lo um novo axioma independente. Neste caso, os termos indefinidos devem

    permanecer os mesmos.

    Exemplo 1.33 O sistema de axiomas S da Observao 1.6 no completo. Pois se E6 o axioma: existe no mximo quatro pontos, ento S+E6 e S+( E6) so satisfatrios,um vez que, o primeiro admite a interpretao das quatro pessoas e o segundo admite a

    interpretao da Geometria Euclidiana.

    Sejam um sistema de axiomas e M1, M2 dois modelos para . Diremos que M1 isomorfo a M2 se existir uma funo bijetora de M1 sobre M2 que preserva as -proposies.

    Exemplo 1.34 Sejam E6 o axioma: existe no mximo quatro pontos e S 0 = S+E6 umsistema de axiomas. Ento os modelosM1 =M(I1) eM2 =M(I2) para S 0 so isomorfos,onde I1 = conjunto de quatro pessoas e I2 = conjunto de quatro moedas.

    Com a definio de isomorfismo nossa disposio, podemos determinar um mtodo

    que nos permita verificar a completividade de um sistema de axiomas. Este mtodo

    baseia-se no seguinte conceito:

    Seja um sistema de axiomas. Diremos que categrico se quaisquer dois modelospara so isomorfos com relao a .

    Teorema 1.35 Seja um sistema de axiomas. Se categrico, ento ele completo.

  • 1.3. CARACTERIZAO DE UM SISTEMA DE AXIOMAS 17

    Prova. Suponhamos, por absurdo, que no seja completo. Ento existe uma -proposio p tal que +p e + p sejam satisfatrios. Logo, existem uma interpretaoI1 para + p e I2 para + p, respectivamente. Como categrico temos que existeuma funo bijetora

    :M(I1)M(I2)

    que preserva -proposies, o que uma contradio, pois p verdadeira em M(I1) efalsa em M(I2).

    Para finalizamos esta seo vamos fazer alguns comentrios sobre as vantagens do

    mtodo axiomtico: o primeiro a economia que obtemos quando um sistema de ax-

    iomas possui muitos modelos em diferentes ramos da matemtica; pois um nico teo-rema em fornece um teorema em cada intepretao; sem que seja necessrio uma provaespecial uma vez que o teorema foi provado no sistema . Outra grande vantagem domtodo axiomtico que merece especial ateno o carter de definio implcita. Embora

    a origem e o desenvolvimento matemtico pode ocorrer por linhas inteiramente diversas,

    uma vez o conceito estabelecido, a sua caracterizao axiomtica extremamente vanta-

    josa. Por exemplo, o desenvolvimento do sistema de todos os nmeros reais, que forma

    os fundamentos da moderna Anlise, e evoluiu vagarosamente durante muitos sculos.

    Atualmente, como veremos neste texto, podemos dar uma definio axiomtica precisa

    e estudarmos suas propriedades atravs de teoremas baseados nos axiomas. Muitos outros

    conceitos matemticos se desenvolveram de modo anlogo.

    EXERCCIOS

    1. Mostre que o axioma F9 do sistema axiomas F do Exemplo 1.13 independente.

    2. Seja G o sistema de axiomas do Exerccios 1 da Seo 1.2.

    (a) Mostre que V no independente.(b) Mostre que o axioma V10 de V independente.

    3. Seja G o sistema de axiomas do Exerccios 3 da Seo 1.2.

    (a) Mostre que o conjunto de todos os nmeros reais no nulos R com a multipli-cao usual um modelo para G.

    (b) Mostre que o conjunto de todos os nmeros racionais Q com a soma usual um modelo para G.

    (c) O sistema de axiomas G consistente?(d) O sistema de axiomas G categrico?

  • 18 CAPTULO 1. O MTODO AXIOMTICO

    (e) Mostre que cada axioma de G independente.

    4. O sistema axiomas A formado por um conjunto no vazio A de objetos (anel).

    Termo indefinido: Objetos.

    O conjunto A munido com duas operaes binrias:

    + : AA A(a, b) 7 a+ b e

    : AA A(a, b) 7 a b

    chamadas adio e multipicao tais que os seguintes axiomas so satisfeitos:

    A1 - Sejam a, b, c, d A. Se a = c e b = d, ento a + b = c + d, isto , aoperao + est bem definida.

    A2 - a+ (b+ c) = (a+ b) + c, para todos a, b, c A.

    A3 - Existe 0 A tal que a+ 0 = 0 + a = a, para todo a A.

    A4 - Para cada a A, existe a A tal que a+ (a) = (a) + a = 0.

    A5 - a+ b = b+ a, para todos a, b A.

    A6 - Sejam a, b, c, d A. Se a = c e b = d, ento a b = c d, isto , a operao est bem definidaA7 - a (b c) = (a b) c, para todos a, b, c A.A8 - A operao binria + distributiva sobre a operao binria , isto ,

    a (b+ c) = a c+ a b e (a+ b) c = a c+ b c, a, b, c A.

    (a) Mostre que o conjunto de todos os nmeros inteiros Z com a soma e a multi-plicao usual um modelo para A.

    (b) Mostre que o conjunto de todas as matrizesM2(R) com a soma e a multiplicaousual um modelo para A.

    (c) O sistema de axiomas A consistente?(d) O sistema de axiomas A categrico?(e) O sistema de axiomas A completo?

    5. SejaX um conjunto no vazio qualquer. Uma relao binria sobreX uma funoR : X X {0, 1} definida como

    R(x, y) =(1, se x est relacionado com y0, se x no est relacionado com y.

    QuandoR(x, y) = 1 conveniente escrever xRy. Uma relao de equivalncia sobreX uma relao binria R sobre X tal que os seguintes axiomas so satisfeitos:

  • 1.3. CARACTERIZAO DE UM SISTEMA DE AXIOMAS 19

    R1 - xRx, para todo x X.R2 - Se xRy, ento yRx, para todos x, y X.R3 - Se xRy e yRz, ento xRz, para todos x, y, z X.

    (a) Seja X = Z Z. Para (a, b), (c, d) X, definimos a relao binria

    (a, b)R(c, d) ad = bc.

    Mostre que X um modelo para R.(b) Seja Y = {1, 2, 3}. Definimos a relao binria

    R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)}.

    Mostre que Y um modelo para R.(c) O sistema de axiomas R consistente?(d) O sistema de axiomas R categrico?(e) Mostre que cada axioma de R independente.

    6. Seja X um conjunto no vazio qualquer. Uma relao de ordem (parcial) sobre X uma relao binria P sobre X tal que os seguintes axiomas so satisfeitos:

    P1 - xPx, para todo x X.P2 - Se xPy e yPx, ento x = y, para todos x, y X.P3 - Se xPy e yPz, ento xPz, para todos x, y, z X.

    (a) Seja X = N. Para x, y X, definimos

    xPy x um mltiplo de y ou y um divisor de x.

    Mostre que X um modelo para P.(b) Sejam Y = {1, 2, 3} um conjunto e P(Y ) o conjunto das potncias de Y . Para

    A,B P(Y ), definimosAPB A B.

    Mostre que P(Y ) um modelo para P.(c) O sistema de axiomas P consistente?(d) O sistema de axiomas P categrico?(e) Mostre que cada axioma de P independente.

    7. Seja X um conjunto no vazio qualquer. Uma ordem simples sobre X uma relaobinria sobre X tal que os seguintes axiomas so satisfeitos:

  • 20 CAPTULO 1. O MTODO AXIOMTICO

    S1 - Se x, y X, com x 6= y, ento x y ou y x.S2 - Se x y, ento x 6= y, para todos x, y X.S3 - Se x y e y z, ento x z, para todos x, y, z X.

    (a) Mostre que se x, y X, ento x y ou y x e no ambos

    (b) Sejam X = R e x < y significa que x est esquerda de y. Mostre que X um modelo para .

    (c) Sejam X = N e x < y significa que x menor do que y. Mostre que X ummodelo para .

    (d) O sistema consistente?

    (e) O sistema categrico?

    8. Seja X um conjunto no vazio qualquer. Uma coleo T de subconjuntos de X,chamados abertos de X, uma topologia sobre X se os seguintes axiomas so sa-tisfeitas:

    T1 - , X T .T2 - A unio de um nmero qualquer de conjunto de T pertence a T .T3 - A interseo de dois conjuntos quaisquer de T pertence a T .

    (a) Mostre que o conjunto de todos os intervalos abertos da reta real R ummodelo para T .

    (b) Sejam

    X = {1, 2, 3, 4, 5} e B = {,X, {1}, {3, 4}, {1, 3, 4}, {2, 3, 4, 5}}.

    Mostre que B um modelo para T .(c) O sistema T consistente?(d) O sistema T categrico?

    Respostas, Sugestes ou Solues importante observar que os exerccios deste Captulo constam de dois objetos: Um

    conjunto de pontos P e um conjunto de retas R formado de subconjuntos de P .

    Seo 1.2

  • 1.3. CARACTERIZAO DE UM SISTEMA DE AXIOMAS 21

    1. Vamos provar apenas os itens (a) e (e): (a) Suponhamos que exista outro vetor00 V tal que u+ 00 = u, para todo u V . Ento, pelo axioma V3, obtemos

    0 = 0 + 00 = 00.

    (e) Pelo axioma V3, u + 0 = u, para todo u V . Em particular, 0 + 0 = 0. Logo,pelos axiomas V6 e V9, obtemos

    a0 = a(0 + 0) = a0 + a0.

    Portanto, pelo item (a), a0 = 0.

    2. fcil verificar que C munido com as operaes

    + : CC C(z, w) 7 z + w e

    : RC C(a, z) 7 a z

    satisfaz o sistema de axiomas V, pois R um subcorpo de C e essas operaes jexistem de modo natural em C.

    3. Vamos provar apenas o item (c). claro que x0 = a1 b uma soluo da equaoa x = b, pois pelos axiomas G2, G4 e G3, obtemos

    a x0 = a (a1 b) = (a a1) b = e b = b.Agora, se x1 outra soluo da equao a x = b, ento, pelos axiomas G3, G4 eG2, obtemos

    x1 = e x1 = (a1 a) x1 = a1 (a x1) = a1 b = x0.

    4. Dados A,B GL 2(R). Ento, pelo Teorema de Binet-Cauchy, obtemos

    det(AB) = det(A) det(B) 6= 0.Logo, AB GL 2(R), isto , o produto usual de matrizes satisfaz o axioma G1. claro que essa operao satisfaz o axioma G2 e a matriz identidade I2 satisfazo axioma G3. Se A M2(R) tal que det(A) 6= 0, ento, com alguns clculos,obtemos

    A1 =1

    det(A)

    "a22 a12

    a21 a11

    #,

    em que

    A =

    "a11 a12a21 a22

    #.

    Como

    det(A1) =1

    det(A)6= 0

    temos que

    A1 GL 2(R) e AA1 = A1A = I2,

    ou seja, GL 2(R) satisfaz o axioma G4.

  • 22 CAPTULO 1. O MTODO AXIOMTICO

    Seo 1.31. Seja F13 o axioma: K possui no mximo dois elementos. Ento F13 = F9 e(F F9)+F13 um sistema de axiomas satisfatrio. De fato, o conjuntoK = {0, 1}munido com as operaes binrias dadas pelas tbuas:

    0 10 0 1

    1 1 0

    e 0 10 0 0

    1 0 1

    uma interpretao para (F F9) + F13. Portanto, (F F9) + F13 satisfatrioe F9 independente em F . Note que para provar que K satisfaz a maioria dos osaxiomas de F , basta verificar que a funo f : Z K definida como

    f(n) =

    (0, se n par1, se n mpar

    sobrejetora e satisfaz as propriedades f(m+n) = f(m)f(n); f(mn) = f(m)f(n).

    2. (a) Use o mesmo argumento do Exemplo 1.28 para provar que o axioma V5 no independente.

    (b) Seja V11 o axioma: existe u V tal que 1 u 6= u. Ento V11 = V10 e(V V10) + V11 um sistema de axiomas satisfatrio. De fato, o conjunto V = R2munido com as operaes de adio e multiplicao por escalar

    u+ v = (x1 + y1, x2 + y2) e a u = (ax1, 0),

    onde u = (x1, x2), v = (y1, y2) V e a R, uma interpretao para (V V10)+V11.Portanto, (V V10) + V11 satisfatrio e V10 independente em V.

    3. (a) fcil verificar que R munido com a operao binria

    : R R R(a, b) 7 a b

    satisfaz o sistema de axiomas G.(b) Novamente, fcil verificar que Q munido com a operao binria

    + : QQ Q(a, b) 7 a+ b

    satisfaz o sistema de axiomas G.(c) O sistema de axiomas G consistente, pois o item (a) ou (b) serve como umainterpretao para G.(d) No, os modelos M(R) e M(Q) no so isomorfos.

  • 1.3. CARACTERIZAO DE UM SISTEMA DE AXIOMAS 23

    (e) Vamos provar apenas que o axioma G4 independente. Seja G5 o axioma:para cada a G, a 6= e, no existe a1 G tal que a a1 = a1 a = e. EntoG5 = ( G4) e (G G4)+G5 um sistema de axiomas satisfatrio, pois o conjuntodos nmeros inteiros Z, com a operao usual de multiplicao, uma interpretaopara (G G4)+G5. Portanto, (G G4)+G5 satisfatrio e F4 independente emG.

    4. Vamos provar apenas o item (e). No, pois se A9 o axioma:

    a b = b a, a, b A,

    ento A + A9 e A + ( A9) so satisfatrios, um vez que, o primeiro admite ainterpretao do item (a) e o segundo admite a interpretao do item (b).

    5. (e) Vamos provar apenas que o axiomaR1 independente. SejaR4 o axioma: existex X tal que x no est relacionado com x, isto , R(x, x) = 0. Ento R4 = R1 e(RR1) +R4 um sistema de axiomas satisfatrio, pois o conjunto X = {1, 2, 3},com a relao binria

    R1 = {(1, 1), (2, 2), (1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)},

    uma interpretao para (RR1) +R4. Portanto, (RR1) +R4 satisfatrio eR1 independente em R.

    6. (e) Vamos provar apenas que o axioma P2 independente. Seja P4 o axioma:existem x, y X tais que xPy e yPx, mas x 6= y. Ento P4 = P2 e (P P2)+P4 um sistema de axiomas satisfatrio, pois o conjunto X = Z, com a relao binria

    xPy x um mltiplo de y ou y um divisor de x,

    uma interpretao para (P P2) + P4. Portanto, (P P2) + P4 satisfatrio eP2 independente em P.

    7. Vamos provar apenas o item (e). Se x y e y x, ento pelo axioma S3, obtemosx x, o que impossvel.

    8. (a) Seja I o conjunto de todos os intervalos abertos de R. claro que ,R T .Seja

    J =[

    I

    uma unio qualquer de intervalos abertos de I. Ento devemos provar que J umintervalo aberto, ou seja, dado x J , existe > 0 tal que

    x (x , x+ ) J.

  • 24 CAPTULO 1. O MTODO AXIOMTICO

    Dado x J , existe tal que x I. Como I um intervalo aberto temos queexiste > 0 tal que

    x (x , x+ ) I.

    Portanto,

    x (x , x+ ) I J

    e J T . Finalmente, dados intervalos abertos I1 e I2 de I. Ento devemos provarque I1I2 um intervalo aberto. Dado x I1I2, obtemos x I1 e x I2. Assim,existem 1 > 0 e 2 > 0 tais que

    x (x 1, x+ 1) I1 e x (x 2, x+ 2) I2.

    Pondo = min{1, 2}, obtemos

    x (x , x+ ) I1 I2.

    Portanto, I1 I2 T , ou seja, I um modelo para T .(b) Verificao direta de unio e interseo de conjuntos.

    (c) Sim, pois o item (a) ou (b) um modelo.

    (d) No, os modelos M(I) e M(B) no so isomorfos.

  • Captulo 2

    Conjuntos

    A teoria avanada dos conjuntos foi desenvolvida por volta do ano 1872 por Cantor

    (Georg Cantor, 1845-1918, matemtico alemo), quando investigava o problema de uni-

    cidade da representao de funes por sries trigonomtricas. Foi aperfeioada no incio

    do sculo XX por outros matemticos, entre eles, Zermelo (Ernst Zermelo, 1871-1956,matemtico alemo), Skolem (Thoralf Albert Skolem, 1887-1963, matemtico noruegus),

    Fraenkel (Adolf Fraenkel, 1891-1965, matemtico alemo), Gdel (Kurt Gdel, 1906-1978,

    matemtico austraco), von Neumann (John von Neumann, 1903-1957, matemtico hn-

    garo), entre outros.

    O que se estuda deste assunto no ensino fundamental, to somente uma introduo

    elementar teoria dos conjuntos, base para o desenvolvimento de temas futuros, a exemplo

    de relaes, funes, anlise combinatria, probabilidades, etc.

    Neste captulo vamos nos dedicar ao estudo dos conjuntos via mtodo axiomtico.

    comum na Teoria dos Conjuntos, se ouvirem frases como:

    (...) um conjunto qualquer coleo, dentro de um todo de objetos definidos e

    distinguveis, chamados de elementos ou membros, de nossa intuio ou pensamento.

    G. Cantor (1895).

    (...) por conjunto nada mais do que um objeto do qual se sabe no mais e quer-se

    saber no mais do que aquilo que se segue dos postulados.

    J. von Neumann (1928).

    Esta e outras afirmaes sobre definies de conjuntos vo ser contornadas via mtodo

    axiomtico, em que conjunto um termo indefinido.

    2.1 Introduo Histrica

    importante observar que o matemtico usa a palavra definio em um sentido dife-

    rente daquele do dicionrio, ou seja, quando ummatemtico d uma definio, pretende-se

    que no ser um mero sinnimo que o leitor possa saber o significado, mas um critrio

    para identificao; uma caracterizao da coisa definida.

    25

  • 26 CAPTULO 2. CONJUNTOS

    Um paradoxo ou antinomia uma contradio entre duas proposies ou princpios.

    Tomando uma abordagem informal ou ingnua que qualquer coleo de objetos um

    conjunto, podem ocorrer os seguintes fatos:

    - Se A o conjunto de todos os animais, ento A / A.

    - Se N o conjunto de todos os nmeros naturais, ento N / N.

    - Se B o conjunto de todas as coisas abstratas, ento B B.

    - Se C o conjunto de todos os conjuntos, ento C C.

    Vamos apresentar os paradoxos de Russell (Bertrand Arthur William Russell, 1872-

    1970, matemtico e filsofo ingls).

    Paradoxo Lgico (1902) - Seja

    R = {A C : A / A}.

    Ento:

    1. R R.

    2. R / R.

    Soluo. (1) R R impossvel, pois se R R, ento, por definio, R / R, o que uma contradio. (2) R / R impossvel, pois se R / R, ento, por definio, R R, oque uma contradio. Portanto,

    R R R / R,

    o que contradiz o princpio do terceiro excludo.

    Paradoxo Semntico (1906, atribudo por Russell a G. G. Berry) - Seja T = {x : x um nmero inteiro positivo que pode ser descrito por uma frase com menos de vinte

    palavras da lngua portuguesa}. Ento existe um inteiro positivo x0 tal que

    1. x0 / T .

    2. x0 T .

    Soluo. Suponhamos que as palavras da lngua portuguesa estejam catalogadas emum dicionrio. Ento T finito, pois um dicionrio contm apenas um nmero finito depalavras e o nmero de frases envolvendo menos de vinte palavras finito. Assim, existem

    inteiros positivos que so maiores do que todos os outros inteiros positivos de T. Portanto,

    existe um menor inteiro positivo x0 que maior do que todos os inteiros positivos de T .Ento x0 / T . Por outro lado, como x0 = menor inteiro positivo que no pode ser

    Andreia LimaRealce

    Andreia LimaRealce

  • 2.2. CONJUNTOS 27

    descrito por uma frase com menos de vinte palavras da lngua portuguesa (19palavras) temos que x0 T , o que contradiz o princpio do terceiro excludo.

    Com o surgimento dos paradoxos houve muita controvrsia por parte dos matemticos

    da poca. Mas, com o trabalho de Dedekind (Julius Wilhelm Richard Dedekind, 1831-

    1916, matemtico alemo) em 1888 mostrando que os nossos nmeros naturais podem

    ser construdos por meio da teoria elementar dos conjuntos:

    0 = , 1 = {}, 2 = {, {}}, . . .

    a teoria passou a ser aceita.

    Enunciaram-se, em 1905, vrias correntes para contornar os paradoxos, as quais pode-

    mos classificar em trs grupos: Axiomtico, Logicista e Intuicionista.

    A primeira axiomatizao da Teoria dos Conjuntos foi dada por Zermelo em 1908,

    com certas modificaes em 1922 devidas a Skolem e Fraenkel. No sistema de axiomas

    ZF os termos indefinidos e relaes indefinidas so: Conjunto e Pertinncia.

    2.2 Conjuntos

    Embora a ideia intuitiva de conjunto dada, no curso de Matemtica Elementar, seja

    suficiente para os nossos propsitos, uma exposio geral da Teoria dos Conjuntos requer

    mais preciso, pois a no axiomatizao da Teoria dos Conjuntos nos leva a vrias con-

    tradies. Sendo assim, nesta seo iniciaremos o estudo formal da Teoria dos Conjuntos

    segundo Zermelo-Fraenkel.

    Intuitivamente um conjunto uma coleo de objetos A tal que dado qualquer objetoX possvel determinar se X A ou se X / A.As letras a, b, c, . . . sero usadas somente para indicar elementos e A,B,C, . . . elemen-

    tos ou conjuntos. Assim, se x um conjunto e existe um conjunto A tal que x A,diremos que x um elemento de A. Alm disso, uma sentena do tipo

    x y z : p(x, y, z).

    L-se para cada x existe um y tal que, para cada z, p(x, y, z) verdadeira, sua negao

    x y z : p(x, y, z).

    L-se existe um x para cada y tal que, existe z, p(x, y, z) falsa. Note que na negaomantivemos a ordem das variveis

    Sejam A e B dois conjuntos. Diremos que A e B so iguais se, e somente se, eles tmos mesmos elementos. Em smbolos,

    A = B x [x A x B e x B x A].

    Andreia LimaRealce

    Andreia LimaRealce

  • 28 CAPTULO 2. CONJUNTOS

    Esta definio implica a seguinte propriedade:

    [x A e A = B] x B.

    Essa propriedade nosso primeiro axioma.

    ZF1 - Axioma da extenso. [x A e x = y] y A.

    Sejam A e B dois conjuntos. Diremos que A est contido em B ou A um subconjuntode B ou que B uma extenso de A se qualquer elemento de A um elemento de B, emsmbolos,

    A B x [x A x B].

    Neste caso, A = B significa que A B e B A.Se A B e A 6= B ( A = B), diremos que A est contido propriamente em B ou A

    um subconjunto prprio de B e denotaremos por A B.

    Teorema 2.1 Sejam A, B e C trs conjuntos. Ento:

    1. A = A.

    2. A = B B = A.

    3. A = B e B = C A = C.

    4. A A.

    5. A B e B A B = A.

    6. A B e B C A C.

    Prova. Vamos provar apenas o item (3).

    A = B x [x A x B e x B x A]

    e

    B = C x [x B x C e x C x B].

    Pela primeira e terceira dessas afirmaes, obtemos

    x [x A x C] A C.

    Pela segunda e quarta dessas afirmaes, obtemos

    x [x C x A] C A.

    Portanto, A = C.

    Andreia LimaRealce

  • 2.2. CONJUNTOS 29

    ZF2 - Axioma da construo de conjuntos. Seja P (x) uma propriedade ou umaafirmao com relao a x, a qual pode ser expressa inteiramente em termos dos smbolos

    ,,,,,,, colchetes e variveis livres x, y, z, A,B,C, . . .

    Ento existe um conjunto C que consiste de todos os elementos x que satisfazem P (x),que denotaremos por

    C = {x : P (x)}.e l-se: o conjunto de todos os elementos x que satisfazem a propriedade P (x).

    Observao 2.2

    1. O axioma ZF2 tambm conhecido como Axioma da separao, Axioma da com-preenso, ou ainda, Axioma de especificao. Esse axioma na verdade uma

    famlia de axiomas, pois para cada propriedade P (x) temos um axioma.

    2. Note que o axioma ZF1, garante que o conjunto C unicamente determinado, poisse D o conjunto de todos os elementos x que satisfazem P (x), ento qualquerelemento de C um elemento de D e vice-versa. Portanto, C = D.

    3. Em geral, a propriedade P (x) uma frmula.

    4. O axioma ZF2 nos permite formar o conjunto de todos os elementos x que sa-tisfazem P (x), mas no o conjunto de todas os conjuntos x que satisfazem P (x).Assim, eliminamos todos os paradoxos lgicos.

    5. O axioma ZF2 admite somente as afirmaes P (x) que podem ser escritas inteira-mente em forma de smbolos

    ,,,,,,, colchetes e variveis livres x, y, z, A,B,C, . . .

    Assim, eliminamos todos os paradoxos semnticos.

    Sejam A e B dois conjuntos. A unio ou a reunio de A e B o conjunto de todos oselementos que pertencem a A ou B ou ambos. Em smbolos,

    A B = {x : x A ou x B}.

    Assim,

    x [x A B x A ou x B].

    A interseo de A e B o conjunto de todos os elementos que pertencem a ambos osconjuntos A e B. Em smbolos,

    A B = {x : x A e x B}.

    Andreia LimaRealce

  • 30 CAPTULO 2. CONJUNTOS

    Assim,

    x [x A B x A e x B].

    Note, pelo axioma ZF2, que os conjuntos A B e A B esto bem definidos.O conjunto universal U um conjunto que tem a propriedade de conter como subcon-

    juntos todos os conjuntos em pauta.

    O conjunto vazio o conjunto sem nenhum elemento. A existncia do conjunto vazioser dada pelo axioma ZF9. Note que se existem dois conjuntos A e B sem elementos,ento A = B. De fato,

    x [x A x B],

    uma afirmao verdadeira, pois uma implicao com um antecedente falso (confira

    Exemplo 1.19). De modo inteiramente anlogo, prova-se a outra incluso.

    SejamA eB dois conjuntos. Diremos queA eB so disjuntos se eles no tm elementosem comum. Em smbolos,

    A B = .

    O complementar de A o conjunto de todos os elementos que no pertencem a A. Emsmbolos,

    A0 = {x : x / A}.Assim,

    x [x A0 x / A].

    A diferena de A e B o conjunto de todos os elementos de A que no pertencem a B.Em smbolos,

    AB = {x : x A e x / B}.Assim,

    x [x AB x A e x / B].

    Note que AB = A B0 e, pelo axioma ZF2, que o conjunto AB est bem definido.Alm disso, como

    (A A)A 6= A (AA)temos que a localizao dos parnteses na diferena de conjuntos importante.

    instrutivo observar que o relacionamento entre os conjuntos pode ser representado

    graficamente por meio de uma linha fechada e no entrelaada, quando a linha fechada

    for um crculo, chamaremos de diagrama de Venn.

    Teorema 2.3 Sejam A, B e C trs conjuntos. Ento:

    1. A e A U .

    2. A A B e B A B.

    3. A B A e A B B.

  • 2.2. CONJUNTOS 31

    4. A B se, e somente se, A B = B se, e somente se, A B = A.

    5. A (A B) = A e A (A B) = A.

    6. (A B)0 = A0 B0 e (A B)0 = A0 B0 (Leis de De Morgan).

    7. A (B C) = (A B) C e A (B C) = (A B) C.

    8. A (B C) = (A B) (A C) e A (B C) = (A B) (A C).

    Prova. Vamos provar apenas uma afirmao do item (6).

    x [x (A B)0 x / (A B) x / A e x / B x A0 e x B0 x (A0 B0)],

    que o resultado desejado.

    EXERCCIOS

    1. Sejam A, B subconjuntos de U e X um subconjunto de U com as seguintes pro-priedades:

    (a) A X e B X.

    (b) Se A Y e B Y , ento X Y , para todo Y U .

    Mostre que X = A B.

    2. Enuncie e demonstre um resultado anlogo ao anterior, caracterizando A B.

    3. Sejam A, B, C e D quatro conjuntos.

    (a) Mostre que se A B e C D, ento (AC) (BD) e (AC) (BD).

    (b) Mostre que se A = B e C = D, ento (AC) = (B D) e (AC) = (BD).

    4. Sejam A e B dois conjuntos. Mostre que:

    (a) AA = .

    (b) AB = A (A B) = (A B)B.

    (c) (AB) (B A) = .

    (d) AB = B0 A0.

    (e) A B = (A B) (AB) (B A).

  • 32 CAPTULO 2. CONJUNTOS

    (f) (AB) C = A (B C).

    (g) A (B C) = (AB) (A C).

    (h) A (B C) = (A B) (C A).

    (i) A (B C) = (A B) (C A).

    5. Sejam A e B dois conjuntos.

    (a) Mostre que A B = A (B A), com A (B A) = .

    (b) Mostre que B = (A B) (B A), com (A B) (B A) = .

    6. Vamos definir a operao de + em conjuntos como segue: se A e B so doisconjuntos, ento

    A+B = (A B0) (A0 B) = (AB) (B A).

    Mostre que:

    (a) A+ = A.

    (b) A+B = A = B.

    (c) A+B = (A B) (B A).

    (d) A+B = B +A.

    (e) A+B = A+ C B = C.

    (f) (A+B)0 = (A B) (A0 B0).

    (g) A+ (B + C) = (A+B) + C.

    (h) A (B + C) = (A B) + (A C).

    (i) A C = B C A+B C.

    (j) (A C) + (B C) = (A+B) C.

    2.3 Grficos e Famlias

    Seja a um elemento. Ento, pelo axioma ZF2, obtemos o conjunto

    {a} = {x : x = a}

    Assim, a o nico elemento do conjunto {a}.Sejam a e b elementos. Ento, pelo axioma ZF2, obtemos o conjunto

    {a, b} = {x : x = a ou x = b}.

  • 2.3. GRFICOS E FAMLIAS 33

    De modo inteiramente anlogo, obtemos os conjuntos

    {a, b, c}, {a, b, c, d}e assim por diante. Isto motiva o axioma.

    ZF3 - Axioma do par (no ordenado). Se a e b so elementos, ento {a, b} umelemento.

    Observao 2.4

    1. O axioma ZF3 equivalente a: dados dois conjuntos quaisquer existe um conjuntoao qual eles pertencem. Mais precisamente, dados dois conjuntos quaisquer A e B,existe um conjunto C tal que

    x [x C x A ou x B].

    2. claro que {a, a} = {a}. Assim, fazendo a = b no axioma ZF3, obtemos se a um elemento, ento {a} um elemento, ou seja, existem conjuntos unitrios. Emparticular, e {} so conjuntos distintos. Neste caso, existe uma infinidade deconjuntos.

    3. Note que a A se, e somente se, {a} A.

    4. Se A um conjunto, ento

    {x A : x = x} = {x A : x A} = A.

    Teorema 2.5 Se {x, y} = {u, v}, ento [x = u e y = v] ou [x = v e y = u].

    Prova. H dois casos a serem considerados:1.o Caso. Se x = y, ento, pelo axioma ZF1, {x, y} = {x}. Portanto, por hiptese,

    x = u = v = y.2.o Caso. Se x 6= y, ento, pelo axioma ZF1, [x = u ou x = v] e [y = u ou y = v].

    Se x = u e y {u, y} = {u, v}, ento y = v, pois x 6= y. Se x = v e y {v, y} = {u, v},ento y = u, pois x 6= y. Portanto, em qualquer caso,

    [x = u e y = v] ou [x = v e y = u],

    que o resultado desejado.

    Sejam a e b elementos. O conjunto {{a}, {a, b}} chama-se par ordenado. Em smbolos,(a, b) = {{a}, {a, b}}.

    Note que

    (b, a) = {{b}, {b, a}} = {{b}, {a, b}}.Neste caso, fica clara a distino entre os pares ordenados (a, b) e (b, a).

  • 34 CAPTULO 2. CONJUNTOS

    Teorema 2.6 Se (a, b) = (c, d), ento a = c e b = d.

    Prova. Por definio, obtemos

    {{a}, {a, b}} = {{c}, {c, d}}.

    Ento, pelo Teorema 2.5,

    [{a} = {c} e {a, b} = {c, d}] ou [{a} = {c, d} e {a, b} = {c}].

    Se {a} = {c} e {a, b} = {c, d}, ento a = c e, pelo Teorema 2.5, [a = c e b = d] ou[a = d e b = c]. Assim, a = c e b = d ou b = c = a = d. Se {a} = {c, d} e {a, b} = {c},ento a = c = d, pois c, d {c, d}. Por outro lado, b = c, pois b {a, b}. Portanto,a = b = c = d.

    Sejam A e B dois conjuntos. O produto cartesiano de A e B o conjunto de todos ospares ordenados (a, b), onde a A e b B. Em smbolos,

    AB = {(a, b) : a A e b B} = {x : x = (a, b), para algum a A e b B}.

    Teorema 2.7 Sejam A, B, C e D quatro conjuntos. Ento:

    1. A (B C) = (AB) (A C).

    2. A (B C) = (AB) (A C).

    3. (AB) (C D) = (A C) (B D).

    Prova. Vamos provar apenas o item (3).

    (x, y) [(x, y) (AB) (C D) (x, y) AB e (x, y) C D x A e y B e x C e y D x A e x C e y B e y D x A C e y B D (x, y) (A C) (B D)],

    que o resultado desejado.

    Um grfico qualquer conjunto de pares ordenados (x, y) de U U , isto , qualquersubconjunto de U U . Se G um grfico, ento G1 o grfico definido como

    G1 = {(x, y) : (y, x) G}.

    O domnio do grfico G definido como

    Dom(G) = {x : y tal que (x, y) G}

  • 2.3. GRFICOS E FAMLIAS 35

    e a imagem do grfico G definida como

    Im(G) = {y : x tal que (x, y) G}.

    Note que se A e B so conjuntos, ento AB um grfico.Sejam G e H dois grficos. Ento o grfico G H definidos como

    G H = {(x, y) : z tal que (x, z) H e (z, y) G}.

    Note, em geral, que G H 6= H G, pois se G = {(1, 2)} e H = {(0, 1)}, ento G H ={(0, 2)} e H G = .

    Teorema 2.8 Sejam G, H e J trs grficos. Ento:

    1. (G H) J = G (H J).

    2. (G1)1 = G.

    3. (G H)1 = H1 G1.

    4. Dom(G) = Im(G)1 e Im(G) = Dom(G)1.

    5. Dom(G H) DomH e Im(G H) Im(G).

    Prova. Vamos provar apenas o item (3).

    (x, y) [(x, y) (G H)1 (y, x) G H z tal que (y, z) H e (z, x) G z tal que (x, z) G1 e (z, y) H1

    (x, y) H1 G1],

    que o resultado desejado.

    Seja I um conjunto no vazio. Se a cada elemento i I associarmos um conjunto Ai,ento o conjunto

    {Ai}iI = {Ai : i I}chama-se famlia de conjuntos (indexada) e I chama-se conjunto de ndices para a famlia,sem nenhuma condio de que os conjuntos com ndices distintos sejam diferentes ou no.

    Observe que qualquer conjunto C cujos elementos so conjuntos pode ser convertido parauma famlia de conjuntos pelo autondice, ou seja, usaremos o conjunto C ele prpriocomo conjunto de ndices e associaremos a cada elemento do conjunto o conjunto que o

    representa. Mais precisamente, pondo I = C e Ai = i, para todo i I, obtemos

    {Ai}iI = {Ai : i I} ou {A}AC = {A : A C}.

  • 36 CAPTULO 2. CONJUNTOS

    Note que a famlia de conjuntos

    {1, 2}, {3, 4}, {5, 6}, . . . , {2n 1, 2n}, . . .pode ser considerada como uma famlia de conjuntos indexada pelo conjunto dos nmeros

    naturais N, em queAn = {2n 1, 2n},

    para todo n N. Portanto,

    {An}nN = {An : n N}.Neste caso, diremos que a famlia {An}nN uma sequncia e An o n-simo conjunto dasequncia.

    Exemplo 2.9 Sejam b R fixado e

    Rb = {(x, y) RR : y = x+ b}Ento {Rb}bR uma famlia de subconjuntos (retas) do conjunto (plano) R R. Noteque a famlia

    {Rb}bR uma partio de RR.Observao 2.10 Formalmente, uma famlia de conjuntos {Ai}iI um grfico (umafuno) G cujo Dom(G) = I e

    Ai = {x : (i, x) G}.Por exemplo, se I = {1, 2}, A1 = {a, b} e A2 = {c, d}, ento

    {Ai}iI = G = {(1, a), (1, b), (2, c), (2, d)}.Seja {Ai}iI uma famlia de subconjuntos de U . A unio dos conjuntos Ai o conjunto

    de todos os elementos que pertencem a pelo menos uma conjunto Ai da famlia. Emsmbolos, [

    iIAi = {x U : i I tal que x Ai},

    ou ainda, [iI

    Ai = {x U : x Ai, para algum i I}.

    A interseo dos conjuntos Ai o conjunto de todos os elementos que pertencem a todasas conjuntos Ai da famlia. Em smbolos,\

    iIAi = {x U : i I, x Ai},

    ou ainda, \iI

    Ai = {x U : x Ai, para todo i I}.

  • 2.3. GRFICOS E FAMLIAS 37

    Exemplo 2.11 Sejam i R e

    Si = {x R : x > i},

    ou seja, a cada nmero real i R associamos um subconjunto Si de R. Neste caso,obtemos a famlia {Si}iR de subconjuntos de R. Agora, fcil verificar que

    Si1 Si2 = Si, onde i = min{i1, i2},Si1 Si2 = Sj, onde j = max{i1, i2},[

    iISi = S0 e

    \iI

    Si = S1,

    com I = [0, 1] um intervalo fechado de R.

    ZF4 - Axioma de subconjunto. Qualquer subconjunto de um conjunto um con-junto.

    Observao 2.12 Sejam A e B conjuntos dois conjuntos. J vimos, no item (3) doTeorema 2.3, que A B A. Portanto, pelo axioma ZF4, A B um conjunto.

    ZF5 - Axioma de unio. Se C um conjunto de conjuntos, ento[C = {x : x A, para algum A C}

    um conjunto.

    Observao 2.13 1. Note que x SC significa que existe A C tal que x A. Em

    particular, se A C, ento A SC.

    2. Se A e B so conjuntos, ento, pelo axioma ZF3, {A,B} um conjunto. Assim,por definio,[

    {A,B} = {x : x X, para algum X {A,B}} = A B.

    Portanto, pelo axioma ZF5, A B um conjunto.

    Seja A um conjunto. O conjunto das potncias de A o conjunto de todos os subcon-juntos de A. Em smbolos,

    P(A) = {B : B A}.Note, pelo axioma ZF4, que P(A) o conjunto de todos os subconjuntos B que satisfazema propriedade B A. Portanto, pelo axioma ZF2, o conjunto P(A) est bem definido.

    ZF6 - Axioma das potncias. Se A um conjunto, ento P(A) um conjunto.

    Exemplo 2.14 Se A = {1, 2}, ento P(A) = {, {1}, {2}, A} um conjunto. Note queX A significa que X P(A) e x A significa que {x} P(A).

  • 38 CAPTULO 2. CONJUNTOS

    Exemplo 2.15 Sejam A um conjunto e a, b A. Mostre que (a, b) P(P({a, b}) ea, b

    S(a, b). Conclua que (a, b) P(P(A)

    Soluo. Como {a}, {a, b} {a, b} temos que{x}, {x, y} P({a, b}). Portanto,

    {{x}, {x, y}} P({a, b}) (x, y) = {{x}, {x, y}} P(P({a, b})),

    Note que como a {a} e b {a, b} temos que a, b (a, b). Logo,

    a, b [(a, b) = {x : x B, para algum B (a, b)},

    que o resultado desejado.

    Exemplo 2.16 Seja G um grfico. Mostre que se G um conjunto, ento Dom(G) eIm(G) so conjuntos.

    Soluo. Seja x Dom(G). Ento existe y tal que (x, y) G. Logo,

    (x, y) [

    G = {a : a A, para algum A G},

    Em particular,

    {x} [

    G.

    De modo inteiramente anlogo, prova-se que

    x [[

    G.

    Portanto,

    Dom(G) [[

    G,

    ou seja, Dom(G) um conjunto.

    Observao 2.17 Se A um conjunto e P (X) uma propriedade com relao umsubconjunto X de A, ento, pelos axiomas ZF4 e ZF2,

    B = {X : X A e P (X)}

    um conjunto. Assim, se X B, ento X P(A). Logo, B P(A). Portanto,pelos axiomas ZF6 e ZF4, B um conjunto, ou seja, se A um conjunto e P (X) uma propriedade de X, ento a conjunto de todas os subconjuntos de A um conjunto.Finalmente, note que a unio e a interseo so operaes binrias sobre P(A).

    Teorema 2.18 Se A e B so conjuntos, ento AB um conjunto.

  • 2.3. GRFICOS E FAMLIAS 39

    Prova. Note, pelos axiomas ZF5 e ZF6, que P(A B) um conjunto. Novamente, peloaxioma ZF6, P(P(A B)) um conjunto.Afirmao. AB P(P(AB)). Portanto, pelo axioma ZF4, AB um conjunto.

    De fato, seja (x, y) A B. Ento x A B e y A B. Logo, {x} A B e{x, y} A B. Assim, {x}, {x, y} P(A B). Portanto,

    {{x}, {x, y}} P(A B) (x, y) = {{x}, {x, y}} P(P(A B)),

    ou seja, AB P(P(A B)).

    Observao 2.19 Se A e B so conjuntos, ento, pelo axioma ZF4, qualquer grfico Gde AB conjunto.

    EXERCCIOS

    1. Mostre que os conjuntos , {}, {, {}}, . . . so todos distintos.

    2. Sejam A, B, C e D quatro conjuntos no vazios.

    (a) Mostre que A e B so disjuntos se, e somente se, AE e BE so disjuntos,para qualquer conjunto E.

    (b) Mostre que A B e C D se, e somente se, A C B D.(c) Mostre que AB = C D se, e somente se, A = C e B = D.(d) Mostre que AB e A0 C so disjuntos.(e) Mostre que B A e C A0 so disjuntos.

    3. Sejam G e H dois grficos.

    (a) Mostre que se G AB, ento G1 B A.(b) Mostre que se G AB e H B C, ento H G A C.

    4. Sejam G um grfico e B um subconjunto de Dom(G). Definimos a restrio de Ga B como

    G|B = {(x, y) : (x, y) G e x B}.Note que G|B = G I, em que I o grfico (incluso) I B Dom(G). Mostreque:

    (a) G|B = G (B Im(G)).(b) G|(BC) = G|B G|C.

  • 40 CAPTULO 2. CONJUNTOS

    (c) G|(BC) = G|B G|C .(d) (G H)|B = G (H|B).

    5. Sejam G e H dois grficos. Mostre que se G e H so conjuntos, ento G1 e G Hso conjuntos.

    6. Sejam A e B dois conjuntos. Mostre que AB e A+B so conjuntos.

    7. Sejam {Ai}iI , {Bj}jJ duas famlias de subconjuntos de U e B um subconjuntoqualquer de U .

    (a) Mostre que se Ai B, para todo i I, entoS

    iI Ai B.

    (b) Mostre que se B Ai, para todo i I, ento B T

    iI Ai.

    (c) Mostre que se Ai Bi, para todo i I, entoS

    iI Ai S

    iI Bi

    (d) Mostre que se Ai Bi, para todo i I, entoT

    iI Ai T

    iI Bi.

    8. Sejam {Ai}iI uma famlia de subconjuntos de U e X um subconjunto de U com asseguintes propriedades:

    (a) Para todo i I, tem-se X Ai.

    (b) Se Y Ai para todo i I, ento Y X.

    Mostre que X =T

    iI Ai.

    9. Enuncie e demonstre um resultado anlogo ao anterior, caracterizandoS

    iI Ai.

    10. Seja {Ai}iI uma famlia de subconjuntos de U . Mostre que:

    (a) (S

    iI Ai)0 =

    TiI A

    0i.

    (b) (T

    iI Ai)0 =

    SiI A

    0i.

    11. Sejam {Ai}iI e {Bj}jJ duas famlias de subconjuntos de U . Mostre que:

    (a) (S

    iI Ai) (S

    jJ Bj) =S(i,j)IJ(Ai Bj).

    (b) (T

    iI Ai) (T

    jJ Bj) =T(i,j)IJ(Ai Bj).

    (c) (T

    iI Ai) (T

    jJ Bj) =T(i,j)IJ(Ai Bj).

    (d) (S

    iI Ai) (S

    jJ Bj) =S(i,j)IJ(Ai Bj).

    12. Sejam {Ai}iI uma famlia de subconjuntos de U e A um subconjunto de U . Mostreque:

    (a)S

    iI P(Ai) P(S

    iI Ai).

  • 2.4. FUNES 41

    (b)T

    iI P(Ai) = P(T

    iI Ai).

    (c) A (T

    iI Ai) =T

    iI(A Ai).

    (d) A (S

    iI Ai) =S

    iI(A Ai).

    13. Sejam A e B dois conjuntos.

    (a) Mostre que.A B se, e somente se, P(A) P(B).(b) Mostre que.A = B se, e somente se, P(A) = P(B).(c) Mostre que.A B = se, e somente se, P(A) P(B) = .

    14. Determine explicitamente os conjuntos P(P()) e P(P(P())).

    2.4 Funes

    O conceito de funo um dos mais bsicos em toda a Matemtica. Assim, nesta

    seo, vamos apresentar formalmente o conceito de funo via grfico.

    Sejam A e B dois conjuntos. Uma funo de A em B um grfico f de A B quesatisfaz as seguintes propriedades:

    F1 - Para cada x A, existe y B tal que (x, y) f .

    F2 - Se (x, y1) f e (x, y2) f , ento y1 = y2.

    Notao. f : A B e (x, y) f significa que y = f(x) ou x 7 y. Neste caso,diremos que f(x) o valor que f assume no elemento (no ponto) x. Alm disso, a imagemde f pode, tambm, ser denotada por {fx : x A} ou {fx}xA, em outras palavras, umafuno f uma famlia de conjuntos, em que A o conjunto de ndices.

    Observao 2.20 Cada x A possui uma imagem unicamente determinada por y B.Alm disso, a condio F2 afirma que a funo f est bem definida, ou seja, elementosiguais possuem imagens iguais.

    Teorema 2.21 Sejam A, B dois conjuntos e f um grfico. Ento f : A B umafuno se, e somante se,

    1. F2 est satisfeita.

    2. Dom(f) = A.

    3. Im(f) B.

  • 42 CAPTULO 2. CONJUNTOS

    Prova. Suponhamos que f : A B seja uma funo. Ento, por definio, F2 estsatisfeita. Alm disso,

    x [x Dom(f) y tal que (x, y) f (x, y) AB x A].

    Por outro lado,

    x [x A y B tal que (x, y) f x Dom(f)].

    Logo, Dom(f) = A. Finalmente,

    y [y Im(f) x tal que (x, y) f (x, y) AB y B].

    Assim, Im(f) B. Reciprocamente,

    (x, y) [(x, y) f x Dom(f) e y Im(f) x A e y B (x, y) AB].

    Portanto, f A B. Agora, dado x A = Dom(f), existe y tal que (x, y) f . Comoy Im(f) B temos que y B. Portanto, a condio F1 est satisfeita.

    Corolrio 2.22 Sejam f : A B uma funo e C um conjunto no vazio qualquer talque Im(f) C. Ento f : A C uma funo.

    Prova. Como f : A B uma funo temos que a condio F2 est satisfeita eDom(f) = A. Alm disso, Im(f) C implica que f : A C uma funo.

    Sejam A, B, C conjuntos quaisquer e f : A B, g : B C funes quaisquer.Diremos que o diagrama comuta se h = f g.

    Figura 2.1: Diagrama de flechas.

    Teorema 2.23 Sejam A, B dois conjuntos e f : A B uma funo. Ento:

    1. F : P(A) P(B) definida como F (X) = f(X) uma funo, com

    f(X) = {y B : x X tal que y = f(x)} B.

    2. G : P(B) P(A) definida como G(Y ) = f1(Y ) uma funo, com

    f1(Y ) = {x A : f(x) Y } A.

  • 2.4. FUNES 43

    3. Se f uma funo bijetora, ento F uma funo bijetora, com inversa G.

    Prova. Vamos provar apenas o item (1). Note que

    X [X Dom(F ) Y tal que (X,Y ) F (X,Y ) P(A)P(B) X P(A)].

    Por outro lado,

    X [X P(A) Y = F (X) = f(X) B tal que (X,Y ) F X Dom(F )].

    Logo, Dom(F ) = P(A). claro que Im(F ) P(B). Finalmente,

    (X,Y1) F e (X,Y2) F Y1 = Y2,

    pois

    y [y Y1 = f(X) x X tal que y = f(x) y Y2 = f(X)].

    Portanto, F uma funo.

    Exemplo 2.24 Sejam A, B dois conjuntos e f : A B uma funo. Mostre que f injetora se, e somente se, para quaisquer X,Y A,

    f(X Y ) = f(X) f(Y ).

    Soluo. Note que a incluso

    f(X) f(Y ) f(X Y )

    sempre verdadeira, pois

    y [y (f(X) f(Y )) y f(X) e y / f(Y ) x X tal que y = f(x) e y 6= f(z), z Y, x (X Y ) tal que y = f(x) y f(X Y )].

    Agora, suponhamos que f seja injetora. Ento

    y [y f(X Y ) x (X Y ) tal que y = f(x) x X tal que y = f(x) e y / f(Y ) y (f(X) f(Y ))],

    pois se y f(Y ), ento existe x1 Y tal que y = f(x1) = f(x), ou seja, x1 = x XY ,o que impossvel. Reciprocamente, suponhamos, por absurdo, que f no seja injetora.Ento existem x 6= y em A, com f(x) = f(y). Pondo X = {x} e Y = {y}, obtemos

    X Y = X.

  • 44 CAPTULO 2. CONJUNTOS

    Logo,

    {f(x)} = f(X) = f (X Y ) = f (X) f (Y ) = {f(x)} {f(y)} = ,o que impossvel. Portanto, f injetora.

    Sejam {Ai}iI uma famlia de conjuntos eA =

    [iI

    Ai.

    O produto cartesiano dos conjuntos Ai o conjuntoYiI

    Ai = {f : f uma funo de I em A, onde f(i) Ai, i I}.

    conveniente representar os elementos f do produto cartesiano por f = (ai)iI , em queai = f(i), para todo i I.

    Observao 2.25 Se Aj = , para algum j I, entoYiI

    Ai = ,

    pois no existe funo f : I A tal que f(j) Aj.

    Exemplo 2.26 Se I = {1, 2}, A1 = {a, b} e A2 = {c, d}, entoYiI

    Ai = {f : {1, 2} {a, b, c, d} tal que f(1) A1 e f(2) A2}.

    Logo,i f(i)1 a2 c

    i f(i)1 a2 d

    i f(i)1 b2 c

    i f(i)1 b2 d

    Portanto, podemos identificar o produto cartesianoYiI

    Ai

    com o conjunto

    {(a, c), (a, d), (b, c), (b, d)}.Neste caso, Y

    iIAi = A1 A2.

    Concluso: se I = {1, 2}, ento qualquer funo f : I A completamente determinadapelo par ordenado (f(1), f(2)) AA. Portanto, a funo

    : AI AAdefinida como (f) = (f(1), f(2)), bijetora, onde AI o conjunto de todas as funesde I em A.

  • 2.4. FUNES 45

    Se

    f = (ai)iI YiI

    Ai,

    diremos que Ai a i-sima componente deQ

    iI Ai e ai Ai a i-sima coordenada dafamlia.

    Seja

    A =YiI

    Ai.

    Para cada j I, definimos uma funo pj de A em Aj como

    pj(f) = pj((ai)iI) = aj , f = (ai)iI A.

    A funo pj chama-se a j-sima projeo de A sobre Aj. Em particular, se cada Ai 6= ,ento cada pj sobrejetora.

    Teorema 2.27 Seja {Ai}iI uma famlia de conjuntos. Ento existe um conjunto P euma famlia de funes {pi : P Ai}iI com a seguinte propriedade universal: Dadosqualquer conjunto C e qualquer famlia de funes {gi : C Ai}iI, existe uma nicafuno f : C P tal que pi f = gi, para todo i I. Alm disso, P unicamentedeterminado, a menos, de bijeo.

    Prova. (Existncia) Sejam P =Q

    iI Ai e pi as projees cannicas sobre as i-simascomponentes. Ento dados C e a funo gi : C Ai, definimos f : C P comof(c) = gc, em que f(c)(i) = gc(i) = gi(c), para todo i I. Assim,

    (pi f)(c) = pi(f(c)) = pi(gc) = gi(c), i I,

    ou seja, pi f = gi, para todo i I.Agora, seja g : C P outra funo tal que pi g = gi, para todo i I. Ento, para

    um c C fixado temos, por definio de pi, que

    g(c)(i) = pi(g(c)(i)) = (pi g)(c) = gi(c) = gc(i) = f(c)(i), i I.

    Logo, g(c) = f(c), para todo c C. Portanto, g = f , ou seja, f nica.(Unicidade) Sejam Q um conjunto e {hi : Q Ai}iI uma famlia de funes com

    a mesma propriedade universal. Ento vamos primeiro considerar o diagrama da Figura

    2.2.

    Figura 2.2: Unicidade do produto cartesiano.

  • 46 CAPTULO 2. CONJUNTOS

    No diagrama (a) fizemos C = Q e no diagrama (b) fizemos C = P . Logo,

    pi f = hi e hi g = pi, i I.

    Assim,

    pi = hi g = (pi f) g = pi (f g), i I.

    Mas, pela comutatividade do diagrama (c), temos que IP : P P a nica funo talque

    pi IP = pi, i I.

    Portanto,

    f g = IP .

    Por um argumento simtrico, prova-se que g f = IQ.

    Observao 2.28 Sejam {Ai}iI uma famlia de conjuntos, A =Q

    iI Ai e B um con-junto no vazio qualquer. Pondo

    F = { : B A : uma funo}um conjunto de funes e

    S = {{i}iI : i uma funo de B em Ai}um conjunto de sequncias. Ento:

    1. F : F S definida comoF () = {(pi )}iI ,

    em que pi a i-sima projeo de A sobre Ai, uma funo.

    2. G : S F definida comoG({i}iI) =

    uma funo, com

    (b) = {i(b)}iI , b B. fcil verificar que F bijetora com inversa G.

    Sejam A e B conjuntos quaisquer. J vimos que BA ou F(A,B) representa o conjuntode todas as funes com domnio A e contradomnio B, isto ,

    BA = {f : f uma funo de A em B}.Vamos denotar a conjunto {0, 1} por 2 = {0, 1}. Sejam A um conjunto e B um sub-conjunto de A. A funo caracterstica de B em A a funo B : A 2 definidacomo

    B(x) =

    (0, se x B1, se x / B.

    Note que a funo caracterstica B sobrejetora se, e somente se, B / {, A}, poisA = B

    (AB) uma unio disjunta.

  • 2.4. FUNES 47

    Teorema 2.29 Se A um conjunto, ento existe uma correspondncia biunvoca entre2A e P(A). Portanto, 2A um conjunto, confira o axioma ZF7.

    Prova. Consideremos a funo F : P(A) 2A definida como F (B) = B. Note que est bem definida, pois dados B,C P(A),

    B = C B = C F (B) = F (C).

    A funo F injetora, pois dados B,C P(A),

    F (B) = F (C) B = C {x A : B(x) = 0} = {x A : C(x) = 0} B = C.

    Finalmente, a funo F sobrejetora, pois dado f 2A, existe

    B = f1(0) = {x A : f(x) = 0} P(A)

    tal que f = B = (B).

    Note que se B um conjunto qualquer e todo elemento de B for substitudo por umobjeto de um domnio qualquer A, ento B continua sendo um conjunto ou, equivalente-mente, se alguma regra f , quando aplicada ao conjunto A, tem a cara de uma funo,ento existe um conjunto f(x). Mais precisamente temos o seguinte axioma.

    ZF7 - Axioma da substituio. Seja P (x, y) a seguinte afirmao: para qualquer xexiste um nico y tal que P (x, y) verdadeira. Ento para qualquer conjunto A, existe umconjunto B tal que, para qualquer x A, existe y B para que P (x, y) seja verdadeira.

    Observao 2.30

    1. O axioma ZF7 equivalente a: para qualquer conjunto A, existe uma funo f talque Dom(f) = A e y = f(x), para todo x A, ou seja, a partir de um conjuntovelho criamos um conjunto novo f(A). Note que

    f(x) = {y B : P (x, y) verdadeira}.

    2. Se {Ai}iI uma famlia de conjuntos, ento a funo

    f : I {Ai : i I}

    definida como f(i) = Ai sobrejetora. Logo, pelo axioma ZF7, {Ai}iI um con-junto. Portanto, pelo axioma ZF5, [

    iIAi

    um conjunto.

  • 48 CAPTULO 2. CONJUNTOS

    3. Se I, A so conjuntos e f : I A uma funo, ento, pelo axioma ZF4, f umconjunto, pois f um subconjunto de I A. Isto mostra que nossa definio defuno legtima.

    Teorema 2.31 Seja {Ai}iI uma famlia de conjuntos. EntoYiI

    Ai

    um conjunto.

    Prova. Note, pelo item (3) da Observao 2.30, que

    f : I [iI

    Ai

    um conjunto. Como YiI

    Ai P(I A)

    temos, pelos axiomas ZF6 e ZF4, que YiI

    Ai

    um conjunto.

    EXERCCIOS

    1. Sejam A, B dois conjuntos, f : A B uma funo, {Ci}iI uma famlia de subcon-juntos de A e {Di}iI uma famlia de subconjuntos de B.

    (a) Mostre que f(S

    iI Ci) =S

    iI f(Ci).

    (b) Mostre que f1(S

    iI Di) =S

    iI f1(Di).

    (c) Mostre que f1(T

    iI Di) =T

    iI f1(Di).

    (d) Mostre que f(T

    iI Ci) T

    iI f(Ci). Mostre que a igualdade ocorre se, esomente se, f injetora.

    2. Sejam {Ai}iI e {Bi}iI duas famlias tais que Bi Ai, para todo i I. Mostreque Y

    iIBi

    YiI

    Ai.

  • 2.4. FUNES 49

    3. Seja A um conjunto. Diremos que uma famlia {Ai}iI uma cobertura de A se

    A [iI

    Ai.

    Sejam {Ai}iI e {Bj}jJ duas coberturas distintas de A. Mostre que a famlia

    {Ai Bj}(i,j)IJ uma cobertura de A.

    4. Sejam {Ai}iI e {Bj}jJ parties de A e B, respectivamente. Mostre que a famlia

    {Ai Bj}(i,j)IJ uma partio de AB.

    5. Sejam f : A B uma funo sobrejetora e {Bj}jJ uma partio de B. Mostreque {f1(Bj)}jJ uma partio de A.

    6. Sejam f : A B uma funo injetora e {Ai}iI uma partio de A. Mostre que{f(Ai)}iI uma partio de f(A).

    7. Mostre que o axioma ZF3 uma consequncia do axioma ZF7. Assim, o axiomaZF3 pode ser agora eliminado.

    8. Sejam A e B dois conjuntos. Use o axioma ZF7 para mostrar que A B umconjunto.

    9. Sejam A e B conjuntos. Mostre que o conjunto BA um conjunto.

    10. Sejam A, B e C trs conjuntos.

    (a) Mostre que AC BC (A B)C .(b) Mostre que AC BC = (A B)C.(c) Mostre que AC BC = (AB)C .

    11. Seja f : A B uma funo sobrejetora. Para x, y A, definimos

    xRy f(x) = f(y).

    Mostre que R uma relao de equivalncia sobre A, cujas classes de equivalnciasso as fibras (imagens inversas) de f .

    12. Seja f : A A uma funo e R uma relao de equivalncia sobre A determinadapor f . Mostre que f f = f se, e somente se,

    y x f(y) x,

    para todos x, y A, em que x a classe de equivalncia determinada por x.

  • 50 CAPTULO 2. CONJUNTOS

    13. Seja {Ri}iI uma famlia de relaes de equivalncia sobre A. Mostre queT

    iI Ri uma relao de equivalncia sobre A.

    14. Seja A B fixado. Para X,Y P(B), definimos

    XRY A X = A Y.

    Mostre que R uma relao de equivalncia sobre P(B).

    15. Seja f : A B uma funo, com A um conjunto no vazio. Mostre que: f : A B injetora se, e somente se, existe uma funo g : B A tal que g f = IA.

    16. Seja f : N N definida como f(n) = n + 1. Mostre que existem infinitas funesg : N N tais que g f = IN, mas no existe inversa direita.

    17. Seja f : A B uma funo, com A um conjunto no vazio. Mostre que: f : A B sobrejetora se, e somente se, existe uma funo g : B A tal que f g = IB.

    18. Seja f : N N definida como

    f(n) =

    (n2, se n par

    n+12, se n mpar.

    Mostre que existem infinitas funes g : N N tais que f g = IN, mas no existeinversa esquerda.

    19. Seja I = ] 1, 1[ um intervalo aberto de R.

    (a) Mostre que a funo f : I R definida como

    f(x) =x

    1 x2

    f bijetora. Defina sua inversa.

    (b) Mostre que a funo f : I R definida como

    f(x) =x

    1 |x|f bijetora. Defina sua inversa.

    (c) Mostre que a funo f : R I definida como

    f(x) =x1 + x2

    f bijetora. Defina sua inversa.

    (d) Mostre que a funo f : I R definida como

    f(x) = tan2x

    f bijetora. Defina sua inversa.

  • 2.4. FUNES 51

    20. Sejam g : B C e h : B C duas funes. Mostre que se

    g f = h f,

    para qualquer funo f : A B, ento g = h.

    21. Sejam g : A B e h : A B duas funes. Mostre que se C um conjunto compelo menos dois elementos e

    f g = f h,

    para qualquer funo f : B C, ento g = h.

    22. Mostre que as seguintes afirmaes so equivalentes:

    (a) f : A B sobrejetora;

    (b) Para todas as funes g, h : B C,

    g f = h f g = h;

    (c) Para qualquer subconjunto X A,

    B f(X) f(AX).

    23. Mostre que as seguintes afirmaes so equivalentes:

    (a) f : A B injetora;

    (b) Para todas as funes g, h : C A,

    f g = f h g = h;

    (c) Para qualquer subconjunto X A,

    f(AX) B f(X).

    24. Sejam f : A B, g : B A duas funes e X A, Y B.

    (a) Mostre que (g f) |X= g (f |X).(b) Mostre que (f |X)1(Y ) = X f1(Y ).

    25. Sejam f : A C e g : A B duas funes. Mostre que existe uma funoh : B C tal que f = h g se, e somente se,

    g(x) = g(y) f(x) = f(y), x, y A.

    Conclua que h nica.

  • 52 CAPTULO 2. CONJUNTOS

    26. Sejam f : C A e g : B A duas funes, com g bijetora. Mostre que existe umafuno h : C B tal que f = g h se, e somente se, Im(f) Im(g). Conclua queh nica.

    27. Seja f : Z Z uma funo tal que:

    (a) f(x+ y) = f(x) + f(y), para todos x, y Z.

    (b) f(x y) = f(x) f(y), para todos x, y Z.

    Mostre que f = IZ ou f = 0.

    28. Seja f : Q Q uma funo tal que:

    (a) f(x+ y) = f(x) + f(y), para todos x, y Q.

    (b) f(x y) = f(x) f(y), para todos x, y Q.

    Mostre que f = IQ ou f = 0.

    29. Seja f : A A uma funo injetora tal que f(A) 6= A. Tomando x A f(A),mostre que x, f(x), f(f(x)), . . . so distintos aos pares.

    30. Seja f : A A uma funo injetora, com A um conjunto finito. Mostre que f sobrejetora.

    Respostas, Sugestes ou SoluesSeo 2.21. Pelo item (a), obtemos A B X. Por outro lado, pondo Y = A B, temos,pelo item (2) do Teorema 2.3, que A Y e B Y . Assim, pelo item (b), obtemosX Y = A B. Portanto, X = A B.

    2. Sejam A, B subconjuntos de U e X um subconjunto de U com as seguintes pro-priedades:

    (a) X A e X B.

    (b) Se Y A e Y B, ento Y X, para todo Y U .

    Mostre que X = A B. Agora, faa a prova.

    3. Vamos provar apenas o item (a).

    x [x A C x A ou x C x B ou x D x B D].

    Portanto, (A C) (B D).

  • 2.4. FUNES 53

    4. Vamos provar apenas o item (i).

    x [x A (B C) x A e x (B C) x A e x B e x / C x A B e x / A C x (A B) (C A)].

    Portanto, A (B C) = (A B) (C A).

    5. Vamos provar apenas o item (a).

    x [x A B x A ou x B x A ou x (B A) x A (B A)].

    Portanto, A B = A (B A). Note que

    x [x A (B A) x A e x B A x A e x / A],

    o que impossvel. Portanto, A (B A) = .

    6. Vamos provar apenas os itens (f) e (g): (f) Pelos itens (6), (7) e (8) do Teorema2.3, obtemos

    (A+B)0 = [(A B0) (A0 B)]0 = (A B0)0 (A0 B)0

    = (A0 B) (A B0) = (A B) (A0 B0).

    (g) Novamente, pelos itens (7) e (8) do Teorema 2.3 e o item (f), obtemos

    A+ (B + C) = (A (B + C)0) (A0 (B + C))= (A [(B C) (B0 C 0)]) (A0 [(B C 0) (B0 C)])= (A B C) (A B0 C 0) (A0 B C 0) (A0 B0 C).

    Como esta expresso simtrica em relao A, B e C temos, pelo item (d), que

    A+ (B + C) = C + (A+B) = (A+B) + C.

    Seo 2.31. Basta observar a relao entre elemento e conjunto.

    2. Vamos provar apenas o item (e).

    (x, y) [(x, y) (B A) (C A0) (x, y) B A e (x, y) C A0 y A e y / A],

    o que impossvel. Portanto, (B A) (C A0) = .

  • 54 CAPTULO 2. CONJUNTOS

    3. Vamos provar apenas o item (b).

    (x, y) [(x, y) H G z tal que (x, z) G e (z, y) H (x, z) AB e (z, y) B C x A e y C (x, y) A C].

    Portanto, H G A C.

    4. Vamos provar apenas o item (a).

    (x, y) [(x, y) G|B (x, y) G e x B (x, y) G e (x, y) B Im(G) (x, y) G (B Im(G))].

    Portanto, G|B = G (B Im(G)).

    5. Note que

    (x, y) [(x, y) G1 (y, x) G (y, x) Im(G)Dom(G)].

    Assim, G1 Im(G)Dom(G). Portanto, pelo axioma ZF4, G1 um conjunto.

    6. Note que AB = A B0 A. Portanto, pelo axioma ZF4, AB um conjunto.

    7. Vamos provar apenas o item (a).

    x [x [iI

    Ai i I tal que x Ai

    x B],

    pois Ai B, para todo i I. Portanto,S

    iI Ai B.