matemática para concursos militares - volume1

151

Upload: everton-moraes

Post on 20-Feb-2017

138 views

Category:

Education


7 download

TRANSCRIPT

Page 1: Matemática Para Concursos Militares - Volume1
Page 2: Matemática Para Concursos Militares - Volume1

Página | 2

PREFÁCIO

Este volume corresponde ao primeiro livro virtual lançado pelo Sistema de Ensino Interativo – SEI.

O livro trata de lógica, teoria dos conjuntos, relação, produto cartesiano, funções reais, função do 1° grau e

2° grau, modular, exponencial e logarítmica ao longo de 12 capítulos.

Cada um dos doze capítulos inicia-se com uma breve introdução do assunto, seguido de questões dos

últimos concursos da AFA, EFOMM, Escola Naval, IME e ITA.

Há ainda um último capítulo onde se encontra o gabarito das questões, bem como a solução daquelas que

nos capítulos anteriores possuem sua numeração iniciada com a letra R, totalizando 63 soluções.

Com isto o autor e diretor do Sistema de Ensino Interativo – SEI espera estender a sala de aula do SEI à

residência dos que usarem este livro, principalmente daqueles que não podem frequentar um curso

preparatório, contribuindo para sua preparação e aprovação.

O autor espera que o uso deste livro ocorra de forma interativa, ou seja, será um prazer receber comentários,

correções e pedidos, este contato pode ser feito diretamente com o autor pelo email

[email protected].

BOM TRABALHO!

Page 3: Matemática Para Concursos Militares - Volume1

Página | 3

SOBRE O AUTOR

Natural do Rio de Janeiro, Luciano, quando aluno foi medalhista de prata na Olimpíada de

Matemática do Estado do Rio de Janeiro - OMERJ (1993) e na Olimpíada Brasileira de Matemática - OBM

(1994), além disso, foi aprovado nos concursos da Escola Naval, IME e ITA e acabou optando pelo último.

Após algum tempo, resolveu seguir seu sonho e trocou a engenharia pela matemática, retornando ao

Rio de Janeiro, fez vestibular para a UFRJ, onde concluiu a Graduação em Matemática.

Paralelamente à graduação foi professor nos principais cursos preparatórios do Rio de Janeiro, tendo

contribuído na aprovação de centenas de alunos nos concursos da EFOMM, AFA, Escola Naval, IME e ITA.

Dois anos após ter terminado a Graduação em Matemática iniciou o Mestrado em Geometria

Diferencial e em seguida o Doutorado em Sistemas Dinâmicos, tendo participado de congressos nacionais e

internacionais.

Fundador do Sistema de Ensino Interativo – SEI, Luciano é um dos autores dos artigos de

matemática do SEI Ensina.

Atualmente Luciano é professor adjunto da UFRJ.

Luciano Nunes Prudente

Page 4: Matemática Para Concursos Militares - Volume1

Página | 4

MATEMÁTICA PARA CONCURSOS MILITARES - VOLUME 1

ÍNDICE

1. Lógica.............................................................................................

2. Teoria dos Conjuntos.......................................................................

3. Produto Cartesiano..........................................................................

4. Relação..........................................................................................

5. Conjuntos Numéricos......................................................................

6. Função...........................................................................................

7. Função Constante............................................................................

8. Função do 1° Grau..........................................................................

9. Função do 2° Grau..........................................................................

10. Função Modular..............................................................................

11. Função Exponencial........................................................................

12. Função Logaritmo..........................................................................

13. Gabarito/Soluções.............................................................................

05

09

20

23

26

33

50

51

64

79

84

94

124

Page 5: Matemática Para Concursos Militares - Volume1

Página | 5

CAPÍTULO 1 - LÓGICA

CONSTRUÇÃO AXIOMÁTICA DA CIÊNCIA

A linguagem da Ciência é construída a partir de Termos primitivos e Definições.

Termo primitivo é um vocábulo cujo significado não é descrito por outros vocábulos.

Definir é a ação de descrever o significado de um vocábulo a partir de outros vocábulos previamente definidos ou de

termos primitivos.

A introdução de novos vocábulos na Ciência será sempre feita a partir de termos primitivos ou de definições.

Proposição ou sentença matemática é uma afirmativa a qual se associa um único valor: verdadeiro ou falso, que

representaremos respectivamente por 1 ou 0.

Axioma é uma proposição cuja veracidade é assumida por definição e um Teorema é uma proposição cuja veracidade

deve ser verificada por meio de outros axiomas ou teoremas.

A matemática é construída por meio de Axiomas e Teoremas.

DEFINIÇÃO: A negação de uma proposição é uma nova proposição cujo valor é o oposto da original.

Então dada uma proposição p, temos:

DEFINIÇÃO: Conectivo é o elemento utilizado para unir duas proposições.

Os conectivos se dividem em primários e secundários.

Sejam p e q duas proposições, então:

CONECTIVOS PRIMÁRIOS

1) CONECTIVO “e” ( ):

p q p q

1 1 1

1 0 0

0 1 0

0 0 0

2) CONECTIVO “ou” ( ):

p q p q

1 1 1

1 0 1

0 1 1

0 0 0

p p

0 1

1 0

Page 6: Matemática Para Concursos Militares - Volume1

Página | 6

CONECTIVOS SECUNDÁRIOS

1) CONDICIONAL “se então” ( ):

p q p q

1 1 1

1 0 0

0 1 1

0 0 1

2) CONDICIONAL “se e somente se” ( ):

p q p q

1 1 1

1 0 0

0 1 0

0 0 1

DEFINIÇÃO: Tautologia é uma proposição que assume apenas o valor verdadeiro.

Sejam p, q e r proposições, seguem as principais tautologias:

NEGAÇÃO DA NEGAÇÃO

1. p p

COMUTATIVIDADE DO ˄ E DO ˅

2. p q q p

3. p q q p

ASSOCIATIVIDADE DO ˄ E DO ˅

4. p q r p q r

5.p q r p q r

DISTRIBUTIVIDADE

6. p q r p q p r

7. p q r p q p r

NEGAÇÃO DO ˄ E DO ˅

8. p q p q

9. p q p q

Page 7: Matemática Para Concursos Militares - Volume1

Página | 7

IMPLICAÇÃO LÓGICA

10. p q p q

11. p q q p

12. p q p q

EQUIVALÊNCIA LÓGICA

13. p q p q

Page 8: Matemática Para Concursos Militares - Volume1

Página | 8

EXERCÍCIOS

NÍVEL A

ESCOLA NAVAL R1. (EN 1998) Considere a proposição:

“Se x > 5 então y = 6”.

A proposição equivalente é

(A) “Se x < 5 então y 6”

(B) “Se y 6 então x < 5”

(C) “se y > 5 então x = 5”

(D) “Se y 6 então x 5”

(E) “Se x 5 então y 6”.

2. (EN 1994) A negação da proposição:

3x" e y 2" ,

é:

(A) 3x" e "2y

(B) 3x" e "2y

(C) 3x" ou "2y

(D) 2x" e "3y

(E) 3x" ou "2y .

3. (EN 1992) Sabe-se que se x > 4 então y = 2 . Podemos daí concluir que:

(A) Se x < 4 então y 2 .

(B) Se x 4 então y 2 .

(C) Se y = 2 então x > 4 .

(D) Se y 2 então x 4.

(E) Se y 2 então x < 4.

NÍVEL B

ESCOLA NAVAL R1. (EN 1989) Dada a proposição p (q r) ( p q) (p r) podemos afirmar que é:

(A) logicamente falsa

(B) uma tautologia

(C) equivalente a ( p q) r

(D) equivalente a ( p q)V r

(E) equivalente a qp

NÍVEL C

ITA

R1. (ITA 2002) Considere as seguintes afirmações sobre números reais positivos:

I. Se x > 4 e y < 2, então x2 – 2y > 12.

II. Se x > 4 ou y < 2, então x2 – 2y > 12.

III. Se x2 < 1 e y2 > 2, então x2 – 2y < 0.

Então, destas é (são) verdadeira(s)

(A) apenas I.

(B) apenas I e II.

(C) apenas II e III.

(D) apenas I e III.

(E) todas.

Page 9: Matemática Para Concursos Militares - Volume1

Página | 9

CAPÍTULO 2 - TEORIA DOS CONJUNTOS

TERMOS PRIMITIVOS

A Teoria dos Conjuntos tem sua estrutura baseada em três termos primitivos: Elemento, Conjunto e na Relação de

Pertinência.

Embora termos primitivos intuitivamente sabe-se a diferença entre eles. Considere, por exemplo, as proposições:

A é uma Vogal

B não é uma vogal

Primeiramente sabemos que estas proposições têm valor verdadeiro, ou seja, a letra A é um elemento do conjunto das vogais e

a letra B não é um elemento do conjunto das vogais.

Note que o elemento se liga ao conjunto pela relação de pertinência, nos exemplos acima esta relação foi feita através do verbo

SER, a fim de evitar as limitações da língua, as mesmas proposições podem ser escritas utilizando uma simbologia universal, que

respectivamente introduzimos abaixo:

U,O,I,E,AA

.U,O,I,E,AB

Um conjunto está bem definido quando dado um elemento podemos julgar se este pertence ou não ao conjunto.

Variável é o símbolo utilizado para representar um elemento qualquer de um dado conjunto, neste caso, este conjunto é

denominado Domínio da variável.

Função Proposicional ou Proposição aberta é toda proposição que possui uma variável.

Ex.: U,O,I,E,Ax

É uma proposição aberta, onde x é a variável e o seu domínio é o conjunto .U,O,I,E,A

Solução da Função Proposicional é todo elemento pertencente ao Domínio da variável que dá valor verdadeiro à proposição

aberta.

Ex.:

.

)V(U,O,I,E,AU

)V(U,O,I,E,AO

)V(U,O,I,E,AI

)V(U,O,I,E,AE

)V(U,O,I,E,AA

U,O,I,E,Ax

Conjunto Solução da Função Proposicional ou Conjunto Verdade da Função Proposicional é o conjunto de todas as soluções

de uma Função Proposicional.

Ex.: .U,O,I,E,ASU,O,I,E,Ax

DEFINIÇÃO: O Quantificador Universal todopara é utilizado quando todos os elementos do Domínio da variável

pertencem ao Conjunto Solução da Função Proposicional.

Ex.: .0x,IRx 2

Page 10: Matemática Para Concursos Militares - Volume1

Página | 10

DEFINIÇÃO: O Quantificador Existencial existe é utilizado quando existe um elemento do Domínio da variável

pertencente ao Conjunto Solução da Função Proposicional.

Ex.: .0x:IRx 2

DEFINIÇÃO: Sejam A e B dois conjuntos, define-se a relação de inclusão por:

.BxAx,xBA

Neste caso dizemos que A é um subconjunto de B ou que A está contido em B.

DEFINIÇÃO: Conjunto Universo é o conjunto maximal definido pela relação de inclusão, ou seja, é o conjunto que contêm

todos os outros. Assim,

UA,A .

DEFINIÇÃO: Conjunto Vazio é o conjunto minimal dado pela relação de inclusão, ou seja, é o conjunto que está contido em

todos os outros. Representa-se o conjunto vazio por . Assim,

A,A .

Em particular temos que:

xUx,x .

Ex.: Dado 3,2,1A então .A3,2,1eA3,2,A1,A

DEFINIÇÃO: Conjunto das Partes é o conjunto de todos os subconjuntos de um conjunto, ou seja,

AB:B:)A(

Ex.

3,2,1,1,3,3,2,2,1,3,2,1,)A(3,2,1A

Obs.: Seja )C(n é o número de elementos de um conjunto C, então

.2:))A((n )A(n

Observe no exemplo acima que .8))A((ne3)A(n

DEFINIÇÃO: Seja A um conjunto o seu Complementar é definido por

Ax:xAC .

DEFINIÇÃO: Sejam A e B dois conjuntos, então

BxAx,xBA .

Ou equivalentemente

ABBABA .

Page 11: Matemática Para Concursos Militares - Volume1

Página | 11

OPERAÇÕES ENTRE CONJUNTOS

DEFINIÇÃO: Sejam A e B dois conjuntos, então a União entre A e B é um terceiro conjunto definido por:

BxAx:xBA .

Ex.

5,4,3,2,1BA5,4,3,2B

3,2,1A

DEFINIÇÃO: Sejam A e B dois conjuntos, então a Interseção entre A e B é um terceiro conjunto definido por:

BxAx:xBA .

Ex.

3,2BA5,4,3,2B

3,2,1A

TEOREMA: Sejam A e B conjuntos quaisquer então

.)BA(n)B(n)A(n)BA(n

DEFINIÇÃO: Sejam A e B dois conjuntos, então a Diferença entre A e B é um terceiro conjunto definido por:

BxAx:xB\ABA .

Ex.

5,4A\Be1B\A5,4,3,2B

3,2,1A

TEOREMA: Sejam A e B conjuntos quaisquer então

).B(n)A(n)BA(n

DEFINIÇÃO: Sejam A e B dois conjuntos, então a Diferença simétrica entre A e B é um terceiro conjunto definido por:

ABBABA .

Ex.

.5,4,1BA5,4,3,2B

3,2,1A

Sejam A, B e C conjuntos quaisquer, seguem as principais propriedades das operações entre conjuntos.

1. COMPLEMENTAR DO COMPLEMENTAR

AACC .

2. COMUTATIVIDADE

ABBA .

ABBA .

3. ASSOCIATIVIDADE

C)BA(CBA .

C)BA(CBA .

Page 12: Matemática Para Concursos Militares - Volume1

Página | 12

4. DISTRIBUTIVIDADE

CABACBA .

CABACBA .

5. COMPLEMENTAR DA UNIÃO E DA INTERSEÇÃO

CCCBABA .

CCCBABA .

6. COMPLEMENTAR DE SOBCONJUNTOS CC ABBA .

7. DIFERENÇA CBABA .

Page 13: Matemática Para Concursos Militares - Volume1

Página | 13

EXERCÍCIOS

NÍVEL A

EFOMM

1. (EFOMM 2012) Considere-se o conjunto universo U, formado por uma turma de cálculo da Escola de Formação de Oficiais da Mercante

(EFOMM) e composta por alunos e alunas. São dados os subconjuntos de U:

A: conjunto formado pelos alunos; e

B: conjunto formado por todos os alunos e alunas aprovados.

Pode-se concluir que B

UC (A B) é a quantidade de

(A) alunos aprovados.

(B) alunos reprovados.

(C) todos os alunos e alunas aprovados.

(D) alunas aprovadas.

(E) alunas reprovadas.

R2. (EFOMM 2010) Se X é um conjunto com um número finito de elementos, n(X) representa o número de elementos do

conjunto X. Considere os conjuntos A, B e C com as seguintes propriedades:

• n(A B C) = 25,

• n(A – C) = 13,

• n(B – A) = 10,

• n(A C) = n(C – (A B)).

O maior valor possível de n(C) é igual a

(A) 9

(B) 10

(C) 11

(D) 12

(E) 13

R3. (EFOMM 2010) Analise as afirmativas abaixo.

I - Seja K o conjunto dos quadriláteros planos, seus subconjuntos são:

P = {x K / x possui lados opostos paralelos};

L = {x K / x possui 4 lados congruentes};

R = {x K / x possui 4 ângulos retos}; e

Q = {x K / x possui 4 lados congruentes e 2 ângulos com medidas iguais}.

Logo, L R = L Q.

II - Seja o conjunto A = {1,2,3,4}, nota-se que A possui somente 4 subconjuntos.

III- Observando as seguintes relações entre conjuntos:

{a, b, c,d} U Z = {a, b, c, d, e},

{c,d} U Z = {a, c, d, e} e

{b, c, d} Z = {c}; pode-se concluir que Z = {a, c, e}.

Em relação às afirmativas acima, assinale a opção correta.

(A) Apenas a afirmativa I é verdadeira.

(B) Apenas as afirmativas I e III são verdadeiras.

(C) Apenas as afirmativas I e II são verdadeiras.

(D) Apenas a afirmativa III é verdadeira.

(E) Apenas a afirmativa II é verdadeira.

4. (EFOMM 2007) Numa companhia de 496 alunos, 210 fazem natação, 260 musculação e 94 estão impossibilitados de fazer

esportes. Neste caso, o número de alunos que fazem só natação é

(A) 116

(B) 142

(C) 166

(D) 176

(E) 194.

Page 14: Matemática Para Concursos Militares - Volume1

Página | 14

5. (EFOMM 2006) Sejam os conjuntos U = {1,2,3,4} e A = {1,2}. O conjunto B tal que BA = {1} e BA = U é

(A) 0

(B) {1}

(C) {1,2}

(D) {1,3,4}

(E) U.

AFA

6. (AFA 2013) Irão participar do EPEMM, Encontro Pedagógico do Ensino Médio Militar, um Congresso de Professores das

Escolas Militares, 87 professores das disciplinas de Matemática, Física e Química. Sabe-se que cada professor leciona apenas

uma dessas três disciplinas e que o número de professores de Física é o triplo do número de professores de Química.

Pode-se afirmar que

(A) Se o número de professores de Química for 16, os professores de Matemática serão a metade dos de Física.

(B) número de professores de Química será maior do que o de Matemática, se o de Química for em quantidade maior ou igual a

17

(C) o menor número possível de professores de Química é igual a 3.

(D) o número de professores de Química será no máximo 21.

7. (AFA 1998) Em um grupo de n cadetes da Aeronáutica, 17 nadam, 19 jogam basquetebol, 21 jogam voleibol, 5 nadam e jogam

basquetebol, 2 nadam e jogam voleibol, 5 jogam basquetebol e voleibol e 2 fazem os três esportes. Qual o valor de n, sabendo-se

que todos os cadetes desse grupo praticam pelo menos um desses esportes?

(A) 31

(B) 37

(C) 47

(D) 51.

R8. (AFA 1998) Entrevistando 100 oficiais da AFA, descobriu-se que 20 deles pilotam a aeronave TUCANO, 40 pilotam o

helicóptero ESQUILO e 50 não são pilotos. Dos oficiais entrevistados, quantos pilotam o TUCANO e o ESQUILO?

(A) 5

(B) 10

(C) 15

(D) 20.

9. (AFA 1995) Assinale a afirmação correta.

(A) A intersecção de conjuntos infinitos pode ser finita.

(B) A intersecção infinita de conjuntos não vazios é vazia.

(C) A reunião infinita de conjuntos não vazios tem infinitos elementos.

(D) A intersecção dos conjuntos A e B possui sempre menos elementos do que o A e do que o B.

10. (AFA 1995) Analisando-se uma amostra populacional, com relação à altura, determinou-se:

- 95% tem altura maior ou igual a 1,62m;

- 8% tem altura menor ou igual a 1,62m.

Qual o percentual de indivíduos com, exatamente, 1,62m?

(A) 3

(B) 5

(C) 8

(D) 13

ESCOLA NAVAL

R11. (EN 2009) Os 36 melhores alunos do Colégio Naval submeteram-se a uma prova de 3 questões para estabelecer a

antiguidade militar. Sabendo que dentre estes alunos, 5 só acertaram a primeira questão, 6 só acertaram a segunda, 7 só acertaram

a terceira, 9 acertaram a primeira e a segunda, 10 acertaram a primeira e a terceira, 7 acertaram a segunda e a terceira e, 4 erraram

todas as questões, podemos afirmar que o número de alunos que não acertaram todas as 3 questões é igual a

Page 15: Matemática Para Concursos Militares - Volume1

Página | 15

(A) 6

(B) 8

(C) 26

(D) 30

(E) 32.

12. (EN 1989) Considere os conjuntos A={x} e B={x,{A}} e as proposições:

I - {A} B

II- {x} A

III- A B

IV- B A

V- {x , A} B

As proposições FALSAS são:

(A) I , III e V

(B) II , IV e V

(C) II , III , IV e V

(D) I , III , IV e V

(E) I , III e IV

13. (EN 1991) Sejam A, B e C conjuntos. A condição necessária e suficiente para que A(B∩C) = (AB)∩ C é:

(A) A = B = C

(B) A∩C = ∅

(C) A – C = ∅

(D) A = ∅

(E) AC = B

ITA

R14. (ITA 2009) Sejam A e B subconjuntos do conjunto universo U = {a,b,c, d,e, f , g, h}. Sabendo que (BC A)C = {f, g, h}, BC

A = {a, b} e AC \B = {d, e}, então, n(P( A B)) é igual a

(A) 0.

(B) 1.

(C) 2.

(D) 4.

(E) 8.

15. (ITA 2004) Considere as seguintes afirmações sobre o conjunto

U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}:

I. U e n(U) = 10.

II. U e n(U) = 10.

III. 5 U e {5} U.

IV. {0, 1, 2, 5} {5} = 5

Pode-se dizer, então, que é (são) verdadeira(s)

(A) apenas I e III.

(B) apenas II e IV.

(C) apenas II e III.

(D) apenas IV.

(E) todas as afirmações.

NÍVEL B

ITA

Page 16: Matemática Para Concursos Militares - Volume1

Página | 16

R1. (ITA 2007) Se A, B, C forem conjuntos tais que: n(AB)= 23, n(B–A)=12, n(C–A)=10, n(B C)= 6 e n(A B C)= 4,

então n(A), n(A C), n(A B C), nesta ordem,

(A) formam uma progressão aritmética de razão 6.

(B) formam uma progressão aritmética de razão 2.

(C) formam uma progressão aritmética de razão 8, cujo primeiro termo é 11.

(D) formam uma progressão aritmética de razão 10, cujo último termo é 31.

(E) não formam uma progressão aritmética.

R2. (ITA 2006) Seja U um conjunto não vazio com n elementos, n 1. Seja S um subconjunto de P(U) com a seguinte

propriedade:

Se A, B S, então A B ou B A então, o número máximo de elementos que S pode ter é:

(A) 2n- 1

(B) n/ 2, se n for par, e (n + 1)/ 2 se n for ímpar

(C) n + 1

(D) 2n – 1

(E) 2n – 1 + 1.

3. (ITA 2006) Sejam A e B subconjuntos finitos de um mesmo conjunto X, tais que n(B\A), n(A\B) e n(AB) formam, nesta

ordem, uma progressão aritmética de razão r > 0. Sabendo que n(B\A) = 4 e n(A B) + r = 64, então, n(A\B) é igual a:

(A) 12

(B) 17

(C) 20

(D) 22

(E) 24.

4. (ITA 2003) Sejam U um conjunto não-vazio e A U, B U. Usando apenas as definições de igualdade, reunião,

intersecção e complementar, prove que:

I. Se A B = , então B AC.

II. B\AC = B A.

R5. (ITA 2002) Sejam A um conjunto com 8 elementos e B um conjunto tal que A U B contenha 12 elementos. Então, o número

de elementos de P(B \ A) U P() é igual a

(A) 8.

(B) 16.

(C) 20.

(D) 17.

(E) 9.

6. (ITA 2000) Denotemos por n(X) o número de elementos de um conjunto finito X. Sejam A, B e C conjuntos tais que n(AB)= 8,n(AC)= 9, n(BC)= 10, n(ABC) = 11 e n (ABC) = 2.

Então, n(A) + n(B) + n(C) é igual a

(A) 11

(B) 14

(C) 15

(D) 18

(E) 25.

IME

7. (IME 2009) Sejam dois conjuntos, X e Y, e a operação , definida por

X Y = (X – Y) (Y – X).

Pode-se afirmar que

(A) (X Y) (X Y) = Ø

(B) (X Y) (X – Y) = Ø

(C) (X Y) (Y – X) = Ø

(D) (X Y) (X – Y) = X

(E) (X Y) (Y – X) = X

Page 17: Matemática Para Concursos Militares - Volume1

Página | 17

NÍVEL C

ESCOLA NAVAL

R1. (EN 1988) Se 70% da população gostam de samba, 75% de choro, 80% de bolero e 85% de rock , quantos por cento da

população, no mínimo, gostam de samba, choro, bolero e rock?

(A) 5%

(B) 10%

(C) 20%

(D) 45%

(E) 70%.

ITA

2. (ITA 2013) Sejam A, B e C subconjuntos de um conjunto universo U. Das afirmações:

I. A \ (B ∩ C) = (A \ B) ∪ (A \);

II. (A ∩ C) \ B = A ∩ BC ∩ C;

III. (A \ B) ∩ (B \ C) = (A \ B) \ C,

é (são) verdadeira(s)

(A) apenas I. (B) apenas II. (C) apenas I e II.

(D) apenas I e III. (E) todas.

R3. (ITA 2011) Analise a existência de conjuntos A e B, ambos não vazios, tais que (A\B) U (B\A) = A

4. (ITA 2011) Sejam A e B conjuntos finitos e não vazios tais que A B e n ({C : C B \ A}) = 128. Então, das afirmações

abaixo:

I – n(B) – n(A) é único;

II – n(B) + n(A) ≤ 128;

III – a dupla ordenada (n(A), n(B)) é única.

É (são) verdadeira(s)

(A) apenas I.

(B) apenas II.

(C) apenas III.

(D) apenas I e II.

(E) nenhuma.

5. (ITA 2010) Considere as afirmações abaixo relativas a conjuntos A, B e C quaisquer:

I. A negação de x A B é: x A ou x B.

II. A (B C) = (A B) (A C)

III. (A\B) (B\A) = (A B) \ (A B)

Destas, é (são) falsa(s)

(A) Apenas I

(B) apenas II

(C) apenas III

(D) apenas I e III

(E) apenas nenhuma.

6. (ITA 2010) Sejam A, B e C conjuntos tais que C B, n(B\C) = 3n(B C) = 6n(A B),

n(A B) = 22 e (n(C), n(A), n(B)) é uma progressão geométrica de razão r > 0.

a) Determine n(C)

b) Determine n(P(B\C)).

7. (ITA 2008) Sejam X, Y, Z, W subconjuntos de N tais que (X – Y ) Z = {1, 2, 3, 4}, Y = {5, 6}, Z Y = , W (X –

Z) = {7, 8}, X W Z = {2, 4}. Então o conjunto [X (Z W)] – [W (Y Z)] é igual a

Page 18: Matemática Para Concursos Militares - Volume1

Página | 18

(A) {1, 2, 3, 4, 5}

(B) {1, 2, 3, 4, 7}

(C) {1, 3, 7, 8}

(D) {1, 3}

(E) {7, 8}.

8. (ITA 2007) Seja A um conjunto com 14 elementos e B um subconjunto de A com 6 elementos. O número de subconjuntos de

A com um número de elementos menor ou igual a 6 e disjuntos de B é:

(A) 28 – 9.

(B) 28 –1.

(C) 28 – 26.

(D) 214 – 28.

(E) 28.

R9. (ITA 2006) Considere A um conjunto não vazio com um número finito de elementos. Dizemos que F = {A1,...,Am} P(A) é

uma partição de A se as seguintes condições são satisfeitas:

I. Ai ≠ , i = 1 ,... , m

II. AiAj = , se i ≠ j, para i, j = 1, ... , m

III. A = A1A2 ∙∙∙Am

Dizemos ainda que F é uma partição de ordem k se n(Ai) = k, i = 1,..., m. Supondo que n(A) = 8, determine:

a) As ordens possíveis para uma partição de A

b) O número de partições de A que têm ordem 2

10. (ITA 2004) Seja A um conjunto não-vazio.

a) Se n(A) = m, calcule n(P(A)) em termos de m.

b) Denotando P1(A)=P(A) e Pk + 1(A) = = P(Pk(A)), para todo número natural k 1, determine o menor k, tal que n(Pk(A))

65000, sabendo que n(A) = 2.

NÍVEL C

IME

11. (IME 2013) Considere os conjuntos A, B, C e D, não vazios, contidos no mesmo conjunto universo U. A simbologia F

representa o complemento de um conjunto F em relação ao conjunto U. Assinale a opção correta

(A) Se A D C e B D C então A B C

(B) A B C A B C A B C A B

(C) A B C A B C A B C A B C

(D)

A B C A B C A B C

A B B C A C

(E) Se A C e B C então A B C

R12. (IME 2010) Sejam os conjuntos P1, P2 , S1 e S2 tais que

(P2 S1) P1, (P1 S2) P2

E

(S1 S2) (P1 P2).

Demonstre que (S1 S2) (P1 P2).

13. (IME 2011) Em relação à teoria dos conjuntos, considere as seguintes afirmativas relacionadas aos conjuntos A, B e C:

I. Se A B e B C então A C.

II. Se A B e B C então A C.

III. Se A B e B C então A C.

Estão corretas:

Page 19: Matemática Para Concursos Militares - Volume1

Página | 19

(A) nenhuma das alternativas

(B) somente a alternativa I

(C) somente as alternativas I e II

(D) somente as alternativas II e III

(E) todas as alternativas

14. (IME 2000) Três jogadores, cada um com um dado, fizeram lançamentos simultâneos. Essa operação foi repetida cinqüenta

vezes. Os dados contêm três faces brancas e três faces pretas. Dessas 50 vezes.

a) em 28 saiu uma face preta para o jogador I;

b) em 25 saiu uma face branca para o jogador II;

c) em 27 saiu uma face branca para o jogador III;

d) em 8 saíram faces pretas para os jogadores I e III e branca para o jogador II;

e) em 7 saíram faces brancas para os jogadores II e III e preta para o jogador I;

f) em 4 saíram faces pretas para os três jogadores;

g) em 11 saíram faces pretas para os jogadores II e III.

Determine quantas vezes saiu uma face preta para pelo menos um jogador.

R15. (IME 1987) Dados dois conjuntos A e B, define-se

A   B  (A B)   (B A) .

Prove que dados três conjuntos arbitrários X, Y e Z

X   (Y   Z)   (X  Y)   (X   Z).

Page 20: Matemática Para Concursos Militares - Volume1

Página | 20

CAPÍTULO 3 - PRODUTO CARTESIANO

DEFINIÇÃO: Sejam IRB,A , o produto cartesiano entre A e B é definido por:

BxAx:y,xBA .

O Plano Cartesiano é obtido pelo produto cartesiano da reta por ela mesma, ou seja,

IRyIRx:y,xIRIRIR 2 .

A representação gráfica do plano cartesiano é dada por um par de eixos perpendicurales, chamados eixos coordenados, cujo

ponto em comum é chamado de origem do plano cartesiano.

O eixo horizontal é chamado eixo das abscissas e seus pontos são representados por IRx,0,x .

Quando 0x o ponto localiza-se à direita da origem, caso contrário à esquerda,.

O eixo vertical é chamado eixo das ordenadas e seus pontos são representados por IRy,y,0 .

Quando 0y o ponto localiza-se acima da origem, caso contrário abaixo.

Assim a origem é o ponto de coordenadas 0,0 .

Os pontos não pertencentes a nenhum dos eixos serão representados por 0\IRy,x,y,x , onde os valores de x e y

são obtidos pelas coordenadas dos pontos de interseção das perpendiculares traçadas pelo ponto y,x aos eixos coordenados.

Os eixos coordenados dividem o plano cartesiano em quatro regiões disjuntas chamadas quadrantes, desta forma

define-se:

Quadrante4y,x0ye0x

Quadrante3y,x0ye0x

Quadrante2y,x0ye0x

Quadrante1y,x0ye0x

Page 21: Matemática Para Concursos Militares - Volume1

Página | 21

As retas xyexy são chamadas respectivamente de bissetrizes dos quadrantes ímpares e pares.

Page 22: Matemática Para Concursos Militares - Volume1

Página | 22

EXERCÍCIOS

NÍVEL C

ITA

R1. (ITA 1999) Sejam E, F, G e H subconjuntos não vazios de R. Considere as afirmações:

I- Se (E x G) (F x H), então E F e G H.

II- Se (E x G) (F x H), então (E x G) (F x H) = F x H.

III- Se (E x G) (F x H) = F x H, então (E x G) (F x H)

Então:

(A) Apenas a afirmação (I) é verdadeira

(B) Apenas a afirmações (II) é verdadeira

(C) Apenas as afirmações (II) e (III) são verdadeiras

(D) Apenas as afirmações (I) e (II) são verdadeiras

(E) Todas as afirmações são verdadeiras.

2. (ITA 1989) Sejam A, B e C subconjuntos de IR , não vazios, e A–B = {p IR; p A e p B}. Dadas as igualdades:

1-(A–B)xC = (AxC) – (BxC)

2-(A–B)xC = (AxB) – (BxC)

3-(A B)–A (A B) – B

4-A–(BC) = (A–B) (A–C)

5-(A–B)(B–C) = (A–B)(A–B)

Podemos garantir que:

(A) 2 e 4 são verdadeiras.

(B) 1 e 5 são verdadeiras.

(C) 3 e 4 são verdadeiras.

(D) 1 e 4 são verdadeiras.

(E)1 e 3 são verdadeiras.

Page 23: Matemática Para Concursos Militares - Volume1

Página | 23

CAPÍTULO 4 - RELAÇÃO

DEFINIÇÃO: Sejam IRB,A , uma Relação R de A em B é um subconjunto qualquer de BA .

Em particular, uma Relação R de IR em IR é um subconjunto qualquer de 2IR .

Assim, a região abaixo é um exemplo de um gráfico de uma relação de IR em IR.

DEFINIÇÃO: O Domínio e a Imagem de uma relação R de A em B são definidos por:

Ry,x:xD R .

Ry,x:yIm R .

DEFINIÇÃO: Seja R uma Relação de A em B, a Relação Inversa 1R

de B em A é definida por:

Ry,x:x,yR 1 .

Em particular, o gráfico de um relação e da sua relação inversa são simétricos em relação a bissetriz dos quadrantes ímpares.

DEFINIÇÃO: Uma Relação de A em B é dita Reflexiva se e somente, se:

Rx,x,Ax .

Page 24: Matemática Para Concursos Militares - Volume1

Página | 24

DEFINIÇÃO: Uma Relação de A em B é dita Simétrica se e somente, se:

Rx,yRy,x .

DEFINIÇÃO: Uma Relação de A em B é dita Antissimétrica se e somente, se:

x,yy,xRx,yRy,x .

DEFINIÇÃO: Uma Relação de A em B é dita Transitiva se e somente, se:

Rz,xRz,y

Ry,x

.

DEFINIÇÃO: Uma Relação de A em B é dita de Equivalência se e somente, se é uma Relação Reflexiva, Simétrica e

Transitiva.

DEFINIÇÃO: Uma Relação de A em B é dita uma Relação de Ordem se e somente, se é uma Relação Reflexiva,

Antissimétrica e Transitiva.

Page 25: Matemática Para Concursos Militares - Volume1

Página | 25

EXERCÍCIOS

NÍVEL A

EFOMM

R1. (EFOMM 2006) Dados A = {2,3,4} e B = {1,6,8,12}, a relação R1 = {(x,y) A x B y = x + 4} de A em B é dada por:

(A) {(3,6), (4,8)}

(B) {(2,6), (4,8)}

(C) {(6,2), (8,4)}

(D) {(2,6), (3,12), (4,8)}

(E) {(2,1), (3,6), (4,8)}

NÍVEL C

IME

R1. (IME 1986) Seja N* o conjunto dos números naturais não nulos e n N*. Mostre que a relação Rn = {((a, b) a, b N* e a

– b é múltiplo de n } é uma relação de equivalência.

R2. (IME 1984) Dada a matriz M = (mij )

M =

1111

1101

1010

1101

e o conjunto A = {a1; a2; a3; a4}, define-se em A uma relação R por:

ai R aj m i j = 1

Verifique se R é uma relação de equivalência.

3. (IME 1983) Seja m um inteiro positivo. Define-se uma relação m por

Rm = {(i; j) i = j + km; k inteiro}.

Mostre que m é uma relação de equivalência.

Page 26: Matemática Para Concursos Militares - Volume1

Página | 26

CAPÍTULO 5 - CONJUNTOS NUMÉRICOS

OPERAÇÃO

Uma operação definida em um conjunto é uma relação que associa a dois elementos de um conjunto um terceiro elemento, ou

seja,

212121 a*a:a,a*a,a

BAA:*

Quando o resultado da operação for um elemento de A, a operação é dita fechada, assim,

212121 a*a:a,a*a,a

AAA:*

É uma operação fechada.

CONJUNTOS NUMÉRICOS

1-NÚMEROS NATURAIS:

.....,3,2,1,0IN .

....,3,2,1IN* .

A soma e a multiplicação de dois números naturais são exemplos de operações fechadas neste conjunto, logo:

ba:b,ab,a

INININ:

e

ba:b,ab,a

INININ:

Em particular, a soma e a multiplicação gozam das seguintes propriedades:

INceb,a , temos:

1.1-ASSOCIATIVIDADE (ADIÇÃO):

cbacba .

1.2- COMUTATIVIDADE (ADIÇÃO):

abba .

1.3- EXISTÊNCIA DE ELEMENTO NEUTRO (ADIÇÃO):

INa,aaeea:INe sss .

Em relação aos números naturais o elemento neutro da adição é o número zero.

1.4- ASSOCIATIVIDADE (MULTIPLICAÇÃO):

cbacba .

Page 27: Matemática Para Concursos Militares - Volume1

Página | 27

1.5- COMUTATIVIDADE (MULTIPLICAÇÃO):

abba .

1.6 - EXISTÊNCIA DE ELEMENTO NEUTRO (MULTIPLICAÇÃO):

INa,aaeea:INe ppp .

Em relação aos números naturais, o elemento neutro da multiplicação é o número um.

1.7- DISTRIBUTIVIDADE DA MULTIPLICAÇÃO EM RELAÇÃO À ADIÇÃO:

cabacba .

1.8- NÃO EXISTEM DIVISORES DE ZEROS:

0b

ou

0a

0ba:INb,a .

2-NÚMEROS INTEIROS:

....,2,1,0,1,2...,Z .

...,2,1,1,2...,Z* .

Repare que ZIN , porém existem números inteiros que não são números naturais, cuja necessidade se percebe

quando se tenta resolver, por exemplo, a seguinte sentença:

.02x

De fato, suponha que haja solução natural, então,

.INx022x0xINx

Definindo a soma e a multiplicação de maneira natural, defini-se a operação de subtração por:

).b(aba:b,ab,a

ZZZ:

As operações de adição, subtração e multiplicação são fechadas em relação ao conjunto dos números inteiros, além

disso, estas operações gozam das mesmas propriedades dos números naturais e da seguinte:

2.1- INVERSO ADITIVO:

ab,0abba:Zb,Za .

3-NÚMEROS RACIONAIS:

*ZqZp:q

pQ .

*** ZqZp:q

pQ .

Page 28: Matemática Para Concursos Militares - Volume1

Página | 28

Repare que QZIN , porém existem números racionais que não são números inteiros, cuja necessidade é

percebida quando se tenta resolver a seguinte sentença:

.01x2

De fato, suponha por absurdo que haja solução inteira, então,

.Zximpar1x2Zx

Definindo a soma, a multiplicação e a subtração de maneira natural, define-se a operação de divisão por:

.b

a

b

1aba:b,ab,a

QQQ: *

O conjunto dos números racionais é fechado em relação à adição, à subtração, à multiplicação e à divisão, sempre que definida, e

goza das mesmas propriedades dos números inteiros e da seguinte:

3.1- INVERSO MULTIPLICATIVO:

1* ab,1abba:Qb,Qa .

4-NÚMEROS REAIS:

A esta altura o leitor pode se perguntar se todo número pode ser escrito sob a forma de fração, a resposta para esta pergunta é não.

Existe a necessidade de outros tipos de números, isto é percebido, por exemplo, quando se tenta resolver a equação:

2x2 .

De fato, suponha que a solução desta equação seja um número racional, dito isto, sabemos que x pode ser escrito como a razão de

dois números inteiros, sejam p e q inteiros com q não nulo e tais que:

1)q,p(mdc,ZqeZp,q

px *

Então

.p2p:Zpp|2p|2q2p2q

p2x 00

222

2

2

Logo,

0022

0222

0 q2q:Zqq|2q|2p2qq2p2

O que implica

.2)q,p(mdc

O que é um absurdo uma vez que por hipótese p e q são primos entre si.

Logo há a necessidade que existam números que não podem ser escritos como a razão de dois números inteiros. Estes números

serão chamados de números Irracionais.

Define-se o conjunto dos números reais como a união do conjunto dos números racionais e dos números irracionais.

Geometricamente os números reais IR podem ser representados pela reta, o que define uma bijeção entre estes conjuntos, ou

seja, a cada ponto da reta corresponde um único número real da mesma forma que a cada número real corresponde um único

ponto da reta.

Esta bijeção está definida a menos de um ponto fixo chamado origem que representa o número zero e de uma escala que define o

sistema de unidade, em particular, esta escala também define os números naturais e os números inteiros.

Page 29: Matemática Para Concursos Militares - Volume1

Página | 29

Os números racionais podem ser obtidos construindo-se primeiramente os racionais positivos menores que um, a partir de

construções geométricas, depois estes são levados a toda a reta a partir de translações.

Diante do que foi dito acima temos que IRQZIN .

O conjunto dos números reais é fechado em relação às quatros operações fundamentais: adição, subtração, multiplicação e

divisão, esta última estando definida. Além disso, o conjunto dos números reais goza das mesmas propriedades relativas a adição

e multiplicação que os números racionais.

O conjunto dos números reais munido das operações soma e produto é chamado de corpo dos números reais.

4.1-INTERVALOS:

bxa:IRxb,a

bxa:IRxb,a

bxa:IRxb,a

bxa:IRxb,a

xa:IRx,a

xa:IRx,a

ax:IRxa,

ax:IRxa,

Definem-se também os seguintes conjuntos:

INTEIROS POSITIVOS:

...,3,2,1Z* .

INTEIROS NÃO NEGATIVOS:

...,3,2,1,0Z .

INTEIROS NEGATIVOS:

1,2,3...,Z* .

INTEIROS NÃO POSITIVOS:

0,1,2,3....,Z .

RACIONAIS POSITIVOS:

0q

p:Q

q

pQ* .

RACIONAIS NÃO NEGATIVOS:

0q

p:Q

q

pQ

Page 30: Matemática Para Concursos Militares - Volume1

Página | 30

RACIONAIS NEGATIVOS:

0q

p:Q

q

pQ*

.

RACIONAIS NÃO POSITIVOS:

0q

p:Q

q

pQ .

REAIS POSITIVOS:

0x:IRxIR* .

REAIS NÃO NEGATIVOS:

0x:IRxIR .

REAIS NEGATIVOS:

0x:IRxIR* .

REAIS NÃO POSITIVOS:

0x:IRxIR .

Page 31: Matemática Para Concursos Militares - Volume1

Página | 31

EXERCÍCIOS

NÍVEL A

AFA

1. (AFA 2013) Considere os seguintes conjuntos numéricos IN, Z, Q, IR, II = IR – Q e considere também os seguintes conjuntos:

A = (IN II) – (IR Z)

B = Q – (Z – IN)

D = (IN II) (Q – IN)

Das alternativas abaixo, a que apresenta elementos que pertencem aos conjuntos A, B e D, nesta ordem, é

(A) 3

;3 e 2,312

(B) 20; 10 e 5

(C) 10; 5 e 2

(D) 5

3;0,5 e2

R2. (AFA 2011) Se α = 2. 2 2. 2 2 2 . 2 2 2 , então

(A) α (IR – IN)

(B) α pode ser escrito na forma α = 2k, k Z

(C) α [(Q – Z) (IR – Q)]

(D) [(Z ∩ Q) ∩ (IR – IN)] α

3. (AFA 2008) Analise as alternativas abaixo e marque a correta.

(A) Se = B {m ∈ N | m² < 40}, então o número de elementos do conjunto B é 6.

(B) Se α = 1 1

2 1 2 1

, então α ∈[(IR − Q) ∩ (IR − Z)]

(C) Se c = a + b e b é divisor de a, então c é múltiplo de a, necessariamente.

(D) Se A =]1, 5[ e B =]−3,3[, então B−A=]−3,1[.

R4. (AFA 2005) Considere um subconjunto A contido em *N e constituído por y elementos dos quais:

13 são múltiplos de 4

7 são múltiplos de 10

5 são múltiplos de 20 e

9 são números ímpares.

É correto dizer que y é um número:

(A) par menor que 19.

(B) múltiplo de 12.

(C) ímpar entre 10 e 20.

(D) primo maior que 21.

ESCOLA NAVAL

R5. (EN 1993) Sejam A = [0,2], B = (–1,2] e C = (1,3). O complemento de A(B–C) em relação ao conjunto B é igual a:

(A) (–1,0) [1,2]

(B) (–1,2)

(C) (–1,0] [1,2]

(D) (–1,1]

(E) (–1,0) (1,2]

Page 32: Matemática Para Concursos Militares - Volume1

Página | 32

NÍVEL B

ITA

R1. (ITA 2004) Seja o conjunto S = {r Q : r 0 e r2 2}, sobre o qual são feitas as seguintes afirmações:

I. S5

7eS

4

5

II. {x IR : 0 x 2 } S =

III. 2 S.

Pode-se dizer, então, que é (são) verdadeira(s) apenas

(A) I e II

(B) I e III

(C) II e III

(D) I

(E) II

NÍVEL C

ITA

1. (ITA 2012) Sejam r1, r2 e r3 números reais tais que r1−r2 e r1+r2+r3 são racionais. Das afirmações:

I. Se r1 é racional ou r2 é racional, então r3 é racional;

II. Se r3 é racional, então r1 + r2 é racional;

III. Se r3 é racional, então r1 e r2 são racionais,

é (são) sempre verdadeira(s)

(A) apenas I.

(B) apenas II.

(C) apenas III.

(D) apenas I e II.

(E) I, II e III.

IME

2. (IME 1993) Indique se é verdadeiro (V) ou falso (F) o que se segue e justifique sua resposta.

a) O conjunto dos números reais não tem pontos extremos reais;

b) Existe um número em Q (racionais) cujo quadrado é 2;

c) O ponto correspondente a 77

66 na escala dos números reais R está situado entre os pontos

66

55 e

88

77.

Page 33: Matemática Para Concursos Militares - Volume1

Página | 33

CAPÍTULO 6 - FUNÇÃO

DEFINIÇÃO: Sejam IRB,A , uma Função de A em B é uma Relação de A em B tal que a cada elemento de A é associado

um único elemento de B. Representa-se uma Função de A em B por:

xfx

BA:f

O gráfico de uma Função de A em B é a representação dos pontos da função no plano cartesiano, em particular:

BAAx:xf,xGf

Em seguida o gráfico de uma função e o gráfico de uma relação.

De fato, existem pontos no domínio da circunferência tais que a reta perpendicular ao eixo das abscissas intercepta o seu gráfico

em mais de um ponto.

O Domínio e o Contradomínio e a Imagem de uma Função de A em B, são definidos por:

yxf,Ax:ByAfIm

BCD

AD

f

f

f

.

Page 34: Matemática Para Concursos Militares - Volume1

Página | 34

CLASSIFICAÇÃO DE FUNÇÕES:

FUNÇÃO INJETORA:

Uma função é injetora se e somente, se quaisquer dois elementos distintos do seu domínio possuírem imagens distintas, ou seja,

.xfxfxx:Ax,xinjetoraéf 212121

O gráfico abaixo é um exemplo de gráfico de função injetora.

Já o próximo não é um exemplo de gráfico de função injetora, uma vez que existe ponto na imagem tal que a reta perpendicular ao

eixo das ordenadas intercepta o gráfico da função em mais de um ponto.

FUNÇÃO SOBREJETORA:

Diremos que uma função é sobrejetora se e somente, se o conjunto imagem for igual ao conjunto contradomínio, ou seja,

ff CDImasobrejetoréf

Page 35: Matemática Para Concursos Militares - Volume1

Página | 35

Seja

d,cb,a:f

dependendo do conjunto imagem f pode ser uma função sobrejetora,

Ou não:

No segundo caso existem pontos no contradomínio tais que a reta perpendicular ao eixo das ordenadas por estes pontos não

intercepta o gráfico da função.

FUNÇÃO BIJETORA:

Diremos que uma função é bijetora se e somente se for injetora e sobrejetora, ou seja,

aSobrejetoreInjetoraéfBijetoraéf

Em seguida o gráfico de uma função bijetora.

Page 36: Matemática Para Concursos Militares - Volume1

Página | 36

CLASSIFICAÇÃO DE FUNÇÕES QUANTO AO CRESCIMENTO:

FUNÇÃO CRESCENTE:

Seja BA:f

212121 xfxfxx,Ax,xcrescenteéf

FUNÇÃO DECRESCENTE:

Seja BA:f

212121 xfxfxx,Ax,xedecrescentéf

Obs.: Estas funções também podem ser chamadas de funções estritamente crescentes ou estritamente decrescentes.

Obs.: Toda função crescente ou decrescente é injetora.

FUNÇÃO NÃO CRESCENTE:

212121 xfxfxx,Ax,xcrescentenãoéf

FUNÇÃO NÃO DECRESCENTE:

212121 xfxfxx,Ax,xedecrescentnãoéf

Page 37: Matemática Para Concursos Militares - Volume1

Página | 37

FUNÇÃO MONÓTONA:

crescentedenãoéf

ou

crescentenãoéf

ou

crescentedeéf

ou

crescenteéf

monótonaéf

CLASSIFICAÇÃO DE FUNÇÕES QUANTO À PARIDADE:

FUNÇÃO PAR:

Seja BA:f

xfxf,Axparéf

Obs.: O gráfico de uma função par é simétrico em relação aos eixos das ordenadas.

FUNÇÃO ÍMPAR:

Seja BA:f

xfxf,Axímparéf

Obs.: O gráfico de uma função ímpar é simétrico em relação a origem do sistema de coordenadas.

Page 38: Matemática Para Concursos Militares - Volume1

Página | 38

FUNÇÃO PERIÓDICA:

Seja BA:f

xfTxf,Ax:0Tperiódicaéf

O Período de uma função periódica é definido por:

Ax,xfTxf,IRT:TmínP *

Em seguida o gráfico de uma função periódica:

Obs.: Existem funções periódicas que não possuem período, por exemplo, as funções constantes,

b)x(fx

BA:f

FUNÇÃO COMPOSTA

Sejam BA:f , DC:g funções, e os conjuntos B e C tais que, CB , define-se A Função Composta de f por g por:

))x(f(g)x(fg:yx

DA:fg

Page 39: Matemática Para Concursos Militares - Volume1

Página | 39

FUNÇÃO INVERSA

Uma vez que uma função BA:f é uma relação, sempre existe a sua relação inversa AB:R f . O Teorema seguinte dá

condições para que a relação inversa de uma função também seja uma função.

TEOREMA: Seja BA:f uma função, então:

funçãoéAB:Rbijetoraéf1

f

Se BA:f é uma Função Bijetora, então a Relação Inversa de B em A é uma função e é chamada de Função

Inversa de B em A AB:f 1 . Em particular,

A11

B11

idffAx,xxff

idffBy,yyff

Onde idA é a função identidade restrita ao conjunto A.

Obs.: Caso IRIR:f então

idffff 11

Ou seja,

IRx,x)x(ff)x(ff 11

TEOREMA: O gráfico de uma função bijetora e o gráfico da sua função inversa são simétricos em relação à bissetriz dos

quadrantes ímpares, ou seja, a reta xy .

Page 40: Matemática Para Concursos Militares - Volume1

Página | 40

EXERCÍCIOS

NÍVEL A

AFA

1. (AFA 2009) Um estudo sobre a concentração de um candidato em provas de memorização indicou que, com o tempo

decorrido, sua capacidade de reação diminui.

A capacidade de reação (E), E > 0, e o tempo decorrido (t), medido em horas, podem ser expressos pela relação E =

3

1t

1t2

.

Sendo assim, é INCORRETO afirmar que

(A) a concentração tende a ser máxima por volta de 20 minutos do início da prova.

(B) a cada intervalo de 1h de prova há uma queda de 33, 3 % na capacidade de reação.

(C) a capacidade de reação nunca é menor que 2

(D) se a capacidade de reação é 24, então o tempo t decorrido é maior que 24 minutos.

R2. (AFA 2005) Observe os gráficos abaixo, das funções f e g, definidas no intervalo ]1,0[

Page 41: Matemática Para Concursos Militares - Volume1

Página | 41

Com base nos gráficos, assinale a alternativa FALSA.

(A) ]1,0[x,))x(f(g))4,0(f(g .

(B) ))1(f(g))6,0(f(g .

(C) ))1,0(f(g))05,0(f(g .

(D) ]8,0;3,0[x,x))x(g(g .

R3. (AFA 2001) Se f e g são funções de IRemIR definidas por f(3x+2) = 2

2x3 e g(x – 3) = 5x – 2, então f(g(x)) ;e:

(A)5

4x

(B) 5x 9

2

(C) 5x + 13

(D) 5

11x5 .

4. (AFA 2001) Os números inteiros do domínio da função real )x32()x25()x(f são as raízes da equação 0)x(g .

Uma expressão analítica da função )x(g é:

(A) x2xx 23

(B) x2xx 23

(C) x2x3x 23

(D) x2x3x 23 .

R5. (AFA 1999) Seja D = 5,4,3,2,1 e f: D R, a função definida por f(x) = (x – 2)(x – 4). Então, pode-se afirmar que f

(A) é bijetora.

(B) é somente injetora.

(C) é somente sobrejetora.

(D) possui conjunto imagem com 3 elementos.

ESCOLA NAVAL

R6. (EN 2011) Considere f uma função definida no conjunto dos números naturais tal que f(n + 2) = 3 + f(n), n N, f(0) =

10 e f(1) = 5. Qual o valor de f (81) f (70) ?

(A) 2 2

(B) 10

(C)2 3

(D) 15

(E) 3 2

R7. (EN 1993) Sejam h(x) = x3, t(x) = x1

1

, x –1 e, f(x) = t(h(2x)). O valor de f-1(1/9) é:

(A) –2

(B) –1

(C) 1

(D) 2

(E) 3

Page 42: Matemática Para Concursos Militares - Volume1

Página | 42

8. (EN 1990) Se, para todo x real, f(2x + 3) = 3x + 2 então f [f(x)] é igual a:

(A) x

(B) 2

3x

(C) 2

5x3

(D) 4

25x9

(E) 9x + 4

9. (EN 1989) Sabendo que f , g e h são funções reais de variável real e que f e g não se anulam, considere as afirmações abaixo :

I - fo (g + h) = fog + foh

II - (g + h) of = gof + hof

III - ogf

1

fog

1

IV -

g

1fo

fog

1

Podemos afirmar que:

(A) todas as afirmativas acima são verdadeiras.

(B) somente I a II são verdadeiras

(C) somente a IV é falsa

(D) somente II e III são verdadeiras.

(E) somente I é falsa.

R10. (EN 1988) Seja x {-1, 0, 1}. Se f1 (x) = 1x

3x

e fn+1 (x) = f1 nf (x) para todo n natural, então f1988(x) igual a:

(A) 1x

3x

(B) x

(C) x1

3x

(D) 1x

x3

(E) 1x

3x

.

NÍVEL B

EFOMM

1. (EFOMM 2013) O gráfico da função contínua y = f(x), no plano xy, é uma curva situada acima do eixo x para x > 0 e possui a

seguinte propriedade:

“A área da região entre a curva y = f(x) e o eixo x no intervalo a x b(a > 0) é igual à área entre a curva e o eixo x no intervalo

ka x kb (k > 0)”.

Se a área da região entre a curva y = f(x) e o eixo x para x no intervalo 1 x 3é o número A então a área entre a curva

y = f(x) e o eixo x no intervalo 9 x 243 vale:

(A) 2A (B) 3A (C) 4A (D) 5A (E) 6A

Page 43: Matemática Para Concursos Militares - Volume1

Página | 43

AFA

2. (AFA 2014) Considere os gráficos abaixo das funções reais f : A →IR e g :B→IR. Sabe-se que A = [−a, a] ; B = ]−∞, t];

g(−a) < f (−a) ; g(0) > f (0); g(a) < f (a) e g(x) = n para todo x ≤ −a .

Analise as afirmativas abaixo e marque a FALSA.

(A) A função f é par.

(B) Se x∈] d,m [, então f (x) . g(x) < 0

(C) Im(g) = [n, r [ { s }

(D) A função h :E→IR dada por h(x) = 2

f (x) g(x)

está definida se E = {x ∈IR | − a ≤ x < −d ou d < x ≤ a}

3. (AFA 2013) O gráfico abaixo descreve uma função f:A B

Analise as proposições que seguem.

I. A = IR*

II. f é sobrejetora se B = IR – [–e, e]

III. Para infinitos valores de x A, tem-se f(x) = –b

IV. f(–c) – f(c) + f(–b) + f(b) = 2b

V. f é função par.

VI. x IR | f (x) f

São verdadeiras apenas as proposições

(A) I, III e IV (B) III, IV e V

(C) I, II e VI (D) I, II e IV.

4. (AFA 2014) Seja f uma função quadrática tal que:

• f (x) > 0 ∀ x∈ IR

• tem gráfico interceptando o gráfico da função g, dada por g(x) = 2, num único ponto cuja abscissa é 2

• seu gráfico possui o ponto Q, simétrico do ponto R (0, − 3) em relação à origem do sistema cartesiano.

Seja h uma função afim cujo gráfico intercepta o gráfico de f no eixo Oy e no ponto de menor ordenada de f.

Assim sendo, o conjunto solução da inequação

3 10

15

f (x) . g(x)

h(x)

0 contém o conjunto

Page 44: Matemática Para Concursos Militares - Volume1

Página | 44

(A) [0, 8]

(B) [1, 7]

(C) [2, 6]

(D) [3, 5]

ITA

R5. (ITA 2005) Considere os conjuntos S = {0, 2, 4, 6}, T = {1, 3, 5} e U = {0, 1} e as afirmações:

I. {0} S e S U

II. {2} S\ U e S T U = {0, 1}

III. Existe uma função f : S Tinjetiva.

IV. Nenhuma função g : T Sé sobrejetiva.

Então, é(são) verdadeira(s)

(A) apenas I.

(B) apenas IV.

(C) apenas I e IV.

(D) apenas II e III.

(E) apenas III e IV.

IME

R6. (IME 2007) Seja f : IR IR, onde IR é o conjunto dos números reais, tal que:

)4(f.)x(f)4x(f

5)4(f

O valor de f(–4) é:

(A) –5

4

(B) –4

1

(C) –5

1

(D) 5

1

(E) 5

4.

R7. (IME 2006-2007) Considere os conjuntos A={(1,2),(1,3),(2,3)} e B={1,2,3,4,5}, e seja a função f : A B tal que: f(x,y)

= x + y

É possível afirmar que f é uma função:

(A) injetora

(B) sobrejetora

(C) bijetora

(D) par

(E) ímpar.

NÍVEL C

EFOMM

Page 45: Matemática Para Concursos Militares - Volume1

Página | 45

R1. (EFOMM 2010) Seja f: R R uma função estritamente decrescente, quaisquer xl e x2 reais, com xl < x2 tem-se f(xl) > f(x2)

Nessas condições, analise as afirmativas abaixo.

I - f é injetora .

II - f pode ser uma função par.

III- Se f possui inversa, então sua inversa é estritamente decrescente.

Assinale a opção correta.

(A) Apenas as afirmativas I é verdadeira.

(B) Apenas as afirmativas I e III são verdadeiras.

(C) Apenas as afirmativas II e III são verdadeiras.

(D) As afirmativas I, II e III são verdadeiras.

(E) Apenas a afirmativa II é verdadeira.

ITA

2. (ITA 201) Considere funções f, g, f + g : IR → IR. Das afirmações:

I. Se f e g são injetoras, f + g é injetora;

II. Se f e g são sobrejetoras, f + g é sobrejetora;

III. Se f e g não são injetoras, f + g não é injetora;

IV. Se f e g não são sobrejetoras, f + g não é sobrejetora,

é (são) verdadeira(s)

(A) nenhuma. (B) apenas I e II.

(C) apenas I e III. (D) apenas III e IV.

(E) todas.

R3. (ITA 2005) Seja D = R \ {1} e f : D D uma função dada por f(x) = 1x

1x

. Considere as afirmações:

I. f é injetiva e sobrejetiva

II. f é injetiva, mas não sobrejetiva

III. f(x) + f

x

1 = 0,para todo x D, x 0

IV. f(x) . f(–x) 1 , para todo x D

Então, são verdadeiras

(A) apenas I e III.

(B) apenas I e IV.

(C) apenas II e III.

(D) apenas I, III e IV.

(E) apenas II, III e IV.

R4. (ITA 2003) Considere uma função f : IR IR não- constante e tal que f(x + y) = f(x)f(y), x, y IR.

Das afirmações:

I. f(x) > 0, x IR.

II. f(nx) = [f(x)]n, x IR, n IN*.

III. f é par.

é (são) verdadeira(s):

(A) apenas I e II.

(B) apenas II e III.

(C) apenas I e III.

(D) todas.

Page 46: Matemática Para Concursos Militares - Volume1

Página | 46

(E) nenhuma.

5. (ITA 2003) Mostre que toda função f : IR \ {0} IR, satisfazendo f(xy) = f(x) + f(y) em todo seu domínio, é par.

6. (ITA 2002) Sejam a, b, c reais não nulos e distintos, c > 0. Sendo par a função dada por:

f(x) = cx

bax

, –c < x < c.

Então f(x), para – c < x < c, é constante e igual a

(A) a + b.

(B) a + c.

(C) c.

(D) b.

(E) a.

R7. (ITA 2010) Seja f : IR IR bijetora e ímpar. Mostre que a função inversa f –1 : IR IR também é ímpar.

8. (ITA 2010) Sejam f, g : R R tais que f é par e g é ímpar. Das seguintes afirmações

I. f . g é ímpar,

II. f g é par,

III. g f é ímpar,

é (são) verdadeira(s)

(A) apenas I

(B) apenas II

(C) apenas III

(D) apenas I e II

(E) todas.

9. (ITA 2009) Seja f: IR → IR \ {0} uma função satisfazendo às condições:

f(x + y) = f(x) f(y), para todo x, y IR e f(x) ≠ 1, para todo x IR \ {0}.

Das afirmações:

I. f pode ser ímpar.

II. f (0) =1.

III. f é injetiva.

IV. f não é sobrejetiva, pois f (x) > 0 para todo x IR.

é(são) falsa(s) apenas

(A) I e III.

(B) II e III.

(C) I e IV.

(D) IV.

(E) I.

10. (ITA 2009) Seja f : IR \ {–1} → IR definida por f(x) = 1x

3x2

a) Mostre que f é injetora.

b) Determine D= {f(x), x IR \ {−1}} e f −1 : D → IR\ {−1}.

R11. (ITA 2001) Se f : ] 0,1 [ IR é tal que, x ] 0, 1[ , 2

1)x(f e

f(x) =

2

1xf

2

xf

4

1

então a desigualdade válida para qualquer n = 1, 2, 3, ... e 0 < x < 1 é:

(A)2

1

2

1)x(f

n

(B)2

1)x(f

2

1n

(C)2

1)x(f

12

1n

Page 47: Matemática Para Concursos Militares - Volume1

Página | 47

(D)n2

1)x(f

(E)n2

1)x(f .

12. (ITA 1999) Sejam f, g, h: R R funções tais que a função composta

h o g o f : R R

é a função identidade. Considere as afirmações:

I– A função h é sobrejetora.

II– Se xo R é tal que f(x0) = 0, então f(x) 0 para todo x R com x x0.

III– A equação h(x) = 0 tem solução em R.

Então:

(A) Apenas a afirmação (I) é verdadeira.

(B) Apenas a afirmação (II) é verdadeira.

(C) Apenas a afirmação (III) é verdadeira.

(D) Todas as afirmações são verdadeiras.

(E) Todas as afirmações são falsas.

13. (ITA 1997) Se Q e I representam, respectivamente, o conjunto dos números racionais e o conjunto dos números irracionais,

considere as funções f , g : R R definidas por:

I x se 0,

Q x se ,1)x(g

I x se 1,

Q x se ,0)x(f

Seja J a imagem da função composta f o g: R R. Podemos afirmar que:

(A) J = R

(B) J = Q

(C) J = {0}

(D) J = {1}

(E) J = {0, 1}.

R14. (ITA 1997) Seja f, g : R R funções tais que g(x) = 1 – x e f(x) + 2f(2 – x) = (x – 1)3, para todo x R. Então f[g(x)] é

igual a

(A) (x – 1)3

(B) (1 – x)3

(C) x3

(D) x

(E) 2 – x.

15. (ITA 1996) Seja f : *R R uma função injetora tal que f (1) = 0 e f (x . y) = f (x) + f (y) para todo x > 0 e y > 0. Se x1, x2,

x3, x4 e x5 formam nessa ordem uma progressão geométrica, onde xi > 0 para i = 1, 2, 3, 4, 5 e sabendo que

5

1ii )x(f = 13 f (2)

+ 2 f (x1) e 4

i

i 1 i 1

xf( )x

= – 2 f (2 x1), então, o valor de x1 é:

(A) –2

(B) 2

(C) 3

(D) 4

(E) 1.

16. (ITA 1993) Seja f: IR IR uma função não nula, ímpar e periódica de período p. Considere as seguintes informações:

I. f(p) 0

II. f(–x) = –f(x–p), x IR

III. f(–x) = f(x–p), x IR

IV. f(x) = –f(–x), x IR

Podemos concluir que:

Page 48: Matemática Para Concursos Militares - Volume1

Página | 48

(A) I e II são falsas

(B) I e III são falsas

(C) II e III são falsas

(D) I e IV são falsas

(E) II e IV são falsas

R17. (ITA 1992) Dadas as funções f:IR IR e g: IR IR, ambas estritamente decrescentes e sobrejetoras, considere h = fog.

Então podemos afirmar que:

(A) h é estritamente crescente, inversível e sua inversa é estritamente crescente.

(B) h é estritamente decrescente, inversível e sua inversa é estritamente crescente.

(C) h é estritamente crescente, mas não necessariamente inversível.

(D) h é estritamente crescente, inversível e sua inversa é estritamente decrescente.

(E) n.d.a

18. (ITA 1991) Considere as afirmações:

I- Se f: IR IR é uma função par e g: IR IR uma função qualquer, então a composição gof é uma função par.

II- Se f: IR IR é uma função par e g: IR IR uma função ímpar, então a composição fog é uma função par.

III- Se f: IR IR é uma função ímpar e inversível então f -1: IR IR é uma função ímpar.

Então:

(A) Apenas a afirmação I é falsa;

(B) Apenas as afirmações I e II são falsas;

(C) Apenas a afirmação III é verdadeira;

(D) Todas as afirmações são falsas;

(E) n.d.a.

19. (ITA 1990) Seja a função f: IR – {2} IR – {3} definida por f(x) = 12x

3x2

. Sobre sua inversa podemos garantir que:

(A) não está definida pois f é não injetora.

(B) não está definida pois f não é sobrejetora.

(C) está definida por f-1 (y) = 3y

2y

, y 3.

(D) está definida por f-1 (y) = 3y

5y

– 1, y 3.

(E) está definida por f-1 (y) = 3y

5y2

, y 3.

IME

20.(IME 2011_2012) Seja a, b e c números reais e distintos. Ao simplificar a função real, de variável real,

2 2 2(x b) (x c) (x c) (x a) (x a) (x b)f (x) a b c

(a b) (a c) (b c)(c a) (c a)(c b)

, obtém –se f(x) igual a :

(A) x2 – (a + b + c)x + abc

(B) x2 + x – abc

(C) x2

(D) –x2

(E) x2 – x + abc

21. (IME 2009) Sejam f uma função bijetora de uma variável real, definida para todo conjunto dos números reais e as relações h

e g, definidas por:

2 2

3

h : IR IR

x, y h x, y x , x f y

e

Page 49: Matemática Para Concursos Militares - Volume1

Página | 49

2 2

3

g : IR IR

x, y g x, y x , x f y

Pode-se afirmar que

(A) h e g são sobrejetoras.

(B) h é injetora e g sobrejetora.

(C) h e g não são bijetoras.

(D) h e g não são sobrejetoras.

(E) h não é injetora e g é bijetora.

R22. (IME 2004) Seja uma função

f : IR – {0} IR,

onde IR representa o conjunto dos números reais, tal que f(a / b) = f(a) – f(b) para a e b pertencentes ao domínio de f.

Demonstre que f é uma função par.

R23. (IME 2007) Seja IRIN:f uma função tal que

n

0k)2n(

)1n(2008)k(f , onde N e IR são, respectivamente, o conjunto

dos números naturais e o dos números reais. Determine o valor numérico de

)2006(

1

f.

R24. (IME 1996) Seja f uma função real tal que x, a IR : f(x + a) = 2

1 + 2)]x(f[)x(f , f é periódica? Justifique.

25. (IME 1992-1993) 2. Considere uma função

L:IR IR

que satisfaz:

1. L é crescente, isto é, para quaisquer 0 x y L x L y .

2. L xy L x L x , x, y IR .

Mostre que:

a) L 1 0 ;

b) 1

L L x , x IRx

;

c) x

L L x L y , x e y IRy

;

d) nL x nL x , x IR e n IN ;

e) n 1L x L x , x IR e n IN,n 2

n

;

f) 0 x 1 y L x 0 L y L.

R26. (IME 1987) Seja f uma função bijetora de uma variável real e a relação h, definida por

2 2

3

h :IR IR

x, y h x, y x , x f y

Verifique se h é bijetora e calcule uma relação g, tal que

g h x, y x, y , x, y IR

h g x, y x, y , x, y IR

Page 50: Matemática Para Concursos Militares - Volume1

Página | 50

CAPÍTULO 7 - FUNÇÃO CONSTANTE

DEFINIÇÃO: Seja IRb , a relação:

,b)x(fx

IRIR:f

é uma função, chamada função constante.

Definida a função temos

.bIm

IRCD

IRD

f

f

f

GRÁFICO

Page 51: Matemática Para Concursos Militares - Volume1

Página | 51

CAPÍTULO 8 - FUNÇÃO DO 1° GRAU

DEFINIÇÃO: Sejam IRbeIRa * , a relação:

,bxa)x(fx

IRIR:f

é uma função, chamada Função do 1° Grau ou Função Afim, denomina-se o parâmetro a por coeficiente angular e o parâmetro

b por coeficiente linear. Definida assim temos:

.IRIm

IRCD

IRD

f

f

f

GRÁFICO

O gráfico de uma função do 1° grau é uma reta. Para fazer um esboço do seu gráfico é fundamental que se determine a sua raiz,

bem como seu comportamento.

A raiz de uma função é o valor de x tal que 0)x(f , em particular, a raiz de uma função do 1° grau é obtida resolvendo-se a

equação do 1° grau associada.

Ou seja,

.a

bxbax0a,0bax0)x(f .

O próximo passo é determinar o comportamento da função do 1° Grau, que é dado pelo coeficiente angular.

Se 0a então a função do 1° Grau é crescente.

De fato

.xx

xaxa

bxabxa

)x(f)x(f

21

21

21

21

Analogamente se 0a a Função do 1° Grau é decrescente.

RESUMINDO:O gráfico de uma função do 1° grau tem em comum com o eixo das abscissas o ponto de coordenadas )0,a

b(

e com o eixo das ordenadas o ponto de coordenadas )b,0( e o seu comportamento é dado pelo sinal do coeficiente angular, caso

este seja positivo a função será crescente, caso contrário, será decrescente.

Em particular a função do 1 ° grau é sobrejetora, pois, ff ImCD e é injetora, pois,

.0a,xx

xaxa

bxabxa

)x(f)x(f

21

21

21

21

A seguir seguem os esboços do gráfico de uma função do 1° grau, nos diferentes casos.

1° CASO: a < 0 e b > 0

Page 52: Matemática Para Concursos Militares - Volume1

Página | 52

2°CASO: a < 0 e b < 0

3° CASO: a > 0 e b < 0

4°CASO: a > 0 e b > 0

Page 53: Matemática Para Concursos Militares - Volume1

Página | 53

Analisando os gráficos acima concluímos que o sinal da função do 1° grau é obtido de acordo com o sinal do coeficiente

angular, ou seja, com o sinal de a.

RESUMINDO:

À direita da raiz a função do 1° grau tem o mesmo sinal do coeficiente angular.

Obs.: Se 0b a função do 1° grau pode ser chamada de função linear, neste caso o gráfico contém a origem do plano

cartesiano.

Obs.: Nem toda relação cujo gráfico é uma reta é uma função do 1° grau, em particular podemos ter uma função constante

b)x(fx

IRIR:f

Ou simplesmente uma relação

Page 54: Matemática Para Concursos Militares - Volume1

Página | 54

IRy:)y,c(:R

EQUAÇÃO DO 1° GRAU

DEFINIÇÃO: Sejam*a IR , b IR , a equação do 1° grau de coeficientes a e b é uma sentença aberta equivalente à:

a x b 0.

DISCUSSÃO DE EQUAÇÕES DO TIPO ax b 0 :

Seja 0bax onde IRb,a , então:

Se 0a a equação 0bax é uma equação do 1° grau, neste caso a equação é classificada como possível e determinada e

a

bS .

0a A equação 0bax se reduz à:

0bx0

Assim temos dois casos a analisar 0be0b .

Se 0be0a a equação se reduz a

00x0

Assim IRS já que todo número real é solução, neste caso a equação é classificada como possível e indeterminada.

Se 0be0a a equação se reduz a 0bx0 e neste caso S já que nenhum número real é solução, neste caso a equação

é classificada como impossível.

RESUMINDO:

possívelImEquação0be0a

adaminerdetinePossívelEquação0be0a

adaminerdetePossívelEquação0a

Page 55: Matemática Para Concursos Militares - Volume1

Página | 55

INEQUAÇÃO DO 1° GRAU

DEFINIÇÃO: Sejam*a IR , b IR , uma inequação do 1° grau de coeficientes a e b é uma sentença aberta equivalente a

a x b 0

ou

a x b 0

ou

a x b 0

ou

a x b 0

A solução de uma inequação do 1° grau pode ser obtida pela analise do gráfico da função do 1° grau correspondente.

Page 56: Matemática Para Concursos Militares - Volume1

Página | 56

EXERCÍCIOS

NÍVEL A

AFA

1. (AFA 2013) Dois corredores partem de um ponto ao mesmo tempo e se deslocam da seguinte forma: o primeiro é tal, que sua

velocidade y1 é dada em função da distância x por ele percorrida através de

21

4, se x 200

y n n n 8x , se 200n x 200(n 1)

200 2

em que n varia no conjunto dos números naturais não nulos. O segundo é tal que sua velocidade y2 é dada em função da distância

x por ele percorrida através de y2 = x

4100

Tais velocidades são marcadas em km/h, e as distâncias em metros.

Assim sendo, ambos estarão à mesma velocidade após terem percorrido

(A) 1 100 m (B) 900 m (C) 1 000 m (D) 800 m

R2. (AFA 2012) Para angariar fundos de formatura, os cadetes do 1º ano da AFA vendem camisas de malha com o emblema da

turma. Se o preço de venda de cada camisa é de 20 reais, eles vendem por mês 30 camisas. Fizeram uma pesquisa e verificaram

que, para cada 2 reais de desconto no preço de cada camisa, são vendidas 6 camisas a mais por mês. Dessa forma é correto afirmar

que

(A) é possível fazer mais de 10 descontos de 2 reais.

(B) tanto faz vender as camisas 12 reais cada uma ou 18 reais cada uma que o faturamento é o mesmo.

(C) o máximo faturamento ocorre se são vendidas menos de 40 camisas por mês.

(D) se o preço de venda de cada camisa é de 14 reais, então o faturamento é maior que 680 reais.

R3. (AFA 2010) Na figura abaixo, tem-se representado as funções f, g e h que indicam os valores pagos, respectivamente, às

locadoras de automóveis α , β e γ para x quilômetros rodados por dia. Uma pessoa pretende alugar um carro e analisa as três

opções.

Após a análise, essa pessoa conclui que optar pela locadora α ao invés das outras duas locadoras, é mais vantajoso quando x

]m, + ∞[ , m IR.

O menor valor possível para m é

(A) 60

(B) 70

(C) 80

(D) 90

Page 57: Matemática Para Concursos Militares - Volume1

Página | 57

4. (AFA 2009) Considere as funções reais f : IR → IR dada por f(x) = x + a, g : IR → IR dada por g(x) = x – a, h : IR → IR dada

por h(x) = – x – a

Sabendo-se que a < 0, é INCORRETO afirmar que

(A) h(x) f(x) < g(x) x –a

(B) ∄x IR g(x) f(x)

(C) se x < a, então f(x) < g(x) < h(x)

(D) se a < x < – a, então f(x) < h(x) < g(x).

R5. (AFA 2008) " A Arrecadação da CPMF, devido à ampliação de sua abrangência, e ao aumento da alíquota, cresceu mais de

140% nos últimos anos (em bilhões de reais por ano)".

Supondo que o crescimento da arrecadação representado no gráfico acima é linear do ano 2005 ao ano de 2007 e que y%

representa o aumento da arrecadação do ano de 2005 ao ano de 2006, é correto afirmar que y é um número do intervalo:

(A) [8, 9[

(B) [9, 10[

(C) [10, 11[

(D) [11, 12[

6. (AFA 2008) Considere a tabela para cálculo do imposto de renda a ser pago à Receita federal no ano de 2007 – ano base 2006

(valores arredondados para facilitar os cálculos).

Rendimento para base de

cálculos (R$)

Alíquota

(%)

Parcela a deduzir

(R$)

até 14.999,99 Isento –

de 15.000,00 a 30.000,00 15 2.250,00

acima de 30.000,00 27,5 6.000,00

Para se conhecer o rendimento para base de cálculo, deve-se subtrair do rendimento bruto todas as deduções a que se tem direito.

Esse rendimento para base de cálculo é multiplicado pela alíquota correspondente. Em seguida, subtrai-se a parcela a deduzir

correspondente, de acordo com a tabela acima, obtendo-se assim o valor do imposto de renda a ser pago.

Um trabalhador, cujo rendimento bruto foi de R$ 50.000,00 teve direito às seguintes deduções: R$ 4.400,00 com o total de gastos

em educação, R$ 5.000,00 com o total pago à Previdência, e R$ 1.500,00 por dependente.

Nessas condições, sabendo-se que o valor do imposto pago por este trabalhador, no ano de 2007, foi de R$ 3.515,00, o número de

dependentes considerado foi:

(A) 2

(B) 3

(C) 4

(D) 6

R7. (AFA 2005) Seja:

NN nenx

24|xA *

Seja:

Page 58: Matemática Para Concursos Militares - Volume1

Página | 58

01

9x2

4x3|xB Z

É incorreto afirmar que:

(A) BA tem 8 elementos.

(B) BA .

(C) 0AB .

(D) BBA .

8. (AFA 2005) Seja f a função real cujo gráfico se apresenta a seguir:

Analisando o gráfico, é INCORRETO afirmar que:

(A) )5,0(f))1(f(f .

(B) R x,)x(f)0(f .

(C) se 1)x(f)x(g , então

2

5f)2(g .

(D) R x,01)x(f .

9. (AFA 2003) Analise o gráfico abaixo das funções f e g e marque a opção correta.

(A) O gráfico da função h(x) = g(x) – f(x) é uma reta ascendente.

(B) O conjunto imagem da função s(x) = f(g(x)) é IR

(C) f(x) . g(x) 0 x t

(D) g(f(x)) = g(x) x IR.

R10. (AFA 2003) Considere a função f: IRIR tal que

1xse,x1

1xse,1x)x(f e assinale a alternativa verdadeira.

(A) f é sobrejetora.

(B) f é par.

(C) f não é par nem ímpar.

(D) Se f é definida de IR em IR + , f é bijetora.

Page 59: Matemática Para Concursos Militares - Volume1

Página | 59

11. (AFA 2003) Na figura abaixo, tem-se o gráfico da função real f em que f(x) representa o preço, pago em reais, de x

quilogramas de um determinado produto. (Considere f(x) IR)

De acordo com o gráfico, é INCORRETO afirmar que

(A) o preço pago por 30 quilogramas do produto foi R$ 18,00.

(B) com R$ 110,00, foi possível comprar 55 quilogramas do produto. (C) com R$ 36,00, foi possível comprar 72 quilogramas do produto.

(D) com R$ 32,00, compra-se tanto 53,333... quilogramas, quanto 64 quilogramas do produto.

R12. (AFA 2002) Um veículo de transporte de passageiro tem seu valor comercial depreciado linearmente, isto é, seu valor

comercial sofre desvalorização constante por ano. Veja a figura seguinte.

Esse veículo foi vendido pelo seu primeiro dono, após 5 anos de uso, por R$ 24.000,00. Sabendo-se que o valor comercial do

veículo atinge seu valor mínimo após 20 anos de uso, e que esse valor mínimo corresponde a 20% do valor que tinha quando era

novo, então esse valor mínimo é, em reais,

(A) menor que 4500

(B) maior que 4500 e menor que 7000

(C) múltiplo de 7500

(D) um número que NÃO divide 12000.

R13. (AFA 1999) Seja f uma função real do primeiro grau com f(0) = 1 + f(1) e f(–1) = 2 – f(0). Então, o valor de f(3) é

(A) –3.

(B) –2,5.

(C) –2.

(D) –1,5.

R14. (AFA 1994) O valor de uma máquina decresce linearmente com o tempo, devido ao desgaste. Sabendo-se que hoje ela vale

10.000 dólares e daqui a 5 anos 1.000 dólares, o seu valor em dólares, daqui a 3 anos, será:

(A) 3600

(B) 4200

(C) 4600

(D) 5000

ESCOLA NAVAL

R15. (EN 1993) Temos x

1 < 2 se e somente se:

(A) x > 1/2

(B) x < 1/2

(C) 0 < x < 1/2

(D) x < 0 ou x > 1/2

(E) x < 0

Page 60: Matemática Para Concursos Militares - Volume1

Página | 60

NÍVEL B

EFOMM

R1. (EFOMM 2010) O gráfico das três funções polinomiais do 1° grau a, b e c definidas, respectivamente, por a(x), b(x) e c (x)

estão representadas abaixo.

Nessas condições, o conjunto solução da inequação 5 6

3

(a(x)) .(b(x))0

(c(x))

(A) (–4;–1) U [3;+)

(B) [–4;–1] U [3;+ )

(C) (–;–4) U [–1;+ )

(D) [4;+ )

(E) R – {4}

2. (EFOMM 2007) Uma empresa mercante A paga R$ 1000,00 fixos mais R$ 600,00 por dia de viagem e uma empresa B R$

400,00 fixos mais R$ 800,00 por dia de viagem. Sabe-se que Marcos trabalha na empresa A e Cláudio na B e obtiveram o mesmo

valor salarial. Quantos dias eles ficaram embarcados?

(A) 1

(B) 3

(C) 5

(D) 7

(E) 9.

AFA

3. (AFA 2011) Luiza possui uma pequena confecção artesanal de bolsas. No gráfico abaixo, a reta c representa o custo total

mensal com a confecção de x bolsas e a reta f representa o faturamento mensal de Luiza com a confecção de x bolsas.

Page 61: Matemática Para Concursos Militares - Volume1

Página | 61

Com base nos dados acima, é correto afirmar que Luiza obtém lucro se, e somente se, vender

(A) no mínimo 2 bolsas.

(B) pelo menos 1 bolsa.

(C) exatamente 3 bolsas.

(D) no mínimo 4 bolsas.

4. (AFA 2002) “O Brasil tem um encontro marcado com o caos. No dia 1o de junho começa o plano de racionamento de energia.”

“O modelo energético brasileiro é baseado quase que exclusivamente em hidrelétricas, que produzem 97% da energia consumida

no país. Sem chuva, entra em colapso”.

Revista Veja – 16/05/01

No gráfico abaixo, tem-se o nível da água armazenada em uma barragem ao longo dos últimos anos, que foi construída para

represar água a fim de mover as turbinas de uma usina hidrelétrica.

Analise as alternativas e marque a opção correta.

(A) O nível da água permaneceu constante num período de 8 anos.

(B) O nível de 80 metros foi atingido exatamente duas vezes até o ano 2000.

(C) Após o ano de 2000, o nível da água da barragem foi insuficiente para gerar energia.

(D) No período de 1995 a 2000, o nível da água só diminuiu.

5. (AFA 1995) A função linear f, dada por f(x) = ax + b, satisfaz a condição f(5x + 2) = 5f(x) + 2. Então

(A) a = 2b

(B) a = b + 2

(C) a = 2b + 1

(D) a = 2(b + 1)

ESCOLA NAVAL R6. (EN 1991) Representemos por min (a , b) o menor dos números a e b, isto é,

min (a , b) =

base,b

base,a

A solução da inequação min (2x + 3, 3x – 5) < 4 é:

(A) x < 1/2

(B) x < 3

Page 62: Matemática Para Concursos Militares - Volume1

Página | 62

(C) 1/2< x < 3

(D) x > 1/2

(E) x > 3

NÍVEL C

AFA

1. (AFA 2007) No gráfico abaixo estão representadas as funções reais f e g sendo A = f g

É FALSO afirmar sobre as mesmas funções que

(A) (fog)(x) 0 g(x) –2

(B) se s(x) = 101100 )]x(g[.)]x(f[

1, então o domínio de s é dado por IR *

–{–2}

(C) o gráfico da função j definida por j(x) = )x(g

)x(f

1

1

possui pontos no 4º quadrante

(D) se h: IR → B tal que h(x) = f(x) . g(x), então h será bijetora se B = [–2, +[

ESCOLA NAVAL

2. (EN 1991) Determine o conjunto-imagem da função (fog) para:

0 se x 0 1 se x 0

f (x) 2x se 0 x 1 e g(x) x / 2 se 0 x 1

0 se x 1 1 se x 1

(A) [0 , 1] {2}

(B) (–∞ , +∞)

(C) [0 , 1]

(D) [0 , +∞)

(E) {1}

ITA

R3. (ITA 2006) Seja f : [0, 1) IR definida por f(x) = .1x2/1,1x2

2/1x0,x2

Page 63: Matemática Para Concursos Militares - Volume1

Página | 63

Seja g : (-1/2, 1/2) IR dada por g(x) ,2/1x0),2/1x(f1

0x2/1),2/1x(f

com f definida acima. Justificando a resposta, determine se g é par, ímpar ou nem par nem ímpar.

4. (ITA 1994) Dadas as funções reais de variável real f(x) = mx + 1 e g(x) = x + m, onde m é uma constante real com 0 < m < 1,

considere as afirmações:

I.(f o g)(x) = (g o f)(x), para algum x R.

II. f(m) = g(m).

III.Existe a R tal que (f o g)(a) = f(a).

IV.Existe b R tal que (g o f)(b) = mb.

V.0 < (g o f)(m) < 3.

Podemos concluir que:

(A)todas são verdadeiras

(B)apenas três são verdadeiras

(C)apenas uma é verdadeira

(D)apenas quatro são verdadeiras

(E)apenas duas são verdadeiras.

Page 64: Matemática Para Concursos Militares - Volume1

Página | 64

CAPÍTULO 9 - FUNÇÃO DO 2° GRAU

DEFINIÇÃO: Sejam*a IR , b , c IR , a relação:

2

f : IR IR

x f ( x ) a x bx c,

é uma função, chamada função do 2° grau .

Definida assim tem-se

f

f

D IR

CD IR

GRÁFICO

O gráfico de uma função do 2° grau é uma curva chamada parábola. Para fazer um esboço do seu gráfico é fundamental que

analisemos as raízes da equação do 2° grau associada à função, bem como sua concavidade.

Primeiramente vamos estudar a existência de raízes reais. As raízes de uma função do 2° grau são obtidas resolvendo-se a

equação do 2° grau associada.

Então

0a4

ac4b

a2

bxa

0a

c

a4

b

a2

bxa

0a

cx

a

bxa

0a,0cbxax

2

22

2

22

2

2

Chamando ac4b2 temos

2

2

2

2

a4a2

bx0

a4a2

bxa

Discussão da equação:

0 A equação não possui raízes reais S

0 A equação possui duas raízes reais e iguais, pois a2

bxx0

a2

bx 21

2

a2

bS

0 A equação possui duas raízes reais e desiguais, pois

2

2

bx

2a 4a

1

2

bx

b b b2ax S ,

2a 2 a 2a 2abx

2a

O próximo passo é a determinação do vértice da parábola, aproveitando a fatoração acima temos que:

2

f : IR IR

bx f ( x ) a x ,

2a 4a

Page 65: Matemática Para Concursos Militares - Volume1

Página | 65

Como 2

bx 0

2a

Temos que 2

2

b ba 0 f (x) a x f ( )

2a 4a 4a 2a

b ba 0 f (x) a x f ( )

2a 4a 4a 2a

De qualquer maneira

bV , .

2a 4a

Em particular, obtemos que

f

f

a 0 Im ,4a

e

a 0 Im ,4a

Quanto à concavidade, se a > 0 a parábola tem concavidade voltada para cima e caso contrário voltada para baixo.

A seguir seguem os esboços do gráfico de uma função do 2° grau, nos diferentes casos.

1° CASO:

a 0

0

2° CASO:

a 0

0

Page 66: Matemática Para Concursos Militares - Volume1

Página | 66

3° CASO:

a 0

0

4° CASO:

a 0

0

5° CASO:

a 0

0

6° CASO:

a 0

0

Page 67: Matemática Para Concursos Militares - Volume1

Página | 67

Dos gráficos acima podemos concluir que:

Se 0 a função do 2° grau tem o sinal oposto ao sinal do parâmetro a no intervalo compreendido pelas raízes e o

mesmo sinal do parâmetro a no complemento do intervalo das raízes.

Se 0 a função do 2° grau tem o mesmo sinal do parâmetro a para todo número real diferente das raízes.

Se 0 a função do 2° grau tem o mesmo sinal do parâmetro a para todo número real.

EQUAÇÃO DO 2° GRAU

DEFINIÇÃO: Sejam*a IR , b , c IR , a equação do 2° grau de coeficientes a, b e c é uma sentença aberta equivalente à:

2a x bx c 0

Apenas lembrando, temos que:

b b0 S ,

2a 2a

b0 S

2a

0 S

SOMA E PRODUTO DAS RAÍZES:

Sejam 21 xex as raízes da equação do 2° grau 2a x bx c 0 , podemos escrever

)xx()xx(acbxax 212

Logo, 2

1 2

2 2

1 2 1 2

1 2

1 2

1 21 2

a x b x c a ( x x ) ( x x )

a x b x c a x a (x x ) x a x x

ba a x xb ca

b a (x x ) S e P .c a a

x xc a x xa

Em particular temos as seguintes identidades:

0c,P

SP3S

x

1

x

1.5

SP3Sxx.4

0c,P

P2S

x

1

x

1.3

P2Sxx.2

0c,P

S

x

1

x

1.1

3

3

32

31

332

31

2

2

22

21

222

21

21

Page 68: Matemática Para Concursos Militares - Volume1

Página | 68

DISCUSSÃO DE EQUAÇÕES DO TIPO 2ax bx c 0 :

Seja 0cbxax 2 onde IRceb,a , então:

0a A equação 0cbxax 2 é uma equação do 2° grau e basta resolver conforme feito anteriormente.

0a A equação 0cbxax 2 se reduz a 0cbx e a discussão é feita conforme a discussão de uma equação do tipo

0bax , veja o capítulo 8.

INEQUAÇÃO DO 2° GRAU

DEFINIÇÃO: Sejam*a IR , be c IR. , uma inequação do 2° grau de coeficientes a, b e c é uma sentença aberta equivalente

à: 2

2

2

2

a x bx c 0

ou

a x bx c 0

ou

a x bx c 0

ou

a x bx c 0

A solução de uma inequação do 2° grau pode ser obtida pela analise do gráfico da função do 2° grau correspondente.

Page 69: Matemática Para Concursos Militares - Volume1

Página | 69

EXERCÍCIOS

NÍVEL A

EFOMM

R1. (EFOMM 2006) Se M e N são as raízes de x2 – 6x + 10 = 0, então N

1

M

1 vale:

(A) 6

(B) 2

(C) 1

(D) 3/5

(E) 1/6.

R2. (EFOMM 2005) O intervalo onde a função f (x) = xax

2ax2

com

*IRa , apresenta sinal positivo é

(A)

a

2,

(B)

0,

a

1

(C)

,

a

1

(D)

a

1,

a

2

(E)

0,

a

2.

AFA

3 (AFA 2013). O gráfico de uma função polinomial do segundo grau y = f(x), que tem como coordenadas do vértice (5, 2) e passa

pelo ponto (4, 3), também passará pelo ponto de coordenadas

(A) (–1, 36) (B) (0, 26) (C) (6, 4) (D) (1, 18)

4. (AFA 2010) Considere o esboço dos gráficos das funções reais f, g e h, tais que f é do 2º grau e g e h são do 1º grau. Sabe-se

que V é o vértice da parábola.

O conjunto de todos os valores de x para os quais h(x) > g(x) > f(x) é

(A) IR − ]1, 5[

Page 70: Matemática Para Concursos Militares - Volume1

Página | 70

(B) IR −[1, 5]

(C) IR − [1, 3]

(D) IR − ]1, 3[

5. (AFA 2009) Considere que g : IR → B, definida por g(x) = –bx2 + cx – a é função par e possui como gráfico o esboço abaixo.

Marque a alternativa INCORRETA.

(A) Se B = [– a, +∞[ , então a função g é sobrejetora.

(B) A função t : IR → IR dada por t(x) = g(x) + a é positiva x IR

(C) b < c < a

(D) A função h: IR → IR dada por h(x) = – g(x) – a possui um zero real duplo.

R6. (AFA 2004) Seja

)0a(cxbxa)x(f 2

uma função real definida para todo número real. Sabendo-se que existem dois números x1 e x2, distintos, tais que 0)x(f.)x(f 21

, pode-se afirmar que:

(A) f passa necessariamente por um máximo.

(B) f passa necessariamente por um mínimo.

(C) 21 x.x é necessariamente negativo.

(D) 0ac4b2 .

R7. (AFA 1994) O polinômio do 2º grau y = 2

b(x2 + 1) + ax, com coeficientes reais, não possui raiz real se, e somente se:

(A) a – b < 0

(B) a2 – b2 < 0

(C) b2 – 4a > 0

(D) b2 – 2ab < 0

R8. (AFA 1994) A solução da inequação 2x2 – 3x + 8 > 2x

10x5xx3 23

, no conjunto dos números reais, é dada pelo

intervalo:

(A) –2 < x < 5

(B) –2 < x < 3

(C) –1 < x < 3

(D) –1 < x < 5

IME

R9. (IME 1999) Sejam as funções g(x) e h(x) assim definidas: g(x) = 3x – 4 ; h(x) = f (g(x)) = 9x2 – 6x + 1. Determine a função

f(x) e faça seu gráfico.

R10. (IME 1994) Seja f : IR IR uma função quadrática tal que f(x)=ax2+bx+c, a 0, x IR. Sabendo que x1 = –1 e

x2 = 5 são as raízes e que f (1) = –8. Pede-se:

a)Determinar a, b, c;

b)Calcular f (0);

Page 71: Matemática Para Concursos Militares - Volume1

Página | 71

c)Verificar se f (x) apresenta máximo ou mínimo, justificando a resposta;

d)As coordenadas do ponto extremo;

e)O esboço do gráfico.

NÍVEL B

AFA

R1. (AFA 2011) Classifique em (V) verdadeiro ou (F) falso cada item abaixo, onde a IR

I) IRxaxax

ax2

II)se a

1

x

1 e a > 0, então {x IR | x < 0 ou x > a}

III)se a > 0 e |x| < a, então x2 – a < 0

Tem-se a sequência correta em

(A) F – V – F

(B) F – F – V

(C) V – F – V

(D) F – V – V

R2. (AFA 2011) Considere a função quadrática f: A → B de raízes x1 = 1 ou x2 = 3 , cujas coordenadas do vértice são iguais. Se

f(x) ≥ 0 x A e f é função crescente x [p, q], então (q – p) é igual a

(A) 1

(B) 2

(C) 3

(D) 4

3. (AFA 2008) As funções f: IR IR do 1º grau e g: IR [b, + [ do 2º grau estão representadas no gráfico abaixo.

Com base nas informações acima é correto afirmar que:

(A) o menor valor de b que torna a função g sobrejetora é um número inteiro

(B) (gogof –1)

2

5 > 0

Page 72: Matemática Para Concursos Militares - Volume1

Página | 72

(C)

}4xou1xIRx{0)x(g

)x(f2

(D) f(x) – g(x) 0 {x IR x 0 ou x 6}

4. (AFA 2007) A função f definida por f(x) =

1xse4x2x

2x1se,1x2

2xse,7x4x

2

2

(A) não admite inversa porque não é injetora.

(B) não admite inversa porque existem valores de x com

várias imagens.

(C) admite inversa e uma das sentenças que define a mesma é y = –1 – 3x se x –3

(D) admite inversa f–1 tal que f–1 (5) = –2

5. (AFA 2005) Dada a função real f definida por 2xf(x) , considere a função real g definida por km)f(xg(x) , sendo

Rk,m . É INCORRETO afirmar que:

(A) o gráfico da função g em relação ao gráfico da função f é deslocado k unidades para cima, se 0k , e m unidades para a

direita, se 0m .

(B) se 0m e 1k , então o conjunto imagem de g é dado por 1y|RyIm .

(C) se 2m e 3k , então as coordenadas do vértice da parábola que representa g são )k,m( .

(D) a equação do eixo de simetria da parábola que representa g é dada por mx .

6. (AFA 2007) Analise as alternativas abaixo e marque a FALSA.

(A) Se a função f: IR IR é tal que f(x) = ax + b, f(3) = 0 e f() > 0, então f é crescente em todo o seu domínio.

(B) Se o gráfico da função quadrática f definida por f(x) = x2 + kx + m é o da figura abaixo, então k – m = – 2

(C) Seja f: IR IR tal que f(x) = x2 – 3x + 2 e A um subconjunto do domínio de f. Se f é crescente em A e f(x) 0 em A, então A

= [1, 2](D) Se na função f: IR IR tal que f(x) = ax2 + bx + c, (a a4

b2

, então, necessariamente, o gráfico da função f é

o tangente ao eixo das abscissas.

R7. (AFA 2003) Observe o gráfico da função f abaixo.

Page 73: Matemática Para Concursos Militares - Volume1

Página | 73

Sabendo que f é definida por

1xse,kpx

1xse,cbxax)x(f

2

analise as alternativas e marque a opção correta.

(A) ac < 0

(B) pk 0

(C) p = –1

(D) ab > 0.

R8. (AFA 2002) Uma malharia familiar fabrica camisetas a um custo de R$ 2,00 cada uma e tem uma despesa fixa semanal de

R$ 50,00. Se são vendidas x camisetas por semana, ao preço de

30

x

3

22 reais a unidade, então, o número de camisetas que

deve ser vendido por semana para se obter o maior lucro possível é

(A) 60

(B) 65

(C) 80

(D) 90.

R9. (AFA 1998) Seja f: [1, ) [–3, ) a função definida por f(x) = 3x2 – 6x. Se g: [–3, ) [1, ) é a função inversa de f,

então [g(6) – g(3)]2 é

(A) 5

(B) 2 6

(C) 5 – 2 6

(D) –5 + 2 6 .

10. (AFA 1998) Corta-se um pedaço de arame de comprimento 98 cm em duas partes. Com uma, faz-se um quadrado, com a

outra, um retângulo com base e altura na razão de 3 para 2. Se a soma das áreas compreendidas pelas duas figuras for mínima, o

comprimento, em cm, do arame destinado à construção do quadrado será

(A) 36

(B) 48

(C) 50

(D) 54.

ITA

11. (ITA 2004) Seja as funções f e g definidas em IR por f(x) = x2 + ax e g(x) = –(x2 + x), em que e são números

reais. Considere que estas funções são tais que

f g

Valor

mínimo

Ponto de

mínimo

Valor

máximo

Ponto de

máximo

–1 < 0 4

9 > 0

Então, a soma de todos os valores de x para os quais (f o g) (x) = 0 é igual a

(A) 0

(B) 2

(C) 4

(D) 6

(E) 8.

Page 74: Matemática Para Concursos Militares - Volume1

Página | 74

R12. (ITA 2001) O conjunto de todos os valores de m para os quais a função

f(x) = )2m(x)1m2(x

)3m(x)3m2(x

22

22

está definida e é não-negativa para todo x real é:

(A)

4

7,

4

1

(B)

,

4

1

(C)

4

7,0

(D)

4

1,

(E)

4

7,

4

1.

13. (ITA 1999) Considere as funções f e g definidas por f(x) = x – x

2, para x 0 e

g(x) = 1x

x

, para x –1. O conjunto de todas as soluções da inequação (g o f) (x) < g(x) é

(A) [1, +[

(B) ]–, –2[

(C) [–2, –1[

(D) ]–1, 1[

(E) ]–2, –1[ ]1, + [.

NÍVEL C

AFA

1. (AFA 2003) O conjunto {x IR f(x) < 0}, onde f: IR IR é definida por f(x) = ax2 + 2a2x + a3, com *IRa , é

(A) ]–; –a[

(B) ]– ; –a[ ]–a; + [

(C) ]– ; a[ ]a; + [

(D) ]–a; + [.

2. (AFA 2001) O retângulo, com base no eixo das abscissas, está inscrito numa parábola, conforme figura abaixo. O valor de x

que faz esse retângulo ter perímetro máximo é

(A) 1

(B) 0,5

(C) 0,25

(D) 0,125.

Page 75: Matemática Para Concursos Militares - Volume1

Página | 75

3. (AFA 2000) Na figura abaixo, AC = BC, h = AB = 10 e SP é perpendicular a AB . O ponto S percorre AB e AS = x.

Nessas condições, a área da figura sombreada pode ser expressa por:

(A) 5x se x [0, 5] e x2 – 10x + 50 se x [5, 10]

(B) x2 se x [0, 5] e x2 – 10x + 50 se x [5, 10]

(C) 5x se x [0, 5] e –x2 + 20x – 50 se x [5, 10]

(D) x2 se x [0, 5] e –x2 + 20x – 50 se x [5, 10].

ESCOLA NAVAL

4. (EN 1998) Considere os conjuntos A =

0

2x5

3x2Rx e B = {x R x2 – 5x + 4 < 0}. O conjunto solução AB é

(A)

4,

2

3

(B)

4,

2

3

(C)

2

3,1

(D) ] 1, 4]

(E) [,4]5

2,

.

5. (EN 1994) O conjunto solução da inequação: 0x2x3x

1x

234

4

, é:

(A) [,2]]1,]

(B) [2,1]]1,]

(C) [2,0][1,]

(D) [2,1][1,]

(E) [0,1]]1,] .

6. (EN 1993) O conjunto imagem da função f(x) = 16xx16 22 é:

(A) [–4; 4]

(B) (–, –4] [4; )

(C) {0}

(D) {-4; 4}

(E) [0; )

7. (EN 1990) x2 + 1 > kx para todo x real se, e só se:

(A) k < 0

(B) k > 0

(C) –1 < k < 1

(D) –2 < k < 2

(E) k > 3

Page 76: Matemática Para Concursos Militares - Volume1

Página | 76

8. (EN 1988) Para todo x real, -3 < 21xx

2axx

2

2

se e só se:

(A) –3 < a < 2

(B) –1 < a <2

(C) –6 < a <7

(D) –1 < a < 7

(E) –6 < a < 2

ITA 9. (ITA 2010) Determine todos os valores de m IR tais que a equação (2 – m) x2 + 2mx + m + 2 = 0 tenha duas raízes reais

distintas e maiores que zero.

10. (ITA 1998) Sejam as funções RR :f e RRA :g , tais que 9x)x(f 2 e 6x)x)(gf( , em seus respectivos

domínios. Então, o domínio A da função g é:

(A) ,3 .

(B) R.

(C) ,5 .

(D) ,31, .

(E) 6, .

11. (ITA 1996) Considere as funções reais f e g definidas por f (x) = 2x1

x21

, x R – {–1, 1} e g (x) = ,

x21

x

x R – {–

1/2}. O maior subconjunto de R onde pode ser definida a composta f o g, tal que (f o g) (x) < 0, é:

(A)] –1, –1/2 [ ] –1/3, –1/4 [

(B)] –, –1 [ ] –1/3, –1/4 [

(C)] –, –1 [ ] –1/2, 1 [

(D)] 1, [

(E)] –1/2, –1/3 [.

12. (ITA 1996) Seja f : R R definida por

f (x) =

0x,3x4x

0x,3x3

2

Então:

(A)f é bijetora e (f o f) (–2/3) = f–1 (21)

(B)f é bijetora e (f o f) (–2/3) = f–1 (99)

(C)f é sobrejetora mas não é injetora

(D)f é injetora mas não é sobrejetora

(E)f é bijetora e (f o f) (–2/3) = f–1 (3).

13. (ITA 1995) Os dados experimentais da tabela abaixo correspondem às concentrações de uma substância química medida em

intervalos de 1 segundo. Assumindo que a linha que passa pelos três pontos experimentais é uma parábola, tem-se que a

concentração ( em moles ) após 2,5 segundos é:

(A) 3,60

(B) 3,65

(C) 3,70

(D) 3,75

(E) 3,80.

Tempo

s

Concentração

moles

1

2

3

3,00

5,00

1,00

Page 77: Matemática Para Concursos Militares - Volume1

Página | 77

14. (ITA 1990) Seja f: IR IR a função definida por

f(x) =

1xse,4

1x1se,x

1xse,2x

2

Lembrando que se A IR então f –1(A) = {x IR: f(x) A} considere as afirmações:

I- f não é injetora e f-1 ([3 , 5]) = {4}

II- f não é sobrejetora e f-1 ([3 , 5]) = f-1 ([2 , 6])

III- f é injetora e f-1 ([0 , 4]) = [–2 , +[

Então podemos garantir que:

(A) Apenas as afirmações II e III são falsas;

(B) As afirmações I e III são verdadeiras;

(C) Apenas a afirmação II é verdadeira;

(D) Apenas a afirmação III é verdadeira;

(E) Todas as afirmações são falsas.

15. (ITA 1989) Os valores de , 0 < < e 2

π, para os quais a função f: IR IR dada por

f(x) = 4x2 – 4x – tg2 , assume seu valor mínimo igual a –4, são:

(A)4

π3e

4

π

(B) 5

π2e

5

π

(C) 3

π2e

3

π

(D) 7

π2e

7

π

(E) 5

π3e

5

π2

IME

16. (IME 2007) Sejam x1 e x2 as raízes da equação x2 + (m – 15)x + m = 0. Sabendo que x1 e x2 são números inteiros, determine o

conjunto de valores possíveis para m.

17. (IME 2000) Considere a, b e c números reais tais que a < b < c. Prove que a equação abaixo possui exatamente duas

raízes x1 e x2, que satisfazem a condição: a < x1 < b < x2 < c.

0cx

1

bx

1

ax

1

R18. (IME 1989) Resolva o sistema

20yx

4xy3xy73

19. (IME 1982-1983) Dada a equação 2mx2 – 2x – 3m – 2 = 0 , onde m IR:

a) Determine m tal que uma raiz seja nula; calcule a outra raiz.

b) Mostre que a equação dada tem sempre duas raízes distintas.

c) Determine m para que uma raiz seja inferior a 1 e a outra seja superior a 1.

20. (IME 1982)

a) Seja a função y = mx2 – (1 + 8m)x + 4(4m + 1), onde m é um número dado, mas variável. Mostre que todas as curvas

representativas da função passam por um ponto A fixo e que são todas tangentes entre si, neste ponto. Calcule as coordenadas do

ponto A e dê a equação da tangente comum.

Page 78: Matemática Para Concursos Militares - Volume1

Página | 78

b) Determine os dois valores de m para os quais a razão entre as raízes da equação mx2 – (1 + 8m)x + 4(4m+ 1) = 0, é igual a (–

4

1).

21. (IME 1981) Determine os valores de h, de modo que a desigualdade

– 3 < 1xx

1hxx2

2

< 3

seja válida para qualquer x real.

Page 79: Matemática Para Concursos Militares - Volume1

Página | 79

CAPÍTULO 10 - FUNÇÃO MODULAR

DEFINIÇÃO: A relação

f :IR IR

x, x 0x f (x) x :

x, x 0

É uma função, chamada função modular. Definida assim temos

f

f

f

D IR

CD IR

Im IR

GRÁFICO

O gráfico de uma função modular é obtido de maneira imediata da sua definição

EQUAÇÃO MODULAR

DEFINIÇÃO: Seja a IR , uma equação modular é uma sentença aberta equivalente à:

ax .

Assim,

S0a

0S0a

aS0a

INEQUAÇÃO MODULAR

DEFINIÇÃO: Seja a IR , uma inequação modular é uma sentença aberta equivalente à:

ax

ou

ax

ou

ax

ou

ax

A solução de uma inequação modular é obtida pela definição do módulo.

Page 80: Matemática Para Concursos Militares - Volume1

Página | 80

EXERCÍCIOS

NÍVEL A

AFA

R1. (AFA 1999) O conjunto solução da inequação 2x3x21 < 5 é

(A)

3

191x

3

19 Rx .

(B)

3

191x

3

191 Rx .

(C)

3

191x

3

191 Rx .

(D)

3

191xou

3

191x Rx .

NÍVEL B

AFA

1. (AFA 2012) Considere a função real g : A IR tal que

2

2

x xg(x)

x x

Sabendo-se que o conjunto A é o mais amplo possível, é verdade que

(A) x A tal que g(x)=-1

(B)se h x 1 g x , então h possui raiz real.

(C)se 0 x 1 , então 1 g x 0

(D) ] x , 2[ tal que g x 3

2. (AFA 2007) Sobre a função real definida por f(x) =

1x1se,)x1(

1xou1xse,3|x|x2

2

2

, pode-se dizer que

(A) tem o valor máximo igual a 1

(B) f(x) 7 x 2 ou x –2

(C) f(x) > 0, x IR

(D) se –1 < x < 1, então 0 < y 1

3. (AFA 2005) Considere a função

0x2se,2

2x0se,1f(x) . A função 1(x)fg(x) terá o seguinte gráfico:

(A)

(B)

Page 81: Matemática Para Concursos Militares - Volume1

Página | 81

(C)

(D)

4. (AFA 2003) Analise as proposições abaixo classificando-as em V (verdadeiro) ou F (falso), considerando

funções reais.

( ) O domínio e a imagem da função g definida por 2x9)x(g são, respectivamente, 3,3 e ,0

( ) Se f(x) = x2 e g(x) = f(x + m) – f(x) então g(2) é igual a m(4 + m)

( ) Se x

1)x(h , então h–1(x) = h(x)

A seqüência correta é

(A) F – V – V

(B) F – V – F

(C) V – F – V

(D) V – V – F.

ESCOLA NAVAL

R5. (EN 2005) O conjunto dos números reais x que satisfaz a desigualdade 4x2

2x3

é:

(A) [,2][2,] . (B)

,

6

5[2,] .

(C)

,

2

3

6

5,

2

11 . (D)

,

6

5

2

11, .

(E)

,

2

3

6

5, .

6. (EN 1990) A equação 2x + 3 = ax + 1:

(A) não possui solução para a < –2;

(B) possui duas soluções para a > 2;

(C) possui solução única para < 2/3;

(D) possui solução única para –2 < a < 2/3;

(E) possui duas soluções para –2 < a < 2/3.

Page 82: Matemática Para Concursos Militares - Volume1

Página | 82

7. (EN 1989) O conjunto solução da inequação 3 |x – 1| + x > |1 – x| é

(A) (2/3, )

(B) (–, 2)

(C) (2/3,2)

(D)

(E) (–,)

8. (EN 1987) Sejam A = {x Rx – 4 2} e B = {x Rx2 – 14x + 40 < 0}. A diferença A – B é igual a:

(A){x R 2 x < 4}

(B){x R 2 x 4}

(C){x R 4 < x 6}

(D){x R 6 < x < 10}

(E){x R 6 x < 10}.

NÍVEL C

ESCOLA NAVAL

1. (EN 2006) O conjunto de todos os números reais que satisfazem a desigualdade

232x1x2x1

é:

(A)

,5

2

3,1

3

7, .

(B)

,5

2

3,1

3

7, .

(C)

,

2

35, .

(D) ,55, .

(E) ,15, .

2. (EN 1997) O máximo absoluto e o mínimo absoluto da função real

f(x) =

1x1sex

2x1se1

6x2se23x

1xou6xse0

são, respectivamente:

(A) 2 e –1

(B) 1 e –2

(C) 1 e 0

(D) 2 e 0

(E) 3 e –2.

3. (EN 1994) O conjunto solução de 33x

1x2

é:

(A) [,3][3,58]

(B) [,10][10,3]

(C) [10,3][58,]

Page 83: Matemática Para Concursos Militares - Volume1

Página | 83

(D) [10,3][3,58]

(E) [,10][3,58] .

ITA

4. (ITA 2010) O produto das raízes reais da equação |x2 – 3x + 2| = |2x – 3| é igual a:

(A) – 5

(B) – 1

(C) 1

(D) 2

(E) 5.

5. (ITA 2002) Os valores de x R, para os quais a função real dada por f(x) = 61x25 .

Está definida, formam o conjunto

(A) [0, 1]

(B) [–5, 6]

(C) [–5, 0] [1, )

(D)(– , 0] [1, 6]

(E) [–5, 0] [1, 6].

6. (ITA 1991) Se A = {x IR : |x2 + x + 1| |x2 + 2x – 3|}, então temos:

(A) A = [–2 , 2

1] [4 , + [

(B) A = [2

1, 4]

(C) A = [–3 , 1]

(A) A = ]– , –3] [1, + [

(E) n.d.a.

Page 84: Matemática Para Concursos Militares - Volume1

Página | 84

CAPÍTULO 11 - FUNÇÃO EXPONENCIAL

DEFINIÇÃO: Seja 1ae0a,IRa . A relação

xaxfx

IRIR:f

É uma função, chamada função exponencial de base a, em particular, tem-se

IRCD

IRD

f

f

IRIm f .

GRÁFICO

O gráfico de uma função exponencial é uma curva que possui algumas particularidades, por exemplo, para todo

1ae0a,IRa , temos 1)0(f , ou seja, o gráfico de toda função exponencial contem o ponto )1,0( .O próximo passo é

determinar o comportamento da função exponencial quanto ao crescimento.

Se a > 1 então 21 xx21 aaxx logo a função exponencial é crescente.

Se 0 < a < 1 então 21 xx21 aaxx , logo é a função exponencial é decrescente.

Assim dado 1ae0a,IRa , a função exponencial de base a é uma função injetora.

Em seguida um esboço para o gráfico de uma função exponencial nos dois casos:

Page 85: Matemática Para Concursos Militares - Volume1

Página | 85

EQUAÇÃO EXPONENCIAL DEFINIÇÃO: Seja a IR, a 0 e a 1 , uma equação exponencial de base a é uma sentença aberta equivalente a

xa b.

Discussão de equações do tipoxa b :

Se 0b a equação exponencial é possível e determinada.

Se 0b a equação exponencial é impossível.

INEQUAÇÃO EXPONENCIAL

DEFINIÇÃO: Seja a IR, a 0 e a 1 , uma inequação exponencial de base a é uma sentença aberta equivalente a

x

x

x

x

a b

ou

a b

ou

a b

ou

a b

A solução de uma inequação exponencial é obtida a partir do comportamento da função.

Page 86: Matemática Para Concursos Militares - Volume1

Página | 86

EXERCÍCIOS

NÍVEL A

AFA

1. (AFA 2002) Todo número real positivo pode ser descrito na forma 10x. Tendo em vista que 2 = 100,30, então o expoente x, tal

que 5 = 10x vale, aproximadamente,

(A) 0,15

(B) 0,33

(C) 0,50

(D) 0,70.

2. (AFA 2001) Se x IR e 75x = 243, então 7-3x é igual a:

(A) 1/3

(B) 1/9

(C) 1/27

(D) 1/81.

3. (AFA 2001) No intervalo [ -1, 100], o número de soluções inteiras da inequação 3x – 8 > 32-x é:

(A) 97

(B) 98

(C) 99

(D) 100.

4. (AFA 2000) A soma das raízes da equação

32 – x + 31 + x = 28 é:

(A) 1

(B) 2

(C) 3

(D) 4.

5. (AFA 1998) O conjunto solução da inequação (0,5)x(x–2) < (0,25)x–1,5 é

(A) {x R l x < 1}.

(B) {x R l x > 3}.

(C) {x R l 1 < x < 3}.

(D) {x R l x < 1 ou x > 3}.

6. (AFA 1995) O conjunto solução da inequação 22x + 2 – (0,75)2x+2 < 1 é:

(A)

(B){x IR / x > 0}

(C) {x IR / x < 0)

(D) {x IR / –¼ < x < 1}

7. (AFA 1994) A solução da inequação exponencial

x22x

125

1

5

1

é:

(A) (x R | 0 x 1)

(B) (x R 1 x 2 )

(C) (x R 0 x 2 )

(D) (x R x 1ou x 2 )

Page 87: Matemática Para Concursos Militares - Volume1

Página | 87

8. (AFA 1990) O conjunto solução da desigualdade:

42x

2

1

8x+2 é:

(A) {x IR | –2 x –1 }

(B) {x IR | –1 x 2 }

(C) {x IR | x –2 ou x –1}

(D) {x IR | x – 1 ou x 2}

(E) nra

9. (AFA 1989) O triplo da solução da equação 3

4

3

2

2

4 1x2

x

é igual a :

(A) 3

(B) 6

(C) 9

(D) 12

10. (AFA 1989) A solução da equação 3.9x + 7.3x – 10 = 0 é :

(A) – 10/3

(B) 0

(C) 1

(D) 3

ESCOLA NAVAL

11. (EN 1986) A inequação 21/x < 1/4 se verifica para todo x pertencente a:

(A) (–2

1 , )

(B) (– , –2

1 )

(C) (–2

1 , 0)

(D) (– , 0)

(E) (0, 2).

ITA

12. (ITA 2006) Considere a equação ( ax – a– x )/(ax + a– x) = m, na variável real x, com 0 < a ≠ 1. O conjunto de todos os

valores de m para os quais esta equação admite solução real é:

(A) (–1, 0) (0,1)

(B) (– , –1) (1, + )

(C) (–1, 1)

(D) (0, )

(E) ( , + ).

13. (ITA 2000) A soma das raízes reais e positivas da equação 042.542x2x vale:

(A) 2

(B) 5

(C) 2

(D) 1

(E) 3 .

Page 88: Matemática Para Concursos Militares - Volume1

Página | 88

14. (ITA 2000) Seja S = [ –2, 2 ] e considere as afirmações:

(I) 62

1

4

1x

, para todo x S.

(II)32

1

232

1

x

, para todo x S.

(III)22x – 2x 0, para todo x S.

Então, podemos dizer que:

(A) apenas (I) é verdadeira;

(B) apenas (III) é verdadeira;

(C) somente (I) e (II) são verdadeiras;

(D) apenas (II) é falsa;

(E) todas as afirmações são falsas

15. (ITA 1999) Sejam f, g: R R funções definidas por f(x) = (3/2)x e g(x) = (1/3)x. Considere as afirmações:

I.Os gráficos de f e g não se interceptam.

II.As funções f e g são crescentes.

III.f(–2) g(–1) = f(–1) g(–2).

Então:

(A)apenas a afirmação I é falsa;

(B)apenas a afirmação III é falsa;

(C)apenas as afirmações I e II são falsas;

(D)apenas as afirmações II e III são falsas;

(E)todas as afirmações são falsas.

16. (ITA 1999) Seja a R com a > 1. O conjunto de todas as soluções reais da inequação

1x)x1(x2 aa

é:

(A) ] –1, 1 [

(B) ] 1, + [

(C) ] –1/2, 1 [

(D) ] –, 1 [

(E) vazio.

IME

17. (IME 2004-2005) Dada a função f(x) = 2

)156156( xx , demonstre que:

f(x + y) + f(x – y) = 2 f(x) f(y)

NÍVEL B

EFOMM

1. (EFOMM 2008) Em uma certa região, ocorreu uma infecção viral que se comportou de acordo com a função: N(t)= a.2b.t , em

que N(t) são pessoas infectadas em t dias após a realização do estudo; a e b constantes reais. Sabe-se que, ao iniciar o estudo,

havia 3000 pessoas infectadas e que, após 2 dias, esse número chegava a 24000 pessoas. Assinale a alternativa que representa o

número de pessoas infectadas após 16 horas.

(A) 5.000

(B) 6.000

(C) 7.000

(D) 8.000

(E) 9.000.

Page 89: Matemática Para Concursos Militares - Volume1

Página | 89

AFA

2. (AFA 2009_2010) Sejam as funções f : IN→ IR e g : IN→ IR definidas por f(x) = x

2e g(x) = 2−x

Considere os números A e B, tais que

A = f(1) + f(2) +...+ f(50)

e

B = 1 + g(1) + g(2) +...+ g(n) +...

Se o produto de A por B tende para o número α, então, α é

(A) ímpar múltiplo de 9

(B) par divisor de 10.000

(C) par múltiplo de 15

(D) ímpar múltiplo de 25

3. (AFA 2008) Sabendo-se que b é um número real tal que b > 1 e que a função real f: IR B é tal que f(x) =x

b2

, analise as

alternativas abaixo e marque a FALSA.

(A) A função f admite valor mínimo.

(B) x – 1 2 – b

1 f(x) < 2

(C) A função f é par.

(D) Se B = [0, 2[ então f é sobrejetora.

4. (AFA 2006) Seja BR:f a função definida por 1a2

1(x)f x )1aeRa( . Analise as afirmativas abaixo, classificando-

as em (V) verdadeiras(s) ou (F) falsa(s).

( ) Rq,p,(q)f(p)fq)(pf .

( ) f é crescente Rx .

( ) Se [0,]x , então

1,

2

3y .

( ) Se [1,]B , então f é bijetora.

A seqüência correta é:

(A) F – F – V – V.

(B) F – V – F – V.

(C) V – F – F – F.

(D) F – V – V – V.

5. (AFA 2006) Assinale a alternativa INCORRETA:

(A) O conjunto solução da inequação 1)32( x e R.

(B) O número real que satisfaz a sentença x22

2x 53

-e divisor de 1024.

(C) A função exponencial definida por x)4a()x(f é decrescente se 5a4 .

(D) Se x10y é um número entre 10 000 e 100 000, então x está entre 4 e 6.

6. (AFA 2003) Analise os itens abaixo classificando-os em V (verdadeiro) ou F (falso).

( ) Em , o conjunto solução da inequação 8 . (0,5)x – 1 0 é dado por [4, + [

( ) A função real y = x1e é crescente x IR (considere e a base dos logaritmos neperianos)

( ) Se f(x) = 2x, então f(a) . f(b) é sempre igual a f(a + b), onde a e b são reais quaisquer

A seqüência correta é

(A) F – F – V

(B) V – V – F

(C) F – V – V

(D) V – F – F.

Page 90: Matemática Para Concursos Militares - Volume1

Página | 90

7. (AFA 1997) O produto das raízes da equação 43232xx

pertence ao conjunto dos números:

(A) naturais e é primo

(B) inteiros e é múltiplo de quatro

(C) complexos e é imaginário puro

(D) racionais positivos e é uma fração imprópria.

8. (AFA 1996) A solução da equação 4x + 6x = 2,9x é:

(A) {0}

(B) {1}

(C) {–2}

(D) {–2,1}.

ESCOLA NAVAL

9. (EN 2005) Dadas as funções reais x21

100(x)f

e 2

x

2(x)g , pode-se afirmar que (90))f(g 1 é igual a:

(A) 10.

(B) 3.

(C) 1.

(D) 3

1.

(E) 10

1.

10. (EN 2004) O valor de 22 yx6 onde x e y são números inteiros que satisfazem a equação

y2yx1x 3322

é:

(A) 8 .

(B) 3.

(C) 11 .

(D) 14 .

(E) 4.

11. (EN 1988) A solução da equação abaixo

26x + 3. 43x + 6 = 84x + 5. 162x + 1

pertence ao intervalo:

(A) (–, –1)

(B) (–1, 0)

(C) (0, 1)

(D) (1, 2)

(E) (2, ).

12. (EN 2007) No universo IRU , o conjunto solução da inequação 1x 49x22x é:

(A) 4,12

1,0

.

(B)

,41,

2

1 .

(C) 01,2

1

.

(D) 04,2

1

.

(E) 4,11,0 .

Page 91: Matemática Para Concursos Militares - Volume1

Página | 91

13. (EN 2005) O conjunto solução da inequação x)(1

4

2)(x3

3

1

, onde x é uma variável real, é:

(A) [2,1][3,] .

(B) [,2][3,] .

(C) [3,1][2,] .

(D) [,3][1,2] .

(E) [,2][1,3] .

14. (EN 1994) O domínio da função 243)31(

x32y

x

é:

(A) [5,]

(B) [5,]

(C) [,5]

(D) [,5]

(E) [5,5] .

ITA

15. (ITA 2013) A soma de todos os números reais x que satisfazem a equação

x 1 x 1 x 18 44 2 64 19 4

é igual a

(A) 8. (B) 12. (C) 16. (D) 18. (E) 20.

16. (ITA 2004) Seja um número real, com 0 < < 1. Assinale a alternativa que representa o conjunto de todos os

valores de x tais que 2x

2x21

< 1.

(A) ]–, 0] [2, +[

(B) ]–, 0[ ]2, +[

(C) ]0, 2[

(D) ] –, 0[

(E) ]2, +[.

17. (ITA 2002) Sejam f e g duas funções definidas por

f(x) = 1xsen32

e

g(x) = 1xsen3 2

2

1

,

x R

A soma do valor mínimo de f com o valor mínimo de g é igual a

(A) 0

(B) –4

1

(C) 4

1

(D) 2

1

(E) 1.

Page 92: Matemática Para Concursos Militares - Volume1

Página | 92

IME

18. (IME 2008) Assinale a opção correspondente aos valores de K para os quais o sistema de equações dado por:

Kyx

eee yxyx, admite solução real.

(A) 0 K 2

(B) 0 K ln2

(C) K e-2

(D) K > ln4

(E) 0 K 1.

19. (IME 2008) Sejam f(x) = xx

xx

ee

ee

, g(x) = ex e h(x) = g(f–1(x)). Se os valores da base e da altura de um triângulo são

definidos por h(0,5) e h(0,75) respectivamente, a área desse triângulo é igual a:

(A) 2

e

(B) 2

7

(C) 2

21

(D) 10

(E) e.

20. (IME 1972) Dizemos que f : R R é uma função exponencial se f(x) = ax, x R, onde a é uma constante real estritamente

positiva. Determine as funções exponenciais que satisfazem a equação:

6f(x+5)+f(x+4)–43f(x+3)–43f(x+2)+f(x+ 1)+6f(x) = 0

NÍVEL C

EFOMM

1. (EFOMM 2009) A equação 2–x

+ cos(π–x) = 0 tem quantas raízes no intervalo [0, 2 π] ?

(A) Zero.

(B) Uma.

(C) Duas.

(D) Três.

(E) Quatro.

ITA 2. (ITA 2010) A expressão 4e2x + 9e2y – 16ex – 54ey + 61 = 0, com x e y reais, representa:

(A) o conjunto vazio.

(B) um conjunto unitário.

(C) um conjunto não-unitário com um número finito de pontos.

(D) um conjunto com um número infinito de pontos.

(E) o conjunto {(x,y) IR2 |2(ex –2)2 + 3(ey – 3)2 = 1}.

3. (ITA 1998) Seja f: R R a função definida por f(x) = –3ax, onde a é um número real 0 < a < 1. Sobre as afirmações:

(I) f(x + y) = f(x) f(y), para todo x, y R;

(II) f é bijetora;

(III)f é crescente e f( ]0, + [ ) = ] –3, 0[.

Podemos concluir que:

(A) Todas as afirmações são falsas;

(B) Todas as afirmações são verdadeiras;

Page 93: Matemática Para Concursos Militares - Volume1

Página | 93

(C) Apenas as afirmações (I) e (III) são verdadeiras;

(D) Apenas a afirmação (II) é verdadeira;

(E) Apenas a afirmação (III) é verdadeira.

4. (ITA 1993) Um acidente de carro foi presenciado por 1/65 da população de Votuporanga (SP). O número de pessoas que

soube do acontecimento t horas após é dado por: f (t) = ktCe1

B

onde B é a população da cidade. Sabendo-se que 1/9 da

população soube do acidente 3 horas após, então o tempo passou até que 1/5 da população soubesse da notícia foi de:

(A) 4 horas.

(B) 5 horas.

(C) 6 horas.

(D) 5 horas e 24 min.

(E) 5 horas e 30 min.

5. (ITA 1992) Considere as funções f: IR* IR g: IR IR, e h: IR* IR definidas por: f(x) 3 x

1x

, g(x) = x2, h(x) = 81/x. O

conjunto dos valores de x em IR* tais que (fog)(x) = (hof)(x), é subconjunto de:

(A) [0, 3]

(B) [3, 7]

(C) [–6, 1]

(D) [–2, 2]

(E) n.d.a.

6. (ITA 1990) Dadas as funções f(x) = x

x

e1

e1

, X – {0} g(x) = x sen x, x IR, podemos afirmar que:

(A) ambas são pares.

(B) f é par e g é ímpar.

(C) f é ímpar e g é par.

(D) f não é par e nem ímpar e g é par.

(E) ambas são ímpares.

IME

7. (IME 1998) Determine os valores de que satisfaçam à inequação, 27 2 - 9

4 . 27 + 27-1 > 0, e represente, graficamente, a

função, y = 272x - 9

4. 27x + 27-1.

8. (IME 1997) Resolva o sistema abaixo:

0ae1aondeaxy

yx xy

Page 94: Matemática Para Concursos Militares - Volume1

Página | 94

CAPÍTULO 12 - FUNÇÃO LOGARITMO

DEFINIÇÃO: O logaritmo de um número real positivo x, na base 1ae0a,IRa , é o número real y tal que xa y , assim,

escrevesse xlogy a , em particular x é chamado de logaritmando.

RESUMINDO:

Se 01ae0a,IRa então:

xlogyxa ay .

Ex.1:

.7128log1282

.38log82

27

23

DEFINIÇÃO: Seja 1ae0a,IRa , a relação:

.xlogxfx

IRIR:f

a

.

é uma função chamada função logaritmo de base a, em particular, tem-se:

IRDf

IRCDf

RIm f .

GRÁFICO

Decorre da definição que a função logaritmo na base a é a função inversa da função exponencial na base a, logo seu gráfico é o

simétrico do gráfico da função exponencial em relação à bissetriz dos quadrantes ímpares. Assim para 1a,IRa tem-se

E para 1a0,IRa temos:

Page 95: Matemática Para Concursos Militares - Volume1

Página | 95

SISTEMA DE LOGARITMOS:

Sistema de logaritmos na base a é o conjunto dos logaritmos de todos os números reais positivos na base a.

Os sistemas mais usados são o sistema decimal e o sistema neperiano.

Sistema decimal (base 10): Neste caso 10a , os logaritmos podem ser representados simplesmente por log x em vez de log10

x.

Sistema neperiano: A base do logaritmo é o número irracional e definido por:

.17,2n

11

nlime

n

Os logaritmos são representados simplesmente por ln x.

Obs.: Uma consequência da definição de logaritmo é que xaxloga .

LOGARITMO

Definido o logaritmo, a seguir enumeramos suas principais propriedades:

Sejam 1ae0ce0b,0a,IRceb,a então:

1. LOGARITMO DO PRODUTO:

clogblogbclog aaa .

Demonstração:

.clogblogbclog

nmbclogabcaaabcac

ab

nclog

mblog

Sejam

aaa

anmnmnm

n

m

a

a

2. LOGARITMO DO QUOCIENTE:

clogblogc

blog aaa .

Page 96: Matemática Para Concursos Militares - Volume1

Página | 96

Demonstração:

.clogblogc

blog

nmc

bloga

c

ba

a

a

c

b

ac

ab

nclog

mblog

Sejam

aaa

anmnm

n

m

n

m

a

a

3. LOGARITMO DA POTÊNCIA

IR,blogblog aa .

Demonstração:

.blogblogyblogalogblogababab

:então,yblogSeja

aaay

aayyy

a

4. POTÊNCIA DA BASE

.IR,blog1

blog aa

Demonstração:

.blog1

blogyblogyblogababab

:então,yblogSeja

aaaa

yyy

a

5. MUDANÇA DE BASE

alog

blogblog

c

ca .

Demonstração:

.alog

blogblog

n

mclog

n

1mclogblog

ca

cb

nalog

mblog

c

cac

m

can

m

c

cn

DEFINIÇÃO: O Anti-logaritmo na base a é definido por:

xylogantiyxlog aa .

Ex.2:

.1253loganti3125log 55

DEFINIÇÃO: O Cologaritmo na base a é definido por:

xlogxlogco aa .

Ex.3:

.481logco481log 33

EQUAÇÃO LOGARÍTMICA DEFINIÇÃO: Seja a IR, a 0 e a 1 , uma equação logarítmica de base a é uma sentença aberta equivalente à:

alog x b.

Page 97: Matemática Para Concursos Militares - Volume1

Página | 97

DISCUSSÃO DE EQUAÇÕES DO TIPOalog x b. :

A equação logarítmica é sempre possível e determinada.

INEQUAÇÃO LOGARÍTMICA

DEFINIÇÃO: Seja a IR, a 0 e a 1 , uma inequação logarítmica de base a é uma sentença aberta equivalente à:

a

a

a

a

log x b

ou

log x b

ou

log x b

ou

log x b

A solução de uma inequação logarítmica é obtida a partir do comportamento da função.

Page 98: Matemática Para Concursos Militares - Volume1

Página | 98

EXERCÍCIOS

NÍVEL A

EFOMM

1. (EFOMM 2013) O número de bactérias B, numa cultura, após t horas, é B = B0 e kt, onde K é uma constante real. Sabendo-se

que o número inicial de bactérias é 100 e que essa quantidade duplica em t = ln 2

2 horas, então o número N de bactérias, após 2

horas, satisfaz:

(A) 800 < N < 1600

(B) 1600 < N < 8100

(C) 8100 < N < 128000

(D) 128000 < N < 256000

(E) 256000 < N < 512000

2. (EFOMM 2010) Sabendo que o log3o 3 = a e log30 5 = b, que opção representa logl0 2 ?

(A)1 a b

2 a

(B) 1 a b

a 1

(C) 1 a b

1 a

(D) 1 a b

2 a

(E) 1 a b

1 a

3. (EFOMM 2009) Os domínios das funções reais f(x) = log x2

e g(x) = 2.log x são D1 e D2, respectivamente. Sendo assim, pode-

se afirmar que

(A) D1 = D2

(B) D1 ≠ D2, mas D1

D2

(C) D1 ≠ D2, mas D2

D1

(D) D1 ≠ D2, e D1 D2 =

(E) D1 ⊄ D2, D2 ⊄ D1

e D1

≠ .

4. (EFOMM 2006) Se Log a = 0,4771 e Log b = 0,3010, então Log b

a é

(A) 0,1761

(B) –0,1761

(C) 0,7781

(D) 0,8239

(E) –0,8239.

5. (EFOMM 2005) Determine o domínio da função real y =

2xlog

2

1

Page 99: Matemática Para Concursos Militares - Volume1

Página | 99

(A) D = {x IR / 0 < x 4}

(B) D = {x IR / 0 > x 4}

(C) D = {x IR / 0 < x 2}

(D) D = {x IR / 0 > x 2}

(E) D = {x IR / x < 4}.

AFA

6. (AFA 2014) Pesquisas realizadas verificaram que, no planeta Terra, no início do ano de 2013, a população de pássaros da

espécie A era 12 vezes a população de pássaros da espécie B.

Sabe-se que a população de pássaros da espécie A cresce a uma taxa de 5% ao ano, enquanto que a população de pássaros da

espécie B cresce a uma taxa de 20% ao ano.

Com base nesses dados, é correto afirmar que, essas duas populações de pássaros serão iguais

(Considere: log 7= 0,85; log 6= 0,78; log 2=0,3 )

(A) no 1º semestre do ano de 2034.

(B) no 2º semestre do ano de 2034.

(C) no 1º semestre do ano de 2035.

(D) no 2º semestre do ano de 2035.

7. (AFA 2013) No plano cartesiano, seja P(a, b) o ponto de interseção entre as curvas dadas pelas funções reais f e g definidas por 2

1f (x)

2

e 1

2

g(x) log x

É correto afirmar que

(A) 2 1

2

a log log a

(B) 2 2a log log a

(C) 1 1

2 2

1a log log

a

(D) 2

2

1a log

1log

a

8. (AFA 2012) Considere uma aplicação financeira denominada UNI que rende juros mensais de 27log 196M e outra

aplicação financeira denominada DUNI que rende juros mensais de 1

9

log 14 N

A razão entre os juros mensais de M e N, nessa ordem, é

(A) 70%

(B) 2 / 3

(C) 4 / 3

(D) 80%

9. (AFA 2009) Se a função real f é definida por f(x) = log3 (3x + 4) − log3 (2x −1) , então o conjunto de valores de x para os

quais f(x) < 1 é

(A)

3

7xIRx

(B)

2

1xIRx

(C)

3

7xou

2

1xIRx

Page 100: Matemática Para Concursos Militares - Volume1

Página | 100

(D)

3

7x

2

1IRx

10. (AFA 2007) De acordo com Richter (1935), a energia E (medida em joules) liberada por um terremoto de magnitude M,

obedece à equação

M = 0,67 . log E – 3,25

Baseando-se nisso, é FALSO afirmar que (adotar log 2 = 0,3)

a) se a energia de 2,0. 1012 joules equivale à de uma bomba atômica como a lançada sobre Hiroshima, então, o valor da magnitude

de um terremoto cuja energia liberada equivale a 2000 bombas atômicas como a lançada sobre Hiroshima, é um número do

intervalo ] 7; 7,3 ]

(B) o acréscimo de 0,67 unidades na magnitude de um terremoto na escala Richter corresponde a um terremoto cerca de 10 vezes

mais intenso em termos de energia liberada.

(C) o crescimento na magnitude de terremotos na escala Richter, acarreta um aumento exponencial da energia liberada.

(D) a energia de 2,0. 1012 joules (equivalente à de uma bomba atômica como a lançada sobre Hiroshima) corresponde à ocorrência

de um terremoto de magnitude superior a 5 pontos na escala Richter.

11. (AFA 2007) Dada a função real f tal que f(x) = 4x

)1e(xlog

2

x

, onde e = 2,71... é a base de logaritmos neperianos, é

correto afirmar que o conjunto D, domínio de f é igual a

(A) {x IR | x 1 e x ≠ 2}

(B) {x IR* | –2 < x < 2}

(C) {x IR | x < –2 ou x > 2}

(D {x IR * | x 1}

12. (AFA 2007) As funções que melhor descrevem as curvas abaixo são

(A) y = –loga x e sua inversa, sendo 0 < a < 1

(B) y = loga (2x) e sua inversa, sendo a > 1

(C) y = ax e sua inversa, sendo a > 0

(D) y = loga (x + 1) e sua inversa, sendo a > 1

13. (AFA 2004) O gráfico expressa a variação de log y em função de log x, onde log é p logaritmo na base decimal.

Page 101: Matemática Para Concursos Militares - Volume1

Página | 101

A relação correta entre x e y é igual a

(A) y = 2 + 2x

(B) y = 2

3 + x

(C) y = 100x2

(D) y = 2

5 + x.

14. (AFA 2003) O conjunto solução da equação 2)2x(log 22x é

(A)

(B) {x IR x > 3}

(C) {x IR 2 < x < 3}

(D) {x IR x > 2 e x 3}.

15. (AFA 2002) Todo número real positivo pode ser descrito na forma 10x. Tendo em vista que 2 = 100,30, então o expoente x,

tal que 5 = 10x vale, aproximadamente,

(A) 0,15

(B) 0,33

(C) 0,50

(D) 0,70.

16. (AFA 2001) Se x IR e 75x = 243, então 7-3x é igual a:

(A) 1/3

(B) 1/9

(C) 1/27

(D) 1/81.

17. (AFA 2000) O domínio da função real

f(x) = log (–x2 + 6x + 16) + log(x2 – 6x + 8)

é:

(A) {XR – 2 x 2 ou 4 < x 8}

(B) {XR – 2 < x < 2 ou 4 < x < 8}

(C) {XR x < – 2 ou 2 < x < 4 ou x > 8}

(D) {XR x < – 2 ou 2 < x < 4 ou x > 4}.

18. (AFA1999)A soma das raízes da equação log2 (x2 – 6x) = 4 é

(A) 4.

(B) 5.

(C) 6.

(D) 7.

19. (AFA 1999) O valor de

-

2loglog

22

é

(A) 1.

(B) 2.

(C) 3.

(D) 4.

Page 102: Matemática Para Concursos Militares - Volume1

Página | 102

20. (AFA 1996) Uma das soluções da equação:

–2

1log (x + 1) = log

3)1x(

1

+ log

1x

)1x( 2

é:

(A) 1

(B) 2

(C) 3

(D) 4.

21. (AFA 1994) Se x é variável real, então o campo de definição da função f(x) = 1x

1xlog

2

é o conjunto:

(A) {x R – 1 < x < 1}

(B) {x R 0 < x < 1}

(C) {x R – 1 < x 1}

(D) {x R 0 x 1}

22. (AFA 1994) A solução da equação log2 (2x+3) + log1/2 2x = 1 é:

(A) 3

2

(B) 1

(C) 2

3

(D) 2

23. (AFA 1994) Sendo log3, ( 7 – 2 ) = K, o valor de log3 ( 7 + 2 ) é:

(A) 1 – k

(B) 1 + k

(C) 2 – k

(D) 2 + k

24. (AFA 1990) Se x > 1 é a solução da equação:

log5 1x +log5 2

11x log5 3,

então x vale:

(A) 2

(B) 3

(C) 4

(D) 5

(E) nra

25. (AFA 1990) O domínio da função log2 [log1/4(x2 – 2x + 1)] é:

(A) ]0,1/2[ ] 3/2, 2[

(B) ]–2, 0[ ] 3/2, 2[

(C) ] –1, 0[ ]3/2, + [

(D) ] – , ½ [ ]3/2, + [

(E) nra

26. (AFA 1990) O domínio da função f(x) = log[log(x+3)] é o intervalo:

(A) ]– , – 3[

(B) ]– 3 , + [

(C) ]– , – 2[

(D) ]– 2 , +[

(E) nra

Page 103: Matemática Para Concursos Militares - Volume1

Página | 103

27. (AFA 1989) O logaritmo de um número numa certa base é 3, e o logaritmo, desse mesmo número, numa base igual ao dobro

da anterior, é 2. Então, o número vale:

(A) 64

(B) 65

(C) 75

(D) 76

28. (AFA 1989) A raiz da equação log (x –1) – 2

)7xlog( = log2 é:

(A) –9

(B) –3

(C) 3

(D) 9

ITA

29. (ITA 1999) Seja S o conjunto de todas as soluções reais da equação

log1/4 (x + 1) = log4 (x – 1).

Então:

(A) S é um conjunto unitário e S ] 2, + [;

(B) S é um conjunto unitário e S ] 1, 2 [;

(C) S possui dois elementos distintos e S ] –2, 2 [;

(D) S possui dois elementos distintos e S ] 1, + [;

(E) S é o conjunto vazio.

IME

30. (IME 2012) Se o log102 = x e log103 = y, então log518 vale:

(A) x 2y

1 x

(B) x y

1 x

(C) 2x y

1 x

(D) x 2y

1 x

(E) 3x 2y

1 x

31. (IME 2007) Sabendo que log 2 = 0,3010, log 3 = 0,4771 e log 5 = 0,6989, o menor número entre as alternativas abaixo é:

(A) 430

(B) 924

(C) 2540

(D) 8120

(E) 62515.

32. (IME 1986) Determine

log. . .333,0

037037,0 ...

33. (IME 2009) Seja log 5 = m, log 2 = p e N = 125 35 2

5,1562. O valor de log5 N, em função de m e p, é

Page 104: Matemática Para Concursos Militares - Volume1

Página | 104

(A) m15

p6m75

(B) m15

p6m70

(C) m15

p6m75

(D)m15

p6m70

(E) p15

p6m70

34. (IME 1996) Considerando log 2 = a e log 3 = b, encontre, em função de a e b, o logaritmo do número 5 25,11 no sistema de

base 15.

35. (IME 1984) Seja log a o logaritmo decimal de a e log3 a o logaritmo de a na base 3. São dados: log 2 = e log 3 = . Calcule

em função de e os valores de log N e log3 N onde

N = 243 43 2

5,364

onde e β são números reais positivos.

NÍVEL B

EFOMM

1. (EFOMM 2009) Numa embarcação é comum ouvirem-se determinados tipos de sons. Suponha que o nível sonoro β e a

intensidade I de um desses sons esteja relacionado com a equação logarítmica β = 12 + log10 I, em que β é medido em decibéis e I

em watts por metro quadrado. Qual é a razão 2

1

I

I, sabendo-se que I1 corresponde ao ruído sonoro de 8 decibéis de uma

aproximação de dois navios e que I2 corresponde a 6 decibéis no interior da embarcação?

(A) 0,1

(B) 1

(C) 10

(D) 100

(E) 1000.

2. (EFOMM 2007) Leia e assinale a alternativa correta.

Os Terremotos

Abandonando-se um pequeno dado sobre a superfície terrestre, ocorrerá uma liberação de energia que a fará vibrar

levemente. Se, no lugar do dado, for abandonado um tijolo, a energia liberada fará vibrar mais intensamente essa superfície.

Imagine um cubo de granito com 2Km de aresta abandonado de uma altura de 280Km; a energia liberada será equivalente a 20

trilhões de Kwh. Essa foi a medida da energia liberada pelo terremoto ocorrido em San Francisco, Califórnia, em 1906. Mais

violento ainda foi o terremoto que arrasou Lisboa, em 1755, liberando energia equivalente a 350 trilhões de kwh.

Os logaritmos são aplicados na medida da intensidade de um terremoto. Na escala Richer, a intensidade de um terremoto

é definida por:

I = 2/3. log E/E0, em que E é a energia liberada pelo terremoto em kwh e E0 = 10-3 kwh.

O terremoto ocorrido em 1906 na cidade de San Francisco (EUA) registrou 9 pontos na escala Richter. Qual foi, então, a

intensidade do terremoto que arrasou Lisboa em 1755?

(dado log 7 = 0,845 e log 5 = 0,698)

(A) 5,609

(B) 6,695

Page 105: Matemática Para Concursos Militares - Volume1

Página | 105

(C) 7,06

(D) 7,609

(E) 7,695.

AFA

3. (AFA 2011) Um médico, apreciador de logaritmos, prescreveu um medicamento a um de seus pacientes, também apreciador de

logaritmo, conforme a seguir. Tomar x gotas do medicamento α de 8 em 8 horas. A quantidade de gotas y diária deverá ser

calculada pela fórmula log8 y = log2 6. Considerando log 2 = 3

10e log 3 = 0,48, é correto afirmar que log2 x é um número do

intervalo

(A) [3,4[

(B) [4,5[

(C) [5,6[

(D) [6,7[

4. (AFA 2010) Sejam as funções reais dadas por f(x) = 22x +1 e g(x)=3x +1 . Se b IR tal que 1

f2

= 2g(b) e p = log3 b, então

sobre p é correto afirmar que

(A) não está definido.

(B) é positivo e menor que 1.

(C) é negativo e menor que 1.

(D) é positivo e maior que 1.

5. (AFA 2010) Sobre a função real f : D → IR dada por f(x) = 1 + log2(x2), é INCORRETO afirmar que é

a) par

b) sobrejetora x D

c) crescente se x [1, + ∞[

d) injetora x D

6. (AFA 2008) Considere todo x IR que torne possível e verdadeira a igualdade log[f(x² −1)] = log 1x2x 24 , onde f é

função real de A em B e marque a alternativa correta.

(A) O conjunto imagem de f é Im = IR+ – {1}

(B) f é uma função injetora.

(C) Se B = IR+ − {1}, então existe a inversa de f .

(D) f tem domínio A = {x IR | x | > 1}

7. (AFA 2008) Considere as funções reais

f: IR * IR tal que f(x) = x – 2

g: IR IR * tal que g(x) =

x

2

1

h: IR * IR tal que h(x) = –log2x

e marque a alternativa correta.

(A) O domínio da função k definida por k(x) = )x(h

)x(g é o conjunto dos números reais positivos.

(B) A função j definida por j(x) = )x)(gof(

)x(h.)x(f 1

se anula em dois pontos distintos.

(C) A função m definida por m(x) = −1+ (gof)(x) não possui raiz.

(D) Se g(h(a)) = 8 e h(g(2b)) = log3 9, então (a − b) é um número primo.

8. (AFA 2007) Sabe-se que o isótopo do carbono, C14, tem uma meia vida de 5760 anos, isto é, o número N de átomos de C14 na

substância é reduzido a 2

N após um espaço de tempo de 5760 anos. Essa substância radioativa se degrada segundo a seqüência N

Page 106: Matemática Para Concursos Militares - Volume1

Página | 106

= N0 . 2–t, t {0, 1, 2, ...} em que N0 representa o número de átomos de C14 na substância no instante t = 0 e t é o tempo medido em

unidades de 5760 anos.

Com base nas informações acima, pode-se dizer que

(A) o número de átomos quando t = 1 era 5760

(B) o número de átomos será igual a um terço de N0 quando decorridos 1920 anos.

(C) após 11520 anos haverá a quarta parte do número inicial de átomos.

(D) quando t = 5760 haverá metade do número inicial de átomos.

9. (AFA 2006) Assinale a alternativa CORRETA.

(A) 9

1log3log

4

12 .

(B) Se 5

2log.3log.14logx 4

5

213 , então 2x1 .

(C) Se xlog

1m

3

, então, um possível valor real de x tal que 1xlog.x 3m é

3

7x .

(D) Se )1x0(xlog

1x

3

xlog

1

3 , então, um possível valor de x é 2 .

10. (AFA 2003) "Na semana passada, a Secretaria Municipal de Saúde do Rio de Janeiro anunciou que 5000 bombeiros

participarão da campanha de combate à epidemia de dengue na cidade. É mais uma tentativa de deter o ritmo alucinante de

crescimento da doença."

Veja. 13 de março de 2002

Suponha uma cidade com 128.000 habitantes e que, em determinada ocasião, fosse constatado que 8000 habitantes estavam com

dengue. Num estudo realizado, constatou-se que a taxa de aumento de pessoas contaminadas era de 50% ao mês. Com base nisso,

pode-se afirmar que, caso não tomasse nenhuma providência,

Dados: log 2 = 0,3 e log 3 = 0,48

(A) toda população seria contaminada em dois meses.

(B) em três meses, apenas 18.000 pessoas seriam contaminadas.

(C) 40.500 pessoas seriam contaminadas em quatro meses.

(D) dez mil pessoas seriam contaminadas exatamente na metade de um mês.

11. (AFA 2002) Sejam f e g funções definidas por 3x42x)x(f e xlog)x(g 1x . O domínio de (gof)(x) é o conjunto dos

números reais x, tais que

(A) 0 < x < 1 ou x > 3

(B) x < 1 ou x > 3

(C) 1 < x < 3 e x 0

(D) x > 3.

12. (AFA 1995) No conjunto dos números reais, o campo de definição da função f(x) = log(x + 1) (2x2 – 5x + 2) é dado por:

(A) {x IR / x 2 ou x = 1}

(B) {x IR / –½ < x < 1 e x ½}

(C) {x IR / –½ < x < 0 ou x 0}

(D) {x IR / –1 < x < 0 ou 0 < x < ½ ou x > 2}

ESCOLA NAVAL

13. (EN 2010) Uma progressão geométrica infinita tem o 4º termo igual a 5. O logaritmo na base 5 do produto de seus 10

primeiros termos vale 10 – 15 log52. Se S é a soma desta progressão, então o valor de log2 S é

(A) 2 + 3 log2 5

(B) 2 + log2 5

(C) 4 + log2 5

(D) 1 + 2 log2 5

(E) 4 + 2 log2 5

Page 107: Matemática Para Concursos Militares - Volume1

Página | 107

14. (EN 2009) Sejam n IN tal que 24 + 25 + .... + 2n = 8176 e m o menor m IN tal que 406log2

6

1

)m2...(6.4.2

!m seja

verdadeira. O produto m.n vale.

(A) 120

(B) 124

(C) 130

(D) 132

(E) 143.

15. (EN 2009) Consideremos a, x *IR , x 1 e a 1. Denotemos por logx e logax, os logaritmos nas bases 10 e a

respectivamente. O produto das raízes reais da equação 2

)1(–2x )xlog(

1)10(log12

é

(A) 10 10

(B) 10

(C) 10

10

(D) 100

10

(E) 100.

16. (EN 2009) Seja n o menor inteiro pertencente ao domínio da função real de variável real (x) = ln 3 )1x(

x

4

3

64

27

1e

.

Podemos afirmar que logn ...3333 é raiz da equação

(A) x3 – 2x2 – 9 = 0

(B) x3 + x – 1 = 0

(C) x4 – 4x2 – x + 2 = 0

(D) x2 – 4x + 3 = 0

(E) x4 – 4x2 + x + 1 = 0.

17. (EN 2008) No sistema cartesiano abaixo está esboçado uma porção do gráfico de uma função a)(xlogy(x) 2 restrita ao

intervalo ]8,2[ , *Ra .

Se 2y(2) , então o valor da área hachurada é:

(A) 3log2

36 4 .

(B) 3log12 2 .

Page 108: Matemática Para Concursos Militares - Volume1

Página | 108

(C) 3log28 2 .

(D) 3log6

2

1 .

(E) 3log122

.

18. (EN 2008) Considere os conjuntos

4

32x

2x/RxA

e

07)5x(xlog/IRxB 29 .

Pode-se afirmar que BA é:

(A)

,

7

26

2

3, .

(B)

,2

9

10, .

(C)

9

10,23, .

(D)

,3

9

10, .

(E)

,

7

263, .

19. (EN 2006) Seja A o menor inteiro pertencente ao domínio da função real, de variável real,

4x)(1

3

4

16

9

1f(x)

. Pode-se

afirmar que 222logA pertence ao intervalo:

(A)

1,

2

1.

(B)

3

1,0 .

(C)

2

1,

3

1.

(D)

2

3,1 .

(E)

2,

2

3.

20. (EN 2005) Se a, b, m e n são números reais tais que 341abba 22 , 0a , 0b , m2log3 e n7log3 então o valor

da expressão

14log2][log23

7log

64ab

b][alog

3

12

9

2

3

2

3

é:

(A) 1n6m2 .

(B) 2m72

m2

.

Page 109: Matemática Para Concursos Militares - Volume1

Página | 109

(C) 2n6m32

n3

2

.

(D) 1n62

n 2

.

(E) 1m6n2 .

21. (EN 1999) Sendo M o menor inteiro pertence ao domínio da função

;

3

4

16

9

1)x(f

)x1(

podemos afirmar que logM2 22 é:

(A) 4

7

(B) 8

7

(C) 4

3

(D) 8

3

(E) 4

1.

22. (EN 1991) Se f(x) = xe1

1

, determine f –1(x)

(A) ln(x – 1)

(B) ln 1/x

(C) lnx

x1

(D) ln x1

x

(E) 1 + ex

23. (EN 1990) O valor de 008,0log:4log

25,0log:243

1log

04,0125,0

329

é:

(A) –225/16

(B) –25/9

(C) –25/27

(D) 63/65

(E) 1

24. (EN 1989) Dada a função 1 x

f (x) ln1 x

podemos afirmar que :

(A) f(x + y) = f(x) + f(y)

(B) f (xy) = f (x) + f (y)

(C) f(x + y) = yx

)y(f)x(f

(D) f(x + y) = f

xy1

yx

(E) f(x) + f(y) = f

xy1

yx

Page 110: Matemática Para Concursos Militares - Volume1

Página | 110

25. (EN 1988) O conjunto solução da inequação

1xlog

1

xlog

1

22 < 1

é:

(A) R

(B) (0, )

(C) (0, 2) (2, )

(D) (1, 2)

(E) (0, 1) (2, ).

26. (EN 1988) Se f(x) = log3 (2x – 1) então f -1(x) =

(A))1x2(log

1

3

(B) 2

13x

(C) 2

13x

(D) log3 x

x2

(E) 13

2x

.

ITA

27. (ITA 2009) Seja S o conjunto solução da inequação

(x – 9) 0)x26x(log 34x .

Determine o conjunto SC.

28. (ITA 2007) Sejam x, y e z números reais positivos tais que seus logaritmos numa dada base k são números primos

satisfazendo

log k (xy) = 49,

log k (x/z) = 44.

Então, log k (xyz) é igual a:

(A) 52.

(B) 61.

(C) 67.

(D) 80.

(E) 97.

29. (ITA 2007) Determine o conjunto C, sendo A, B e C conjuntos de números reais tais que

A B C = {x IR : x2 + x 2},

A B = {x IR: 8–x – 3 . 4–x – 22–x > 0},

A C = {x IR: log(x + 4) 0},

B C = {x IR: 0 2x + 7 < 2}.

30. (ITA 2007) Sendo x, y, z e w números reais, encontre o conjunto solução do sistema

log [(x + 2y) (w – 3z)-1] = 0,

2x+3z – 8. 2y-3z+w = 0,

02w2z6yx23 .

31. (ITA 2006) Considere as seguintes afirmações sobre a expressão S =

101

0k

k8 )24(log :

I. S é a soma dos termos de uma progressão geométrica finita

II. S é a soma dos termos de uma progressão aritmética finita de razão 2/3

III. S = 3451

Page 111: Matemática Para Concursos Militares - Volume1

Página | 111

IV. S ≤ 3434 + log8 2

Então, pode-se afirmar que é (são) verdadeira (s) apenas:

(A) I e III

(B) II e III

(C) II e IV

(D) II

(E) III.

32. (ITA 2005) Considere a equação em x

ax+1 = b1/x

onde a e b são números reais positivos, tais que ln b = 2ln a > 0. A soma das soluções da equação é

(A) 0.

(B) –1.

(C) 1.

(D) ln 2.

(E) 2.

33. (ITA 2004) Seja x IR e a matriz ,

A =

5log2

)1x(2

2x

12x

.

Assinale a opção correta.

(A) x IR, A possui inversa.

(B) Apenas para x > 0, A possui inversa.

(C) São apenas dois os valores de x para os quais A possui inversa.

(D) Não existe valor de x para o qual A possui inversa.

(E) Para x = log2 5, A não possui inversa.

IME

34. (IME 2013. Considere a equação 23x 3

3log (log x) 1

x . A soma dos quadrados das soluções reais dessa equação está contida

no intervalo

(A) [0,5)

(B) [5,10)

(C) [10,15)

(D) [15,20)

(E) [20,)

35. (IME 2010) Seja ( ) 3 log( ) ,f x x X . Sendo n um número inteiro positivo, a desigualdade

n-3

n-1

f(x) 2f(x) 4f(x) 2 f(x) 9...

4 12 36 3 4 somente é possível se:

(A) 0 x 106

(B) 10-6 x 108

(C) 103 x 106

(D) 100 x 106

(E) 10-6 x 106

36. (IME 2008) Seja ai um dos termos da progressão geométrica com oito elementos

,...

4

1,

2

1,1,2 , e

S = log2 a

1 + log

2 a

2 + ... + log

2 a

8.

Se b = 5

S

e f(x) = x + 2b + 2x – bo valor de f(1) será:

Page 112: Matemática Para Concursos Militares - Volume1

Página | 112

(A) − 7

(B) 7

(C) 11

(D) − 11

(E) 1.

37. (IME 2007) Considere o sistema de equações dado por

10log2log

10loglog3

39

93

Determine o valor de P

38. (IME 2003) Determine todos os valores reais de x que satisfazem a equação:

log (12x3 – 19x2 + 8x) = log(12x3 – 19x2 + 8x),

onde log(y) e y representam, respectivamente, o logaritmo na base 10 e o módulo de y.

39. (IME 2002) Sabe-se que logab = X, logq b = Y e n > 0, onde n é um número natural. Sendo c o produto dos n termos de

uma progressão geométrica de primeiro termo a e razão q, calcule o valor de logc b em função de X, Y e n.

40. (IME 1985) Determine o valor de b tal que

nlim

n

0t

plog 5t+1 = 4

onde p = b(t+1) 2t

.

NÍVEL C

AFA

1. (AFA 2006) Considere as funções reais f e g definidas por xlog(x)f 3 e 1)(xfg(x) . Sabendo-se que existem 1f e 1g ,

é correto afirmar que o conjunto solução da equação 2(x)f(x)g 11 é:

(A) 1 .

(B) .

(C) 12log3 .

(D) 2log1 3 .

2. (AFA 2006) Num certo dia, a temperatura ambiente era de 40°C. A água que fervia em uma panela, cinco minutos depois de

apagado o fogo tinha a temperatura de 70°C. Pela lei de resfriamento de Newton, a diferença de temperatura D entre um objeto e o

meio que o contém é dada por ta0 e.DD(t) , em que 0D é a diferença de temperatura no instante 0t e D(t) a diferença num

instante t qualquer. Sabendo-se que a temperatura de ebulição da água é de 100°C, 0,72n e 1,65n , pode-se dizer que a

água atingirá a temperatura de 46°C:

(A) 10 minutos após o fogo ter sido apagado.

(B) entre 18 e 20 minutos após o fogo ter sido apagado.

(C) exatamente 30 minutos após o fogo ter sido apagado.

(D) aproximadamente 16 minutos após apagado o fogo.

3. (AFA 2003) Considere uma P.G. onde o 1o termo é a, a > 1, a razão é q, q > 1, e o produto dos seus termos é c. Se loga b = 4,

logq b = 2 e logc b = 0,01, então a soma dos termos da P.G. é

(A) 1a

aa

2

41

(C) 1a

1a

2

41

Page 113: Matemática Para Concursos Militares - Volume1

Página | 113

(B) 1a

aa

2

40

(D) 1a

1a

2

40

.

4. (AFA 2001) A soma de todos os valores reais que satisfazem a equação x16xxlog4 , x > 0, é

(A)4

17

(B)4

33

(C)4

65

(D)4

129.

5. (AFA 2000) A expressão

,0c

blog)c(log

b

alog)a(log

2

2

com a, b, ,Rc * é verdadeira quando:

(A) b2 = ac ou a = c

(B) c2 = ab ou a = b

(C) a = bc2 ou b = c

(D) ac–1 = b2 ou a = b.

6. (AFA 2000) Se b = 212xx 2

, então o número de soluções inteiras que satisfaz a inequação

4

3log

7

5log bb

é:

(A) 4

(B) 5

(C) 6

(D) 7.

7. (AFA 1998) Seja y

y

a1

a

= x, com a R, a > 0 e a 1. Determinando-se y em função de x, o domínio da função assim

definida é

(A) {x R l x 0}.

(B) {x R l x 1}.

(C) {x R l x < 1}.

(D) {x R l 0 < x < 1}.

8. (AFA 1998) Se log10 x (log2 4 . log4 6 . log6 8) – 1, então

(A) 0 < x 102

(B) 102 < x 104

(C) 104 < x 106

(D) 106 < x 108.

9. (AFA 1997) A soma das raízes da equação

e2 ln x (log 5) – 5x(log 5) - (log 32) = –5,

onde e = 2,7 é

(A) 3

(B) 4

Page 114: Matemática Para Concursos Militares - Volume1

Página | 114

(C) 5

(D) 6.

10. (AFA 1996) A solução da equação: x 3 – x2 3 = 2 é:

(A) log2

(B) log7

(C) 4log

3log

(D) log22

7.

11. (AFA 1996) Seja 6

π x

2

π. Os valores de k, para que a expressão cossex = logk seja verdadeira, pertence ao intervalo:

(A) 1 k 2

(B) 10 k 20

(C) 10 k 100

(D) 10 k 1000.

12. (AFA 1996) Sejam a = 5 64 5 b = 43 4 e c = 4 128 Se x = min(a,b,c) e y= max(a,b,c) o valor de log2 (x . y-1) é:

(A) 20

11

(B) 15

22

(C) 20

11

(D) 15

22.

ESCOLA NAVAL

13. (EN 2013) Sejam A e B conjuntos de números reais tais que seus elementos constituem, respectivamente, o domínio da

função f(x) = ln (2 + x + 3 |x| – |x + 1|) e a imagem da função g(x) = – 2 + 2 x | x 2 |

2

. Pode-se afirmar que

(A) A = B

(B) A B =

(C) A B

(D) A B = R+

(E) A – B = R–

14. (EN 2012) Considere x, y, z e a números reais positivos, tais que seus logaritmos numa dada base a, são números primos

satisfazendo as igualdades a

a

log (axy) 50

xlog 22

z

. Podemos afirmar que alog (xyz) 12 vale:

(A) 8

(B) 56

(C) 58

(D) 11

(E) 12

Page 115: Matemática Para Concursos Militares - Volume1

Página | 115

15. (EN 2012) Sendo x e y números reais, a soma de todos os valores de x e de y, que satisfazem ao sistema

y

2

x

1x

y

1y

x

, vale

(A)36

5

(B) 9

2

(C) 5

2

(D) 25

4

(E) 1

2

16. (EN 2010) Seja S o subconjunto de IR cujos elementos são todas as soluções de

1 1

3 3

5

53 2

log 2x 3 log 4x 1

(x 4)0

(1 5x) 3x x 5

.

Podemos afirmar que S é um subconjunto de

(A) ]–, –5[ ]1, +[

(B) ]–, –3[ ]3, +[

(C) ]–, –5[ ]3, +[

(D) ]–, –3[ ]2, +[

(E) ]–, –2[ ]4, +[

17. (EN 2007) Seja b a menor das abscissas dos pontos de interseção das curvas definidas pelas funções reais de variável real

2xnx(x)f 5 e 2xnx(x)g 25 . O produto das raízes da equação

5blog2

x5

2

5 x5log

é:

(A) –1.

(B) 5

1 .

(C) 5

1.

(D) 5

3.

(E) 1.

18. (EN 1993) O produto das raízes positivas da equação,

125

xx

52x5log ,

é:

(A) 5

(B) 5

Page 116: Matemática Para Concursos Militares - Volume1

Página | 116

(C) 5 5

(D) 25

(E) 25 5

19. (EN 2012) Sejam e g funções cujo domínio é o conjunto D = { n IN / n 3} onde n representa o número de lados de um

polígono regular. As funções e g associam respectivamente para cada n D, as medidas dos ângulos interno e externo do

mesmo polígono. É correto afirmar que :

(A) (n) < g(n) se e somente se (n–1)! = n!–(n–1)! .

(B) Se (n)=g(n) então o polígono considerado é um triângulo equilátero.

(C) log2

f (n)

g(n)

= 1 – log2(n–2) para todo n ou g(10) = 2(10)

(D) é injetora e sen((n) + g(n)) = 0

(E) (go)(n) está sempre definida.

ITA 20. (ITA 2013) Se os números reais a e b satisfazem, simultaneamente, as equações

1a b

2 e ln(a2 + b) + ln8 = ln5,

um possível valor de a

b é

(A) 2

2 (B) 1. (C) 2 .

(D) 2. (E) 3 2 .

21. (ITA 2013) Considere as funções f e g, da variável real x, definidas, respectivamente, por

2x ax bf (x) e e

axg(x) ln

3b

,

em que a e b são números reais. Se f(−1) = 1 = f(−2), então pode-se afirmar sobre a função composta g ◦ f que

(A) g ◦ f(1) = ln 3.

(B) g ◦ f(0).

(C) g ◦ f nunca se anula.

(D) g ◦ f está definida apenas em {x ∈ R : x > 0}.

(E) g ◦ f admite dois zeros reais distintos.

22. (ITA 2011) Resolva a inequação em IR: 2

1

5

log (x x 19)1

164

.

23. (ITA 2010) A expressão 4e2x + 9e2y – 16ex – 54ey + 61 = 0, com x e y reais, representa:

(A) o conjunto vazio.

(B) um conjunto unitário.

(C) um conjunto não-unitário com um número finito de pontos.

(D) um conjunto com um número infinito de pontos.

(E) o conjunto {(x,y) IR2 |2(ex –2)2 + 3(ey – 3)2 = 1}.

Page 117: Matemática Para Concursos Militares - Volume1

Página | 117

24. (ITA 2010) Analise se a função f : IR IR, f(x) = x x3 3

2

é bijetora e, em caso afirmativo.

Determine a função inversa f –1.

25. (ITA 2010) Considere conjuntos A, B IR e C (A B). Se A B, A C e B C são os domínios das funções reais

definidas por ln(x – ), 2x 6x 8 e

x

5 x

, respectivamente, pode-se afirmar que

(A) C = ,5

(B) C = [2, ]

(C) C = [2, 5[

(D) C = [, 4]

(E) C não é intervalo.

26. (ITA 2009) Seja S o conjunto solução da inequação

(x – 9) 0)x26x(log 34x .

Determine o conjunto SC.

27. (ITA 2008) Um subconjunto D de IR tal que a função f : D IR, definida por

f(x) = ln(x2 – x + 1)

é injetora, é dado por

(A) IR

(B) (–, 1)

(C) [0,1/2]

(D) (0, 1)

(E) [1/2, ).

28. (ITA 2008) Seja f(x) = ln (x2 + x + 1), x IR. Determine as funções h, g : IR IR tais que f(x) = g(x) + h(x), x IR,

sendo h uma função par e g uma função ímpar.

29. (ITA 2007) Sejam x e y dois números reais tais que ex, ey e o quociente 5e4

52ey

x

são todos racionais. A soma x + y é igual a:

(A) 0.

(B) 1.

(C) 2 log5 3.

(D) log5 2.

(E) 3 loge 2.

30. (ITA 2006) Determine para quais valores de x (- /2, /2) vale a desigualdade

logcos x(4sen2x-1) - logcos x(4–sec2 x)>2.

31. (ITA 2004) Para b > 1 e x > 0, resolva a equação em x: (2x)2b

log–(3x)

3blog

= 0.

32. (ITA 2002) Dada a função quadrática f(x) = x2 In3

2 + x In6 –

4

1 In

2

3, temos que:

(A) a equação f(x) = 0 não possui raízes reais.

(B) a equação f(x) = 0 possui duas raízes reais distintas e o gráfico de f possui concavidade para cima.

(C) a equação f(x) = 0 possui duas raízes reais iguais e o gráfico de f possui concavidade para baixo.

(D) o valor máximo de f é 2In3In

3In2In

.

(E) o valor máximo de f é 22In3In

3In2In

.

Page 118: Matemática Para Concursos Militares - Volume1

Página | 118

33. (ITA 2002) Seja a função f dada por:

f(x) = (log35) . log5 8x–1 + log3 4

1+2x–x2

– log3 2x(3x+1).

Determine todos os valores de x que tornam f não-negativa.

34. (ITA 2001) Sendo dado

1n n43 n2...8642 = an

e

1n n243 n2...432 = bn

então,

2

2n1

3

3n1+

4

4n1–

5

5n1 + ...+

n2

n2n1

é igual a:

(A) an - 2bn

(B) 2an - bn

(C) an - bn

(D) bn - an

(E) an + bn.

35. (ITA 1999) Seja a R com a > 1. Se b = log2a, então o valor de

log4 a3 + log2 4a + log2

1a

a

+ (log8 a)2 –

1a

1alog

2

2

1

é:

(A) 2b – 3

(B) 18

65b + 2

(C) 2

1b3b2 2

(D) 18

36b63b2 2

(E) 9

7b9b2 .

36. (ITA 1998) O valor de y R que satisfaz a igualdade logy49 = log 2y7 + log2y7 é:

(A)2

1

(B) 3

1

(C) 3

(D) 8

1

(E) 7.

Page 119: Matemática Para Concursos Militares - Volume1

Página | 119

37. (ITA 1998) A inequação

4x log5 (x + 3) (x2 + 3) log1/5 (x + 3)

é satisfeita para todo x S. Então:

(A) S = ] –3, –2 ] [ –1, + [;

(B) S = ] –, –3 [ [ –1, + [;

(C) S = ] –3, –1 ];

(D) S = ] –2, + ];

(E) S = ] –, –3 [ ] –3, + [.

38. (ITA 1997) O domínio D da função

f(x) = ln

x3x2

x)1(x

2

22

é o conjunto

(A) D = {x R : 0 < x < 3 /2}

(B) D = {x R : x < 1/ ou x > }

(C) D = {x R : 0 < x 1/ ou x }

(D) D = {x R : x > 0}

(E) D = {x R : 0 < x <1/ ou < x < 3 /2}.

39. (ITA 1997) Dado um número real a com a > 1, seja S o conjunto solução da inequação

).1x(loga

1loglog a/1

7x

aa/1

Então S é o intervalo:

(A) [4, +[

(B) [4, 7[

(C) ]1, 5]

(D) ]1, 4]

(E) [1, 4[.

40. (ITA 1996) Seja a R, a > 1. Para que

,015xloglog;Rx5,4 2

aa/1

*

o valor de a é:

(A) 2

(B) 3

(C) 5

(D) 9

(E) 10.

41. (ITA 1996) Se (x0, y0) é uma solução real do sistema

,4y4x

2)y2x(log)y2x(log

22

32

então x0 + y0 é igual a:

(A) 7/4

(B) 9/4

(C) 11/4

Page 120: Matemática Para Concursos Militares - Volume1

Página | 120

(D) 13/4

(E) 17/4.

42. (ITA 1995) Se x é um número real positivo, com x 1 e x 3

1, satisfazendo

xlog

xlog2

2x

3

xlog1

)2x(log

3

x

= logx ( x + 2 )

Então x pertence ao intervalo I, onde

(A) I =

9

1,0

(B) I =

3

1,0

(C) I =

1,

2

1

(D) I =

2

3,1

(E) I =

2,

2

3.

43. (ITA 1994) Sejam x e y números reais, positivos e ambos diferentes de 1, satisfazendo o sistema:

)x

1(logylogxloge

y

1x

2

y

Então o conjunto (x, y) está contido no intervalo:

(A) [2, 5]

(B) ]0, 4[

(C) [–1, 2]

(D) [4, 8[

(E) [5, [.

44. (ITA 1994) Seja (a, b, c, d, e) uma progressão geométrica de razão a, com a > 0 e a 1. Se a soma de seus termos é igual a

13a + 12 e x é um número real positivo diferente de 1 tal que:

,2

5

xlog

1

xlog

1

xlog

1

xlog

1

xlog

1

edcba

então x é igual a:

(A) 33

(B) 23

(C) (5/2)2

(D) (5/2)3/2

(E) (2/5)2.

45. (ITA 1993) O conjunto solução da inequação

log x[(1 – x)x] < log x[(1 + x)x2]

é dado por:

(A) 1 < x < 3/2

(B) 0 < x < 1

(C) 0 < x < 2

12

(D) 0 < x <2

2

(E) 0 < x < 2 –1.

Page 121: Matemática Para Concursos Militares - Volume1

Página | 121

46. (ITA 1992) O domínio da função:

f(x) = log1x32x2

(3x2 – 5x + 2)

é:

(A) (– , 0) (0, 1/2) (1, 3/2) (3/2, + )

(B) (– , 1/2) (1, 5/2) (5/2, + )

(C) (– , 1/2) (1/2, 2/3) (1, 3/2) (3/2, + )

(D) (– , 0) (1, + )

(E) n.d.a.

47. (ITA 1992) Numa progressão geométrica de razão inteira q > 1. Sabe-se que a1an = 243, logq Pn = 20 e logq an = 6, onde an é o

enésimo termo da progressão geométrica e Pn é o produto dos n primeiros termos. Então a soma dos n primeiros termos é igual a:

(A)6

139

(B) 6

1310

(C) 6

138

(D) 3

139

(E) n.d.a.

48. (ITA 1991) Sejam a , a > 1 e f: IR IR definida por f(x) = 2

aa xx . A função inversa de f é dada por:

(A) loga(x – 1x2 ), para x > 1

(B) loga(–x + 1x2 ), para x IR

(C) loga(x + 1x2 ), para x IR

(D) loga(–x + 1x2 ), para x < –1

(E) nda.

49. (ITA 1991) Seja IR IR definida por:

1xse,xln

1x0se,1x

0xse,e

)x(f 2

x

Se D é um subconjunto não vazio de IR tal que f: D IR é injetora, então:

(A) D = IR e f(D) = [–1 , + [

(B) D = ]–, 1] ]e , +[ e f(D) = ]–1 , +[

(C) D = [0 , +[ e f(D) = ]–1 , +[

(D) D = [0 , e] e f(D) = [–1 , 1]

(E) n.d.a.

Notação: f(D) = {y IR : y = f(x), x D} e ln x denota o logaritmo neperiano de x.

50. (ITA 1991) Numa progressão geométrica de razão q, sabe-se que:

I- O produto do logaritmo natural do primeiro termo a1 pelo logaritmo natural da razão é 24.

II- A soma do logaritmo natural do segundo termo com o

III- O logaritmo natural do terceiro termo é 26.

Se ln q é um número inteiro então o termo geral vale:

(A) e6n–2

(B) e4 + 6n

Page 122: Matemática Para Concursos Militares - Volume1

Página | 122

(C) e24n

(D) e4+6n

(E) nda

51. (ITA 1991) O conjunto dos números reais que verificam a inequação 3logx + log (2x + 3)3 3 log 2, é dado por:

(A) {x IR: x > 0}

(B) {x IR : 1 x 3}

(C) {x IR : 0 < x 2

1}

(D) {x IR : 2

1 x < 1}

(E) n.d.a.

Notação: loga denota o logarítimo de a na base 10

52. (ITA 1990) O conjunto das soluções reais da equação |ln (sen2x)| = ln (sen2x) é dado por:

(A){x IR : x = 2

π+ k, k Z}

(B){x IR : x = + k2

π, k Z}

(C){x IR : x = 2k, k Z}

(D){x IR : –1 x 1}

(E){x IR : x 0}.

53. (ITA 1990) Sabendo-se que 3x – 1 é fator de 12x3 – 19x2 + 8x – 1 então as soluções reais da equação 12(33x) – 19(32x) + 8(3x)

– 1 = 0 somam:

(A) – log312

(B) 1

(C) –3

1log312

(E) – 1

(E) log37.

54. (ITA 1990) Numa progressão geométrica de três termos a razão é e-2a, a soma dos termos é 7 enquanto que a diferença do

último termo com o primeiro é 3. Nestas

condições o valor de a é:

(A) ln 2

(B) –ln 2

5

(C) ln 3

(D) –ln 2

(E) não existe número real a nestas condições.

55. (ITA 1989) Sobre a expressão:

M = xlog

1

xlog

1

52

,

onde 2 < x < 3 , qual das afirmações abaixo está correta ?

(A) 1 M 2

(B) 2 < M < 4

(C) 4 M 5

(D) 5 < M < 7

(E) 7 M 10.

Page 123: Matemática Para Concursos Militares - Volume1

Página | 123

IME

56. (IME 2011) Seja f(x) = a senx + b 3 x + 4, onde a e b são números reais diferentes de zero. Sabendo que 10 3f ( log (log 10) )

= 5, o valor de 10 10f ( log (log 3) ) é:

(A) 5

(B) 3

(C) 0

(D) – 3

(E) – 5

57. (IME 2011) O valor de y real positivo na equação x xlog 5 log 75y - 7y 0 , onde x é um número real maior do que 1 é:

(A) 70

(B) 35

(C) 1

(D) 1

35

(E) 1

70

58. (IME 2005) (ANULADA) Sejam a, b, c e d números reais positivos e diferentes de 1. Sabendo que logad , logbd e logcd são

termos consecutivos de uma progressão aritmética, demonstre que:

c2 = (ac)bloga

59. (IME 2000) Sejam a e b números reais positivos e diferentes de 1. Dado o sistema abaixo:

blog.ylogxlog.2

abb.a

ab/1a

y/1x

Determine os valores de x e y.

60. (IME 1988) Para que valores de x a função

f(x) = 4xln

1

x . ln x2

Assume o valor e 4

1

?

61. (IME 1970) Calcule os valores de X e Y sabendo que:

5 25

3

5 5 3

3

log x+y – 2 log 5 0

log xy5log x y anti ln colog x y 5log 9 0

log e

x y

Obs: O símbolo ln significa logaritmo neperiano; e ébase dos logaritmos neperianos.

(A) X = 3 e Y = 2

(B) X = 3 e Y = 1

(C) X = 5 e Y = 0

(D) X = 4 e Y = 1

(E) Solução impossível

(F) Nenhuma das respostas acima.

Page 124: Matemática Para Concursos Militares - Volume1

Página | 124

CAPÍTULO 13 - GABARITO E SOLUÇÕES

CAPÍTULO 1 - LÓGICA

NÍVEL A

1. D

Temos que

p q p q

ou

p q q p

Logo

((x 5) (y 6) ) ( (x 5) (y 6) ) ( (x 5) (y 6))

ou

((x 5) (y 6)) ( (y 6) (x 5) ) ((y 6) (x 5)) (D)

2. C

3. D

NÍVEL B

1. B

A proposição é uma tautologia, pois,

p q r (q r) p (q r) p q p r (p q ) ( p r ) p (q r) (p q ) ( p r )

1 1 1 1 1 1 1 1 1

1 1 0 1 1 1 0 1 1

1 0 1 1 1 0 1 1 1

1 0 0 0 0 0 0 0 1

0 1 1 1 0 0 0 0 1

0 1 0 1 0 0 0 0 1

0 0 1 1 0 0 0 0 1

0 0 0 0 0 0 0 0 1

NÍVEL C

1. D

Page 125: Matemática Para Concursos Militares - Volume1

Página | 125

2

2

2

2 2

2

2

I.

x 4 x > 16

e x 2y > 12  (V)

y 2 -2y > -4

II. 

( (5 4 (V) )ou (10 2 (F) ) ) e (5 – 2 10=5 12) (F)

III.

x 1 0 x 1 x > 16

e x 2y >16--2 2 12  (V)

y > 2 y 2 -2y > -2 2

CAPÍTULO 2 – TEORIA DOS CONJUNTOS

NÍVEL A

1. D

2. D

É fácil notar que

A – C B – A (A C) (C – (A B))

A – C B – A (A C) (C – (A B)) A B C

logo

n(A B C) n A – C n B – A n(A C) + n(C – (A B))

25 13 10 n(A C) + n(C – (A B))

n(A C) + n(C – (A B)) 2.

Uma vez que

(A C) (C – (A B)) ( (B C) (A B C))

(A C) (C – (A B)) ( (B C) (A B C)) C

Temos

n(C) n(A C) +n(C – (A B)) n((B C) (A B C))

n(C) 2 n((B C) (A B C))

Como ((B C) (A B C)) (B A) n((B C) (A B C)) n(B A) 10

Temos

n(C) 2 n((B C) (A B C)) 12.

3. B

I - (F)

Uma vez que L é o conjunto dos losangos, R é o conjunto dos retângulos e Q é um conjunto que contém L, temos que L Q L

e como L R

é o conjunto dos quadrados, então L Q L L R.

II – (F)

Uma vez que n(A) 4 então n(P(A)) 16.

III- (V)

Temos que

a, b, c,d U Z a, b, c, d, e Z a, b, c, d, e e Z

c,d U Z a, c, d, e Z a, c, d, e b Z a Z e Z Z a, c,e

b, c, d Z c b Z d Z c Z

Page 126: Matemática Para Concursos Militares - Volume1

Página | 126

4. B

5. D

6. D

7.C

8. B

n(U) 100

n(T) 20

n(E) 40

n(T E) 100 50 50

Como n(T E) n(T) n(E) n(T E) 50 20 40 n(T E) n(T E) 10.

9. A

10. A

11. D

0 0 0

0 0

0 0

0 0

0

0

0

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

n(U) 36

n(1 2 3 ) x

n(1 2 ) 9

n(2 3 ) 7

n(1 3 ) 10

n(1 ) 24 x

n(2 ) 22 x

n(3 ) 24 x

n(1 2 3 ) 36 4 32

Como

n(1 2 3 ) n(1 ) n(2 ) n(3 ) n(1 2 ) n(2 3 ) n(1 3 ) n(1 2 3 )

32 (24 x) (

22 x) (24 x) 9 7 10 x x 6.

12. C

13. C

14. C

Page 127: Matemática Para Concursos Militares - Volume1

Página | 127

C C C

C

C C C C C C

C C 1

U {a,b,c,d,e, f ,g,h}

(B A) f , g, h B A f , g, h

B A a, b

A \ B d, e A B d, e A B (A B ) {a,b,c, f ,g,h}

Como

A B (A B) \ ((B A ) (B A)) {c} n(P(A B)) 2 2.

15. C

NÍVEL B

1. D

n(A B) 23

n B \ A 12

n C \ A 10

n(B C) 6

n(A B C) 4

Como

A (A B) \ (B\ A) n(A) n(A B) n(B\ A) 23 12 11

e

A C A C\ An(A C) n(A) n C\ A 11 10 21

A C\ A

e

A B C (A B) C \(A B)

(A B) C \(A B)

C \(A B) (C \A) \ ((B C) \ (A B C))

n(A B C) n(A B) n C \(A B) 23 (10 (6 4)) 31

2. C

1

1 2

2

C Sn(C ) n(C )

C S

De fato

1 2 1 2n(C ) n(C ) C C

Logo o conjunto S só pode ter um elemento com uma determinada cardinalidade, ou seja, só pode ter um elemento que seja um

conjunto com zero elemento, um elemento que seja um conjunto com um elemento, um elemento que seja um conjunto com dois

elementos e assim sucessivamente, como

maxC S 0 N(C) n n(S) n 1.

3. B

4. Demonstração

5. B

É importante notar que

P( ) P(B\ A) P(B\ A) P( ) P(B\ A)

Como 4n(B\ A) n(A B) n(A) 12 8 4 n(P(B\ A)) 2 16.

6. D

Page 128: Matemática Para Concursos Militares - Volume1

Página | 128

7. A

NÍVEL C

1. B C

C

C

C

C C C C

C C C C C

n(S) 70% n(S ) 30%

n(C) 75% n(C ) 25%

n(B) 80% n(B ) 20%

n(R) 85% n(R ) 15%

n(S ) n(C ) n(B ) n(R ) 90%

n(S C B R ) 90% n((S C B R) ) 90% n(S C B R) 10%.

2. C

3.

Suponha que:

A e B e (A\ B) ( B \ A) A

Então

(A\ B) ( B \ A) A.

Logo se

x : x (A\ B) ( B \ A) x (A\ B) x ( B \ A) x (A\ B)

Pois se

x ( B \ A) x A.

Então

x : x (A\ B) ( B \ A) x ( B \ A) B \ A B A.

Então

(A\ B) ( B \ A) (A\ B) A

A menos que

B

O contraria a hipótese.

4. A

5. E

6.

a) 4

b) 4096

7. C

8. A

9.

a) 1, 2, 4 ou 8

b) 105

a) Devemos ter

b) Queremos dividir oito objetos em quatro grupos cada um como dois elementos, logo

2 2 2 2

8 6 4 2

4

C C C C105

P

10. ma) 2

b) 3

11. E

12. Demonstração

Uma vez que

1 2 1 2 1 2 1 2(S S ) (P P ) x : x S S x P x P

Page 129: Matemática Para Concursos Militares - Volume1

Página | 129

Suponha que

1 2 1 2 1 1 2 2 1 2x S S x P x S x P x P S x P x P P

Analogamente se

1 2 2 1 2 2 1 1 1 2x S S x P x S x P x P S x P x P P

Logo

1 2 1 2 1 2 1 2x : x S S x P P (S S ) (P P ) .

13. B

14. 44

15. Demonstração

Temos que:

C C

C C C C

C C C C

(X  Y)   (X   Z) ((X  Y)   (X   Z)) ( (X   Z) (X  Y))

((X  Y)  (X   Z) ) ( (X   Z) (X  Y) )

((X  Y)  (X    Z )) ( (X   Z) (X   Y ))

( ((X  Y)  X )   ((X  Y)  Z )) ) (((X   Z) X )  ((X   Z) Y )))

(  ((X

C C

C C C C

  Y)  Z )) ) (   ((X   Z) Y )))

((X  Y)  Z ) ((X   Z) Y ) X ( (Y  Z ) (Z Y ))

X ((Y  Z) (Z Y)) X (Y  Z).

CAPÍTULO 3 – PRODUTO CARTESIANO

NÍVEL C

1. E

(I)

(x, y) : (x, y) E x G (x, y) F x H

Como

(x, y) : (x, y) E x G (x E) (y G)

temos

(x, y) : (x, y) E x G (x E) (y G) (x F) (y H)

x E x F E F

e

y G y H G H.

Uma vez que

A B A B B

(II) e (III) são verdadeiras.

2. D

CAPÍTULO 4 – RELAÇÃO

NÍVEL A

1. B

1

A B (2,1), (2,6), (2,8), (2,12), (3,1), (3,6), (3,8), (3,12), (4,1), (4,6), (4,8), (4,12)

R {(2,6), (4,8) }.

Page 130: Matemática Para Concursos Militares - Volume1

Página | 130

NÍVEL C

1. Demonstração

.R)c,a(ndemúltiploé)cb()ba(candemúltiploécbR)c,b(

ndemúltiploébaR)b,a(

:Transitiva)iii(

.R)a,b(ndemúltiploéabndemúltiploébaR)b,a(

:Simétrica)ii(

.R)a,a(ndemúltiploéaa0aa

:\flexivaRe)i(

:então,Nceb,a,INnSejam

n

n

n

nn

n

**

Logo Rn é reflexiva, simétrica e transitiva, ou seja, é uma relação de equivalência.

2. Demonstração:

.aRaporémaRa,aRa

sejaou

0me1m,1m

queNote

:Transitiva)iii(

.aRaaRa

sejaOu

1m1m

,olog,simétricaéM

:Simétrica)ii(

.4,3,2,1i,aRa4,3,2,1i,1m

:\flexivaRe)i(

121442

124142

ijji

ijji

iiii

Logo R é reflexiva, simétrica e não é transitiva, ou seja, R não é uma relação de equivalência.

3. Demonstração

CAPÍTULO 5 – CONJUNTOS NUMÉRICOS

NÍVEL A

1. A

2. B

2. 2 2. 4 (2 2) 2 2. 2 2 2. 4 2 2. 2 2 par.

3. B

4. B

Temos que: m.m.c.(4,10) 20 n(4 10) n(20).

Como

n(4 10) n(4) n(10) n(4 10) n(4 10) 13 7 5 15 N(A) 15 9 24.

5. E

NÍVEL B 1. D

Page 131: Matemática Para Concursos Militares - Volume1

Página | 131

2 2

(I)

Uma vez que :

7500

54

5 25 5 7 49 72 S e 2 S (I) Verdadeira.

4 16 4 5 25 5

5 7Q Q

4 5

(II)

x IR : 0 x 2 S S (II) Falsa.

2

(III)

2 0

2 2 2 2 S (III) Falsa.

2 Q

NÍVEL C

1. E

2. Demonstração

CAPÍTULO 6 – FUNÇÃO

NÍVEL A

1. B

2. B

Repare que:

g(0,8) g(x), x 0, 1

Uma vez que

f (0,4) f (1) 0,8

temos que

g(f (0,4)) g(f (1)) g(f (x)), x 0, 1 .

Logo opção (B) é falsa.

3. B

Temos que:

y 23 2

y 2 y 433x 2 y x f (y)3 2 2

e

x 3 y x y 3 g(y) 5(y 3) 2 5y 13

Assim

5x 13 4 5x 9f (g(x)) f (5x 13) .

2 2

4. D

5. D

Temos que

f

f

f (1) f (5) 3

f (2) f (4) 0

f (3) 1

logo

Im 1, 0, 3

CD IR

Logo f não é sobrejetora e nem injetora, porém fn(Im ) 3.

Page 132: Matemática Para Concursos Militares - Volume1

Página | 132

6. B

As sequências (f (1),f (3),..., f (81))

e

(f (0),f (2),..., f (70))

São duas progressões aritméticas de razão 3 com 41 e 35 termos respectivamente, logo, f (81) f (1) (41 1) 3 5 120 125

e

f (70) f (0) (36 1) 3 10 105 115

logo f (81) f (70) 10.

7. C

1

3 3 3

3

1

3

1 1f ( ) x f (x) .

9 9

Como

f (x) t(h(2x))

temos

1h(2x) (2x) 8x f (x) t(h(2x)) t(8x ) .

1 8x

Logo

1 1 1x 1 f ( ) 1.

1 8x 9 9

8. D

9. D

10. C

1

2 1 1 1

3 1 2 1 1988 2

x 3f x   

x 1

x 3  3

x 3 x 3x 1f x =f f x = f   =   =  x 3x 1 x 1  1x 1

x 3  3

x 3 x 3 x 3x 1f x =f f x = f =   =  x f (x) f (x) .x 3x 1 x 1 1 x

  1x 1

NÍVEL B

1. B

2. B

3. B

4. B

5. B

Page 133: Matemática Para Concursos Militares - Volume1

Página | 133

(I) Falsa

0 S

S U 0

(II)Falsa

S \ U 2,4,6 2 S \ U

S T U

(III)Falsa

Pois n(S) 4 n(T) 3

(IV) Verdadeira

Pois n(S) 4 n(T) 3

6. D

7. A

NÍVEL C

1. B

l 2 l 2

l 2 l 2 l 2

l 2

l 2 l 2 l 2

(I)

Sejam x , x IR com x x

x > x f x < f x f x f xf x f x f injetora (I) Verdadeira.

x < x f x f x f x f x

(II)

f (x) f ( x) , x IR f n decrescente (II) Falso.

1

1 1 1 1

12 2 2 2

1 1 1

1 2 1 2 1 2 1 2

(III)

Sejam

y f (x ) x f (y )

y f (x ) x f (y )

f decrescente ( (x x ) (f (x ) f (x ) ) ( (f (y ) f (y )) (y y ) ) f decrescente

(III) Verdadeiro.

2. A

3. A

1 21 2 1 2 1 2 1 2

1 2

1 2

(I)

D R \ 1

f : D D

x 1x  f x .

x 1

(a)

x 1 x 1Sejam x , x D com x x se f x f x x x (Absurdo)

x 1 x 1

f x f x f injetora

(b)

Seja y D

x 1 y 1 y 1f (x) y y x y D, x D :f (x) y f sobrejetora

x 1 y 1 y 1

(a) e (b) (I) Verda

deiro.

(II)

(I) (II) Falso

Page 134: Matemática Para Concursos Militares - Volume1

Página | 134

(III)

D R \ 1

f : D D

x 1x  f x .

x 1

11

1 x 1 x 1 1 xxf (x) f ( ) 0, x D \ 0 (III) Verdadeiro.1x x 1 x 1 1 x

1x

(IV)

D R \ 1

f : D D

x 1x  f x .

x 1

x 1 x 1f (x)f ( x) 1, x D \ 1 (IV) Falso.

x 1 x 1

4. A

2

(I)

f : IR IR

nãoconstante

x x xf x y f x f y , x, y IR f (x)=f ( + )=(f ( )) 0, x IR .

2 2 2

Suponha que x IR: f (x) 0 f (x) f (x 0) f (x)f (0) 0 f (x) 0, x IR (Absurdo)

f (x) 0, x IR (I) Verdadeiro.

n

k

(II)

f : IR IR

nãoconstante

f x y f x f y , x, y IR

Seja

S n IN : f (nx) (f (x)) , x IR

P(k) verdadeiro k S.

(i) P(1)Verdadeiro

f (x) f (x) P(1) Verdadeiro

(ii) (Hipotese)

P(k)Verdadeiro k S f (kx) (f (x)) , x IR

f ((k

k k 1

*

1)x) f (kx x) f (kx)f (x) (f (x)) f (x) (f (x)) , x IR k 1 S P(k 1)Verdadeiro

PIF S IN (II) Verdadeiro.

2

(III)

f : IR IR

nãoconstante

f x y f x f y , x, y IR

f par f (0) f (x ( x)) f (x)f ( x) (f (x)) , x IR f cons tan te (Absurdo) (III)Falso.

5. Demonstração

6. E

7. Demonstração

Page 135: Matemática Para Concursos Militares - Volume1

Página | 135

–1

1 1

1 1 1 1

Seja

f : IR IR 

bijetora e ímpar

e

 f :IR IR

Seja

y f ( x) f (y) x x f (y) x f ( y) y f (x)

y f (x) f ( x) f (x) x IR f ímpar.

8. D

9. E

10. Demonstração

11. E

n

f : 0,1     IR 

x  0, 1     

1(i) f (x)    

2

1 x x 1(ii)f (x) f f

4 2 2

Seja

1S n IN : f (x) , x   0, 1

2

e

P(n) verdadeiro n S

k

k

k

(a) (i) 1 S P(1) verdadeiro

1(b)(Hipotese)P(k) verdadeiro k S f (x) , x  0, 1

2

x x 1  0, 1 f ( )

2 2 2Uma vezque x   0, 1

x 1 x 1 1  0, 1 f ( )

2 2 2

1 x x 1 1 x x 1f (x) f f f f

4 2 2 4 2 2

k k k 1

*

1 1 1 1

4 2 2 2

P(k 1) verdadeiro k 1 S

PIF S IN .

12. D

13. C

14. C

3

3 3

3

3

3 3

f x 2f 2 – x x – 1 , x IR

f 2 – x 2f 2 – (2 x) (2 – x) – 1 , x IR f 2 – x 2f x (1 – x) , x IR

f x 2f 2 – x x – 1 (1)

f 2 – x 2f x (1 – x) (2)

(1) 2(2) 3f x 3 x – 1 , x IR f x 1 – x , x IR

f (g(x)) f (1 x) 1 –

3 3 (1 x) x , x IR.

15. B

16. B

17. A

Page 136: Matemática Para Concursos Militares - Volume1

Página | 136

1 2

1 2 1 2

1 1 2 2

f : IR IR

g : IR IR, decrescentes e sobrejetoras

h : IR IR, h fog.

(1)Sejam x , x IR ,

x x g(x ) g( x )

h(g(x )) h g(x ) h(g( x )) h g(x )

h : IR IR crescente.

(2)h : IR IR crescente h : IR IR injetora

(3)f : IR IR

1

e g : IR IR sobrejetoras h : IR IR sobrejetora

(2) e (3) h : IR IR bijetora h : IR IR inversivel

(4)h : IR IR crescente h : IR IR crescente.

18. E

19. E

20. C

21. B

22. Demonstração

f : IR \ 0 IR : f a / b f a – f b

(1) b 1 f( a) f a – f 1 , a IR

(2)a 1 e b 1 f( 1) f 1 – f 1 2 f( 1) f 1

(3) a b 1 f( 1) f 1 – f 1 0 (2): f( 1) 0

(1): f( a) f a , a IR f par.

23. 2007

n

k 0

n n 1

k 0 k 0

(n 1)f : N IR : f (k) 2008

(n 2)

n 1 n n 1 n 2008f (n) f (k) f (k) 2008 2008 2008

n 2 n 1 n 2 n 1 (n 1)(n 2)

1 1f (2006) 2007.

2007 f (2006)

24. Demonstração

2

2

2

2 2

2 2 2

2

1f : IR IR : f (x a) f (x) [f (x)]

2

f (x 2a) f ((x a) a)

1f (x a) [f (x a)]

2

1 1 1f (x) [f (x)] f (x) [f (x)]

2 2 2

1 1 1f (x) [f (x)] f (x) [f (x)] f (x) [f (x)]

2 2 4

1 1 1 1f (x) [f (x)]

2 4 2

1 1

f (x) f (x) f (x) f periodica.2 2 2

25. Demonstração

26. Demonstração

Page 137: Matemática Para Concursos Militares - Volume1

Página | 137

2

1 1 2 2 1 1 2 2

1 1 2 2

3 3

1 1 1 2 2 2

3 3

1 2 1 2

1 1 2 2

1 1 2 2 1 2 1 2

2 2

0 0 0 0

(1) Injetora :

Sejam x , y e x , y IR , x , y x , y

h x , y h x , y

x , x f y x , x f y

x x x xx , y x , y h injetora.

x f y x f y f y f y y y

(2) Sobrejetora

Seja x, y IR , x , y IR : h x , y x, y ?

Vamo

3

0 0 0 0 0

3 3

0 0

13 3

0 0 0 0

13 3

1 2 2

1 13 3

s supor que sim

h x , y x, y x , x f y x, y

x x x x

x f y y f y x y y f ( x y )

h( x , f ( x y )) (x, y) h sobrejetora.

Em particular

h : IR IR

(x, y) h x, y ( x , f ( x y ))

CAPÍTULO 7 – FUNÇÃO CONSTANTE

CAPÍTULO 8 – FUNÇÃO DO 1° GRAU

NÍVEL A

1. A

2. B

O valor arrecadado pelas vendas em função do desconto concedido é dado por: p : IR IR

x p(x) (20 2x)(30 6x)

Note que

p(4) p(1) 648.

3. A

Analisando os gráficos das funções f, g e h, nota-se que a locadora α é a mais vantajosa a partir do quilômetro em que o gráfico de

f encontra-se abaixo dos gráficos de g e h, em particular pela análise gráfica, abaixo do gráfico de g. Assim

f : IR IR

x f (x) 50

g : IR IR

1x g(x) 20 x

2

1f (x) g(x) 50 20 x x 60 m 60.

2

4. B

Temos que

Page 138: Matemática Para Concursos Militares - Volume1

Página | 138

A : IR IR

x A(x) mx h

e

A(2007) 34,8 2007m h 34,8 (1)

A(2005) 29,2 2005m h 29,2 (2)

(1) (2) 2m 5,6 m 2,8 h 5584,8

A : IR IR

x A(x) 2,8x 5584,8

32 29,2A(2006) 32 Aumento 0,095 9,5%

29,2

5. B

6. C

7. C

Vamos determinar cada um dos conjuntos.

A 1,2,3,4,6,8,12,24

3x 4B x | 1 0

2x 9

3x 4 x 51 0 0

2x 9 2x 9

Z

9S ,5

2

Assim

B 1,2,3,4

8. D

9. C

10. C

Uma vez que

fIm IR

Então f não é sobrejetora. Além disso, f não é par, pois, f (1) 0 e f ( 1) 2 , nem ímpar, pois, f (0) 1 .

11. B

12. B

Page 139: Matemática Para Concursos Militares - Volume1

Página | 139

Da semelhança de triângulos temos

V 24.000 0,8V20V 480.000 4V V 30.000 0,2V 6.000.

5 20

13. D

Seja

f : IR IR

x f (x) ax b

f 0 1 f 1 b 1 (a b) a 1

3f –1 2 – f 0 a b 2 b a 2b 2 1 2b 2 b

2

f : IR IR

3 3x f (x) x f (3) .

2 2

14. D

f : IR IR

x f (x) ax b

f 0 10.000 b 10.000

f 5 1.000 5a b 1.000 5a 9.000 a 1.800

f : IR IR

x f (x) 1.800x 10.000 f (3) 4.600.

15. D

1 1 1 2x2 2 0 0

x x x

1

S ( ,0) ,2

NÍVEL B

1. C

Page 140: Matemática Para Concursos Militares - Volume1

Página | 140

6

5 6

3

Uma vez que

(b(x)) 0

a(x) x 10 0 x ( , 4) 1, )(a(x)) .(b(x))

c(x) x 40 S ( , 4) 1, ).(c(x))

c(x) 0 x 4 0 x 4.

2. B

3. B

4. C

5. C

6. B

1

2

1 2

2x 3, 2x 3 3x 5min 2x 3, 3x – 5

3x 5,3x 5 2x 3

2x 3, 8 x

3x 5, x 8

Logo

min 2x 3, 3x – 5 4

1x 8 2x 3 4 x S

2

ou

x 8 3x 5 4 x 3 S ,3

S S S ,3

NÍVEL C

1. D

2. C

3. A

g não é par nem ímpar.

f : 0, 1 IR

2x, 0 x 1/ 2x f x

2x 1, 1/ 2 x 1

e

g : 1/ 2, 1/ 2 IR

f (x 1/ 2), 1/ 2 x 0x g(x)

1 f (x 1/ 2), 0 x 1/ 2

2x, 1/ 2 x 0

2 2x, 0 x 1/ 2

4. C

CAPÍTULO 9 – FUNÇÃO DO 2° GRAU

NÍVEL A

Page 141: Matemática Para Concursos Militares - Volume1

Página | 141

1. D

2M N 6

x – 6x 10 0MN 10

1 1 M N 6.

M N MN 10

2. D

3. D

4. B

5. B

6. D

Uma vez que 0)x(f.)x(f 21 então existe 21 x,xr tal que 0)r(f , logo 0 , como 0)x(f.)x(f 21 podemos garantir

que 0 caso contrário teríamos .0)x(f.)x(f 21

7. B

2

2 2 2

2 2

b by x ax

2 2

b ba 4 a b

2 2

0 a b 0.

8. C 3 2 3 2

2 2

3 2 2

3 2

3x x 5x 10 3x x 5x 102x 3x 8 (2x 3x 8) 0

x 2 x 2

3x x 5x 10 (x 2)(2x 3x 8)0

x 2

x 7x 6 (x 1)(x x 6) (x 1)(x 2)(x 3)0 0 0

x 2 x 2 x 2

(x 1)(x 3) 0 1 x 3S ( 1,3).

x 2

9.

2

f : IR IR

x f (x) x 6x 9

Page 142: Matemática Para Concursos Militares - Volume1

Página | 142

10.

2

V

2

V

f : IR IR

x f (x) a(x 1)(x 5)

f (1) 8 8a 8 a 1.

f : IR IR

x f (x) x 4x 5

a)

a 1

b 4

c 5

b)

f (0) 5

c)

a 1 0 Valor Maximo

d)

4x 2

2(1)

( 4) 4(1)( 5)y 9 V (2, 9)

4(1)

e)

NÍVEL B

1. D

I) Falso, }a{IRxaxax

ax2

II) Verdadeiro, a

1

x

1 < 0 (a > )

ax

xa < 0

Page 143: Matemática Para Concursos Militares - Volume1

Página | 143

III) Verdadeiro, |x| < a x < –a ou x > a

x2 – a2 < 0 x < –a ou x > a

2. A

Se x1 = 1 ou x2 = 3 são as raízes, então xv = 2

Como xv = yv V(2, 2)

Se f(x) ≥ 0 x A e f é crescente x [p, q], então pelo

gráfico, tem-se p = 1 e q = 2

p – q = (2 – 1) = 1

3. B

4. C

5. D

6. C

7. D

Se x < 1 temos que a < 0 uma vez que a concavidade da parábola está voltada para baixo.

Além disso, como 1 2x 0 e x 0 temos que,

b b0 0

b 0.a a

a 0 a 0

Logo ab 0.

8. C

2

v

L :IN IR

22 xx L(x) x 2x 50

3 30

L :IN IR

16

x 16 3x L(x) x 50 x 80.130 3

230

9. C

Page 144: Matemática Para Concursos Militares - Volume1

Página | 144

2 2

2 2

2 2 2

x 1 3

g(6) x f (x) 6 3x 6x 6 x 2x 2 0 ou x 1 3 g(6) 1 3

x 1 3

x 1 2

g(3) x f (x) 3 3x 6x 3 x 2x 1 0 ou x 1 2 g(3) 1 2

x 1 2

(g(6) g(3)) ((1 3) (1 2)) ( 3 2) 5 2 6.

10. B

11. D

12. D 2 2

2 2

2 2 2 2

2 2 2 2

x (2m 3)x (m 3)f (x) 0, x IR

x (2m 1)x (m 2)

1x (2m 3)x (m 3) 0, x IR (2m 3) 4(m 3) 0 12m 3 0 m

14m

7 4x (2m 1)x (m 2) 0, x IR (2m 1) 4(m 2) 0 4m 7 0 m

4

13. E

NÍVEL C 1. B

2. B

3. D

4. A

5. A

6. C

7. D

8. B

9. 2 m 2

10. A

11. A

12. B

13. D

2

C(1) 3 a b c 3 (1)

C(2) 5 4a 2b c 5(2)

C(3) 1 9a 3b c 1 (3)

(2) (1) 3a b 2 (4)

(3) (2) 5a b 4 (5)

(5) (4) 2a 6 a 3 b 11 e c 5 C(t) 3t 11t 5 C(2,5) 3,75.

14. C

15. C

Page 145: Matemática Para Concursos Militares - Volume1

Página | 145

16.

1 2

1 2 1 2 1 2

1 2

1 2 1 2

1 2

1 2

2 1

1 2

2 1

1 2

2 1

1 1

2 2

x x 15 m

x x m x x 15 x x

x , x Z

x x x x 15

1 x 1 x 16

x 15 x 15m 0 e m 0

x 0 x 0

x 3 x 3m 9 e m 9

x 3 x 3

x 7 x 7m 7 e m 7

x 1 x 1

x 17 x 2m 0 e

x 2 x 17

1 2

2 1

1 2

2 1

m 0

x 5 x 5m 25 e m 25

x 5 x 5

x 9 x 3m 27 e m 27 S 0, 7, 9, 25, 27

x 3 x 9

17. Demonstração

18.

3

2 3

6

2 3 3 2 2

2 3 3 2 2

7 xy 3 xy 4

x y 20

x y S 7P 3 P 4

xy P S 20

P 1P 0 7P 3P 4 3P 7P 4 0 P 1 3P 4P 4 0

P 2

P 1P 0 7P 3P 4 3P 7P 4 0 P 1 3P 4P 4 0

P 2

x y 20 x 10 3 11 y 10 3 11e

xy 1 y 10 3 11 x

10 3 11

e

x y 20 x 16 y 4e

xy 64 y 4 x 16

19.

a)

2 2m e x

3 3

b)

c)

m 4 ou m 0

Page 146: Matemática Para Concursos Militares - Volume1

Página | 146

20.

a)

A (4,0) e y x 4

b)

1 1m ou m

20 5

21.

5 h 1

CAPÍTULO 10 – FUNÇÃO MODULAR

NÍVEL A 1. B

2

2 2

2

6 2x 3x 0 1 2x 3x 5 5 1 2x 3x 5

4 2x 3x 0

1 19 1 191 19 1 19x

x3 33 3

x IR

NÍVEL B

1. C

2. A

3. C

4. B

5. D

2 2

2

3 2x4 3 2x 4 2 x 9 12x 4x 64 64x 16x

2 x

11 512x 76x 55 0 x ou x

2 6

6. E

7. E

8. B

NÍVEL C

1. E

2. A

3. D

4. A

5. E

6. A

Page 147: Matemática Para Concursos Militares - Volume1

Página | 147

CAPÍTULO 11 – FUNÇÃO EXPONENCIAL

NÍVEL A

1. D

2. C

3. B

4. A

5. D

6. C

7. D

8. C

9. B

10. B

11. C

12. C

13. C

14. A

15. E

16. C

17. DEMONSTRAÇÃO

NÍVEL B 1. B

2. D

3. D

4. A

5. D

6. C

7. A

8. B

9. A

10. B

11. E

12. B

13. A

14. A

15. D

16. C

17. D

18. D

19. C

20.

x

x

f : IR IR

x f (x) 3

ou

f : IR IR

1x f (x)

3

NÍVEL C

1. D

2. D

Page 148: Matemática Para Concursos Militares - Volume1

Página | 148

3. E

4. A

5. C

6. C

7.

2 1S ou

3 3

8.

1 aS , , a 0 e a 1

a 1 a 1

CAPÍTULO 12 – FUNÇÃO LOGARITMO

NÍVEL A

1. B

2. E

3. C

4. A

5. A

6. C

7. D

8. A

9. D

10. D

11. A

12. C

13. A

14. D

15. C

16. B

17. C

18. C

19. B

20. B

21. C

22. A

23. A

24. E

25. D

26. A

27. D

28. B

29. A

30. A

31. A

32. 6

33. B

34. 1 3a 2b

5 5a 5b

35.

3

13 1log N

2 3

13log N

2 3

Page 149: Matemática Para Concursos Militares - Volume1

Página | 149

NÍVEL B

1. D

2. \

3. D

4. A

5. ANULADA

6. ANULADA

7. D

8. C

9. B

10. C

11. B

12. D

13. C

14. D

15. C

16. C

17. A

18. D

19. A

20. B

21. B

22. C

23. A

24. E

25. E

26. B

27. .,926,034,SC

28. A

29. .,122

5,4S

30. .5IRt,t,3

5,

3

8,

3

31tS

31. B

32. B

33. A

34. B

35. D

36. C

37. 1P

38. .,13

1,

4

1S

39. X1nnnY2

XY2blogc

40. 5b

NÍVEL C

Page 150: Matemática Para Concursos Militares - Volume1

Página | 150

1. D

2. D

3. A

4. C

5. A

6. C

7. D

8. A

9. C

10. C

11. C

12. B

13. C

14. A

15. B

16. C

17. E

18. C

19. E

20. A

21. E

22. ,32.S

23. D

24.

)x1x(log)x(fx

IRIR:f

23

1

1

25. C

26. .,926,034,SC

27. C

28.

1xx

1xxln

2

1)x(gx

IRIR:g

1xxln4

1)x(hx

IRIR:h

2

2

24

29. E

30.

4,

66,

4S

31.

6

1S

32. D

33.

1,

5

1S

34. C

35. D

36. D

37. A

38. E

39. D

40. E

41. D

42. A

43. B

44. A

Page 151: Matemática Para Concursos Militares - Volume1

Página | 151

45. E

46. A

47. C

48. B

49. B

50. A

51. C

52. B

53. A

54. D

55. B

56. D

57. D

58. ANULADA

59.

2,2

1S1ab

IRk,k

1,kS1ab *

60. e,eS

61. A