materi anfis

Upload: rayendra

Post on 10-Feb-2018

242 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/22/2019 Materi Anfis

    1/33

  • 7/22/2019 Materi Anfis

    2/33

    Summary

    Introduction

    ANFIS Architecture Hybrid Learning Algorithm

    ANFIS as a Universal Approximatior

    Simulation Examples

    Lo ica Nebulosa . 2/

  • 7/22/2019 Materi Anfis

    3/33

    Introduction

    ANFIS: Artificial Neuro-Fuzzy Inference Systems

    ANFIS are a class of adaptive networks that arefuncionally equivalent to fuzzy inference systems.

    ANFIS represent Sugeno e Tsukamoto fuzzy

    models. ANFIS uses a hybrid learning algorithm

    Lo ica Nebulosa . 3/

  • 7/22/2019 Materi Anfis

    4/33

    Sugeno Model

    Assume that the fuzzy inference system has two

    inputs xandy and one output z. A first-order Sugeno fuzzy model has rules as the

    following:

    Rule1:If xis A1 andy is B1, then f1=p1x+q1y+r1

    Rule2:

    If xis A2 andy is B2, then f2=p2x+q2y+r2

    Lo ica Nebulosa . 4/

  • 7/22/2019 Materi Anfis

    5/33

    Sugeno Model - I

    x

    X

    A1

    A2

    y

    X

    B1

    B2

    W1

    W2

    f1=p1x+q1y+r1 f2=p2x+q2y+r2 f=w1.f1+w2.f2

    w1+w2

    Y

    Y

    Lo ica Nebulosa . 5/

  • 7/22/2019 Materi Anfis

    6/33

    ANFIS Architecture

    A1

    A2

    x

    y

    B1

    B2

    Prod

    Prod

    Norm

    Norm

    Layer1 Layer2 Layer3

    W1

    W2

    x y

    x y

    Sum

    W1f1

    W1f2

    f

    Layer4 Layer5

    Lo ica Nebulosa . 6/

  • 7/22/2019 Materi Anfis

    7/33

    Layer 1 - I

    Ol,i is the output of the ith node of the layer l.

    Every node iin this layer is an adaptive node witha node functionO1,i=Ai(x)fori= 1, 2,or

    O1,i=Bi2(x)fori= 3, 4 x(ory) is the input node iandAi (or Bi2) is a

    linguistic label associated with this node

    Therefore O1,i is the membership grade of a fuzzyset(A1, A2, B1, B2).

    Lo ica Nebulosa . 7/

  • 7/22/2019 Materi Anfis

    8/33

    Layer 1 - II

    Typical membership function:

    A(x) = 1

    1 +|xciai |2bi

    ai, bi, ci is the parameter set. Parameters are referred to as premise parameters.

    Lo ica Nebulosa . 8/

  • 7/22/2019 Materi Anfis

    9/33

    Layer 2

    Every node in this layer is a fixed node labeled

    Prod. The output is the product of all the incoming

    signals.

    O2,i=wi=Ai(x)Bi(y), i= 1, 2 Each node represents the fire strength of the rule

    Any other T-norm operator that perform the AN Doperator can be used

    Lo ica Nebulosa . 9/

  • 7/22/2019 Materi Anfis

    10/33

    Layer 3

    Every node in this layer is a fixed node labeled

    Norm. Theith node calculates the ratio of the ith rulets

    firing strenght to the sum of all rulets firing

    strengths. O3,i=wi =

    wiw1+w2

    , i= 1, 2

    Outputs are called normalized firing strengths.

    Lo ica Nebulosa . 10/

  • 7/22/2019 Materi Anfis

    11/33

    Layer 4

    Every node iin this layer is an adaptive node with

    a node function:O4,1=wifi=wi(px+qiy+ri)

    wi is the normalized firing strenght from layer 3. {pi, qi, ri}is the parameter set of this node.

    These are referred to as consequent parameters.

    Lo ica Nebulosa . 11/

  • 7/22/2019 Materi Anfis

    12/33

    Layer 5

    The single node in this layer is a fixed node

    labeledsum, which computes the overall output asthe summation of all incoming signals:

    overall output=O5,1=

    iwifi=

    iwifiiwi

    Lo ica Nebulosa . 12/

  • 7/22/2019 Materi Anfis

    13/33

    Alternative Structures

    There are other structures

    A1

    A2

    x

    y

    B1

    B2

    Prod

    Prod

    Layer1 Layer2 Layer3

    W1

    W2

    x y

    x y

    Sum

    W1f1

    W1f2

    f

    Layer4 Layer5

    W1f1+W2f2

    /

    Sum

    Lo ica Nebulosa . 13/

  • 7/22/2019 Materi Anfis

    14/33

    Learning Algorithm

    Lo ica Nebulosa . 14/

  • 7/22/2019 Materi Anfis

    15/33

    Hybrid Learning Algorithm - I

    The ANFIS can be trained by a hybrid learning

    algorithm presented by Jang in the chapter 8 ofthe book.

    In the forward pass the algorithm uses

    least-squares method to identify the consequentparameters on the layer 4.

    In the backward pass the errors are propagated

    backward and the premise parameters areupdated by gradient descent.

    Lo ica Nebulosa . 15/

  • 7/22/2019 Materi Anfis

    16/33

    Hybrid Learning Algorithm - II

    Forward Pass Backward PassPremise Parameters Fixed Gradient Descent

    Consequent Parameters Least-squares estimator Fixed

    Signals Node outputs Error signals

    Two passes in the hybrid learning algorithm for ANFIS.

    Lo ica Nebulosa . 16/

  • 7/22/2019 Materi Anfis

    17/33

    Universal Aproximator

    Lo ica Nebulosa . 17/

  • 7/22/2019 Materi Anfis

    18/33

    ANFIS is a Universal Aproximator

    When the number of rules is not restricted, a

    zero-order Sugeno model has unlimitedapproximation power for matching any nonlinearfunction arbitrarily well on a compact set.

    This can be proved using the Stone-Weierstrasstheorem.

    LetDbe a compact space of Ndimensions, andlet Fbe a set of continuous real-valued functionsonDsatisfying the following criteria:

    Lo ica Nebulosa . 18/

  • 7/22/2019 Materi Anfis

    19/33

    Stone-Weierstrauss theorem - I

    LetDbe a compact space of Ndimensions, and

    let Fbe a set of continuous real-valued functionsonDsatisfying the following criteria:

    Indentity function: The constant f(x) = 1is in F.

    Separability: For any two points x1=x2 inD, there is anf inFsuch that f(x1)=f(x2).

    Algebraic closure: Iffandg are any two functions in F,then f g andaf+bg are in Ffor any two realnumbers aandb.

    Lo ica Nebulosa . 19/

  • 7/22/2019 Materi Anfis

    20/33

    Stone-Weierstrauss theorem - II

    Then Fis dense on C(D), the set of continuous

    real-valued functions onD. For any >0and any function g inC(D), there is a

    function f inFsuch that|g(x)f(x)|< for allx

    D.

    The ANFIS satisfies all these requirements.

    Lo ica Nebulosa . 20/

  • 7/22/2019 Materi Anfis

    21/33

    Anfis and Matlab

    Lo ica Nebulosa . 21/

  • 7/22/2019 Materi Anfis

    22/33

    Matlab

    It is possible to use a graphics user interface

    Command anfisedit.

    It is possible to use the command line interface orm-file programs.

    There are functions to generate, train, test and use

    these systems.

    Lo ica Nebulosa . 22/

  • 7/22/2019 Materi Anfis

    23/33

    ANFIS gui

    Lo ica Nebulosa . 23/

  • 7/22/2019 Materi Anfis

    24/33

    Applying

    Initializing

    Training Testing

    Using

    Lo ica Nebulosa . 24/

  • 7/22/2019 Materi Anfis

    25/33

    Initializing - GENFIS1 - 1

    FIS = GENFIS1(DATA)generates asingle-output Sugeno-type fuzzy inference system(FIS) using a grid partition on the data (noclustering).

    FISis used to provide initial conditions forposterior ANFIS training.

    DATAis a matrix with N+1 columns where the firstN columns contain data for each FISinput, andthe last column contains the output data.

    Lo ica Nebulosa . 25/

  • 7/22/2019 Materi Anfis

    26/33

    Initializing - GENFIS1 - 2

    By default GENFIS1uses two gbellmftypemembership functions for each input.

    Each rule generated has one output membershipfunction, which is of type linear by default.

    It is possible to define these parameters usingFIS = GENFIS1(DATA, NUMMFS, INPUTMF,

    OUTPUTMF)

    fis = genfis1(data, [3 7],char(pimf, trimf));

    Lo ica Nebulosa . 26/

  • 7/22/2019 Materi Anfis

    27/33

    Initializing - GENFIS1 - 3

    data = [rand(10,1) 10*rand(10,1)-5 rand(10,1)];

    fis = genfis1(data, [3 7], char(pimf,trimf));

    [x,mf] = plotmf(fis,input,1);

    subplot(2,1,1), plot(x,mf);

    xlabel(input 1 (pimf));

    [x,mf] = plotmf(fis,input,2);subplot(2,1,2), plot(x,mf);

    xlabel(input 2 (trimf));

    Lo ica Nebulosa . 27/

  • 7/22/2019 Materi Anfis

    28/33

    Initializing - GENFIS1 - 4

    0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.2

    0.4

    0.6

    0.8

    1

    input 1 (pimf)

    2 1 0 1 2 3 40

    0.2

    0.4

    0.6

    0.8

    1

    input 2 (trimf)

    Lo ica Nebulosa . 28/

  • 7/22/2019 Materi Anfis

    29/33

    Initializing - GENFIS2

    GENFIS2generates a Sugeno-type FIS usingsubtractive clustering.

    GENFIS2extracts a set of rules that models thedata behavior.

    The rule extraction method first determines thenumber of rules and antecedent membershipfunctions and then uses linear least squaresestimation to determine each rules consequentequations.

    Lo ica Nebulosa . 29/

  • 7/22/2019 Materi Anfis

    30/33

    Training

    ANFISuses a hybrid learning algorithm to identifythe membership function parameters ofsingle-output, Sugeno type fuzzy inferencesystems (FIS).

    There are many ways of using this function.

    Some examples: [FIS,ERROR] = ANFIS(TRNDATA)

    [FIS,ERROR] =ANFIS(TRNDATA,INITFIS)

    Lo ica Nebulosa . 30/

  • 7/22/2019 Materi Anfis

    31/33

    Using

    EVALFISevaluates a fuzzy inference system.

    Y = EVALFIS(U,FIS)simulates the FuzzyInference System FIS for the input data U andreturns the output data Y.

    Lo ica Nebulosa . 31/

  • 7/22/2019 Materi Anfis

    32/33

    Example

    run exemplo06_03.m

    Lo ica Nebulosa . 32/

  • 7/22/2019 Materi Anfis

    33/33

    The End

    Lo ica Nebulosa . 33/