materials production; energy used and carbon...

84
Materials Production; energy used and carbon emitted T. G. Gutowski 2.83/2.813

Upload: phungkiet

Post on 11-Apr-2018

225 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

Materials Production;

energy used and carbon emitted T. G. Gutowski

2.83/2.813

Page 2: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

2

Readings

1. Exergy Accounting, Five Metals Industries,

(Ayres, Ayres and Masini, 2006)

2. Ellingham Diagrams

3. Thermodynamics of Separation (Materials

Separation and Recycling, Ch 4 Gutowski 2011)

4. Scale/Improvements (Gutowski, Sahni, Allwood,

Ashby and Worrell, 2013)

Page 3: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

3

Outline

1. Exploration and Mining

2. Smelting (liquid metal) – Iron (Fe)

– Aluminum (Al)

– Copper (Cu)

– Gold (Au)

3. Liquid metal to sheet

4. Efficiency improvements

5. Prices, saturation and new materials

Page 4: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

4

World Energy and Carbon

IEA 2010

Page 5: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

5

The Role of Materials in

Manufacturing

Final Energy Carbon Dioxide

Page 6: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

6

What’s in the crust

Page 7: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

7

Diverse Sources of Uranium

Chapman & Roberts

Page 8: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

8

What’s at the mine

Chapman

Page 9: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

9

“McKelvey Box”

Page 10: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

10

QuickTime™ and a decompressor

are needed to see this picture.

Gold ~ 250 GJ/kg

Ashby 2009

Page 11: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

11

Geo-physical

processes

Mining &

concentrating

Materials

production

Crustal composition

Concentrated ore

Pure ore

Pure metal/mineral

Other inputs

Other inputs

Other inputs

Exergy Analysis

gives us the minimum

work for Mat’l Prod

Page 12: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

See Thermodynamics of

Separation

Separate slides, and “Materials

Separation and Recycling”, TG Ch 4

Page 13: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

14

For Ideal Mixtures

Bmixture Ni bi RT0 Ni ln xi

Bmixture (N1 1)b1 Ni2

bi RT0(N1 1)ln x1 RT0 Ni2

ln xi

Bmixture

B’mixture

B1

Wmin = - RT0lnx1

Page 14: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

15

“Separation”

wmin T0R xii1

n

ln xi

Page 15: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

16

))xln(NxlnN(RTW)N(

mini 1210

))1ln(ln)1(( 210

)1(

min1 xNxNRTW

N

wmin, 1 T0R(ln1

x1

)

“Extraction”

Page 16: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

17

Extraction from the crust: Fe2O3

Extracting Fe2O3 from x 1.3x103(crust) to x 1

exo ToR ln

1

1.3x103

exo 298.2K 8.314

J

molK ln

1

1.3103 16.5

kJ

mol

Note: R = k Navo (Boltzmann’s constant X Avogadro’s number)

Page 17: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

18

Extraction from the crust: Gold

Extracting Au from x 1.36x109 (crust) to x 1

exo ToR ln

1

1.36x109

exo 298.2K 8.314

J

molK ln

1

1.36 109 50.6

kJ

mol

Szargut’s Table updated by Rivero & Garfias Energy (2006); was 50.5

Page 18: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

19

“Sherwood Plot”

Page 19: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

20

Chapman and

Roberts ‘83

Page 20: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

21

Cost Scaling for Metals

kv mp cv > kc mp, or kv > kc/cv

where

kv is the market value of the target material ($ per kg of target material),

mp is the total mass of ore processed (kg of ore),

cv is the concentration of the target material in the ore (kg of target

material per kg of ore), and

kc is the cost of processing the ore ($ per kg of ore).

Page 21: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

22

Grübler 2004

Page 22: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

23

energy requirements for mining and

milling, possible future trends

Chapman and Roberts p 113 & 116

underground ~ 1000/g (MJ/t metal)

open pit ~ 400/g (MJ/t metal)

Page 23: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

24 Gutowski, Sahni, Allwood, Ashby, Worrell, 2013

Importance of Dilution

Page 24: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

25

Eart

h’s

Cru

st

Compound

Formula Mass

Composition

Silica SiO2 59.71%

Alumina A12O3 15.41%

Lime CaO 4.90%

Magnesia MgO 4.36%

Sodium oxide Na2O 3.55%

Iron(II) oxide FeO 3.52%

Potassium oxide K2O 2.80%

Iron (III) oxide Fe2O3 2.63%

Water H2O 1.52%

Titanium dioxide TiO2 0.60%

Phosphorus

pentoxide

P2O5 0.22%

Total 99.22%

Density ≈

2.70g/cm3

Page 25: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

26

CO2 from Materials Production

• Reduction of oxides with carbon

2Fe2O3 + 3C 4Fe + 3CO2

2 Al2O3 + 3 C 4 Al + 3 CO2

• Calcination of limestone in cement

production

CaCO3 + heat CaO + CO2

Page 26: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

27

Page 27: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

28

Gutowski, Sahni, Allwood, Ashby, Worrell, 2013

However, most CO2 comes from fuel use

Page 28: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

29

Smelting (Liquid Metal)

1. Iron - carbon reduction

2. Aluminum - electrolytic process

3. Copper - sulfide ores & recycling

4. Gold - the effects of dilution

refs Ayres 2006 and Mudd 2007

Page 29: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

30

Iron: Important oxide ores

Hematite: Fe2O3

Magnetite: Fe3O4

Sources: http://en.wikipedia.org/ &

http://resourcescommittee.house.gov/subcommittees/emr/usgsweb/materials/images/imgTaconite.jpg

Taconite

Page 30: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

31

Page 31: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

32

Hibbing MN taconite mine

Page 32: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

34

Blast Furnace

Source: http://www.ssabox.com/news/Imagebank/blast%20furnace4.jpg

Page 33: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

35

Iron Blast Furnace

Materials required:

1. Iron Ore

2. Carbon (coke is used both as fuel and reducing agent).

3. Hot air (hot enough to ensure combustion of the fuel).

4. Flux (removes earthy matter – turns into slag)

5. Slag (combination of calcium carbonate, silica, alumina and other impurities).

Source: http://www.yourdictionary.com/images/ahd/jpg/A4blfurn.jpg

Page 34: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

36

Reactions taking place in the furnace:

• 2 C + O2 2 CO (1300 °C)

• CaO + SiO2 CaSiO3 (1200 °C)

• FeO + CO Fe + CO2 (800 °C - 1000 °C)

• CaCO3 CaO + CO2 (800 °C - 1000 °C)

• CO2 + C 2 CO (800 °C)

• Fe3O4 + CO 3 FeO + CO2 (600 °C)

• 3 Fe2O3 + CO 2 Fe3O4 + CO2 (450 °C)

Page 35: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

37

Steel Exergy (US)

Ayres, Ayres and Masini, 2006

Page 36: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

38

Steel Summary (US)

Ayres, Ayres and Masini, 2006

Page 37: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

39

Aluminum It is the most abundant metal (7% of the earth’s crust)

but one of the more energy intensive metals to refine

Aluminum occurrence:

Bauxite : Al2O3·2H20 Cryolite: Na3AlF6

+ many silicates such as clay: H2Al2(SiO4)2·H20

Sources: http://en.wikipedia.org/ & http://www.musee.ensmp.fr/mineral//1021x.jpg

Page 38: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

40

Aluminum Production:

1. Bayer Process: obtain Alumina (Al2O3) from Bauxite.

A. Extraction: dissolve oxides with hot

solution of NaOH.

Al(OH)3 + Na+ + OH- Al(OH)4

- + Na+

B. Precipitation: reverse of above, but

controlling crystal formation.

Al(OH)4- + Na+ Al(OH)3 + Na+ + OH-

C. Calcination: water is driven off Al(OH)3

to form alumina (aluminum oxide).

Al(OH)3 ---> Al2O3 + 3 H2O

Source: http://www.world-aluminium.org

Page 39: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

41

2. Hall-Heroult Process (Electrolytic Reaction).

Source: http://www.world-aluminium.org

Prebake Cell

A. Al2O3 is dissolved in molten

cryolite (Na3AlF6)

B. As the current passes

through this mixture, (4-5

volts, 50,000-280,000

amperes) aluminum ions

reduce to molten aluminum

at the cathode, and oxygen

is produce at the anode

reacting with carbon to

produce CO2.

2 Al2O3 + 3 C 4 Al + 3 CO2

Prebake

Anode

Page 40: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

42

Aluminum Exergy (US)

Ayres, Ayres and Masini, 2006

Page 41: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

43

Aluminum Summary (US)

Ayres, Ayres and Masini, 2006

Page 42: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

Main Ore Types for Copper

globally 90% sulfides, 10% oxides

Sources: http://en.wikipedia.org/

Cu2S: Chalcocite Cu20: Cuprite

Cu2CO3 (OH)2: Malachite

CuFeS2: Chalcopyrite

(50% of Copper Production)

Page 43: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

45

Source: http://encarta.msn.com/media_461533479_761561391_-1_1/Open-Pit_Copper_Mine_Utah.html

Open-Pit Copper Mine, Utah

Page 44: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

46

Chuquicamata, Chile

Page 45: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

47

drilling rig in underground mine in

the Głogow area of Poland C

opper

concentr

ations in t

his

are

a a

re a

bout

2%

Page 46: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

48

Copper Ore Grades in the US

Page 47: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

49

Historical Costs for Copper

Tilton, 2003

Page 48: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

50

Głogow* Copper Smelter

*pronounced Gwogov

Page 50: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

52

1) Copper Ore (~ 1%) → Concentrate (~20 to 35%)

• milling, flotation, separation

2) Roasting and Smelting

Copper Smelting Process

CuFeS2

Cu2S (matte)

2FeOSiO2 (slag)

0.34 -1% Cu

Cu (blister)

~98% Cu

Page 51: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

53

3) Roasting and Smelting

2FeS+3O2 2FeO+2SO2

xFeO + ySiO2 (FeO)x·(Si02)y - slag

2Cu2S + 3O2 2Cu2O + 2SO2

Cu2S + 2Cu2O 6Cu + SO2 (blister copper ~98%)

4) Electrolytic Refining (99.99%)

sulfuric acid electrolyte

anode mud (1:100) contains (Cu, Ag, As, Se, Bi, ..Au, Te…)

Copper Smelting Process

Page 52: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

54 Source: http://encarta.msn.com/media_461547490_761561391_-1_1/Smelting_Copper.html

Page 53: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

55

electro-refining of copper

Cu Ag Au Se Te As Sb Bi Fe Ni

20 5 0.5 5 1 5 1 3 0.25 0.05

Anode slime analysis (%) see Greadel et al (2002)

Page 54: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

56

“The Metal Wheel”

Page 55: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

57

Copper Summary (US)

Ayres, Ayres and Masini, 2006

Page 56: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

58

Copper Mass Flows (US)

Ayres, Ayres and Masini, 2006

Page 57: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

59

Copper Exergy (US)

Ayres, Ayres and Masini, 2006

Page 58: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

60

Tailings pond at Głogow, Poland

about 7 km across

Page 59: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

61

Estimated concentration of tailings

~ 0.2%, these tailings will be mined in the future

Page 60: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

62

Gold Production

Placer Gold

Metal Slimes from Cu Production Open Pit Nevada

Page 61: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

63

Open Pit Mining

Open Pit Mine in Nevada

Ore grades (ppm) Vs Time

Ref Gavin Mudd 2007

Page 62: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

64

Open Pit Process

• Milling (grinding)

• Froth floatation

• Sodium Cyanide leaching

• Precipitation

• Extraction (Carbon in Pulp)

4 Au + 8 NaCN + O2 + 2 H2O → 4 Na[Au(CN)2] + 4 NaOH

2 Au(CN) + Zn = 2Au + Zn(CN)4-2

Page 63: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

65

Cerro Vanguardia Gold and Silver Mine,

Argentina

Page 64: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

66

Energy

Page 65: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

67

Water

Page 66: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

68

Page 67: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

69

Page 68: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

70

Summary

Page 69: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

71

Liquid Metal to sheet stock

Page 70: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

72

Material Flow Diagrams

Allwood, Cullen & Milford ES&T, 2010

Page 71: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

73

Energy intensity of downstream processes

Page 72: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

74

Down stream yield losses and embodied energy

Page 73: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

75

And CO2

Page 74: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

76

Steel dominates

(Ashby, 2011)

Page 75: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

77

World Steel Production 1900-2010

World Steel Association

Peter Marsh, 2012

Page 76: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

78

Page 77: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

79 Data taken from Ashby 2009

Page 78: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

80

Page 79: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

81 (DOE)

Page 80: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

82

Trends in energy intensity

IEA

Aluminum: Hall-Heroult Process

Page 81: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

83

Material Prices

Figures from Ashby 2009

Page 82: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

84

Apparent Saturation in Steel Stocks

Muller 2001

Page 83: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

85

New Materials

Page 84: Materials Production; energy used and carbon emittedweb.mit.edu/2.813/www/ClassSlides2014/MaterialsProduction2014.pdffrom Materials Production • Reduction of oxides with carbon 2Fe

88

2 orders

of mag.

4 to 5 orders of mag.