math 213 a – discrete mathematics for computer science dr. ( mr.) bancroft

35
MATH 213 A – Discrete Mathematics for Computer Science Dr. (Mr.) Bancroft

Upload: ilyssa

Post on 22-Feb-2016

56 views

Category:

Documents


0 download

DESCRIPTION

MATH 213 A – Discrete Mathematics for Computer Science Dr. ( Mr.) Bancroft. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

MATH 213 A – Discrete Mathematics for Computer Science

Dr. (Mr.) Bancroft

Page 2: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

The inhabitants of the island created by Smullyan are peculiar. They consist of knights and knaves. Knights always tell the truth and knaves always lie. You encounter two people A and B. Determine, if possible, what A and B are (either a knight or a knave) from the way they address you.

A says “I am a knave or B is a knight.”

B says nothing.

Page 3: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

1.1 Logic

Logic-

Proposition-

• Notation:

• Negation:

Page 4: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

Truth Tables

Page 5: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

Conjunction of p and q:

Disjunction of p and q:

Page 6: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

Exclusive or:

Implication/Conditional:

Biconditional:

Page 7: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft
Page 8: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

Operations on Implications:

Converse:

Contrapositive:

Inverse:

Page 9: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

More complicated truth tables

Page 10: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

Logic and Bit Operators

Page 11: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

1.2 Propositional Equivalences (Several Definitions):

Compound proposition-

Tautology-

Contradiction-

Contingency-

Page 12: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

Logical Equivalence

Page 13: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

Using Truth Tables to Demonstrate Logical Equivalence

Page 14: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

Show that and are logically equivalent.

Page 15: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

Some Commonly used Logical Equivalences

Page 16: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

Other Commonly used Logical Equivalences

Page 17: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

De Morgan’s Laws

Page 18: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

Let’s revisit the knight and knave problem:

A says “I am a knave or B is a knight.”B says nothing.

Page 19: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

Arguments using logical equivalence“Chain” of equivalences (recall the way you proved trig identities)Examples:

1. Prove is a tautology.

Page 20: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

2. Show that and are logically equivalent (again), this time using equivalences from the tables.

Page 21: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

Using a Computer to Find Tautologies

Practical only with small numbers of propositional variables.

How many rows does the truth table contain for a compound proposition containing 3 variables?

5 variables?

10 variables?

100 variables?

Page 22: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

1.3 – Predicates and Quantifiers

Is “” a proposition?

Predicates, or Propositional functions

Page 23: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

Note that if x has no meaning, then P(x) is just a form.

The domain of x is …

There are two ways to give meaning to a predicate P(x):

Page 24: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

The Universal QuantifierThe universal quantification of the predicate P(x) is the proposition which states that…

In symbols,

Example: (Let the domain of discourse be all real numbers)

Page 25: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

The Existential QuantifierThe existential quantification of the predicate P(x) is the proposition which states that…

In symbols,

Example: (Let the universe of discourse be all people)

Page 26: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

Looping to Determine the Truth of a Quantified Statement

Page 27: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

Free and Bound Variables

“Scope” of a quantifier

Page 28: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

Relationship with Conjunction and Disjunction

Page 29: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

Negating a Quantified Statement

Page 30: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

Translating into English Sentences

P(x) = “x likes to fly kites”Q(x,y) = “x knows y”

))(),(( xPxJoanQx

L(x,y) = “x likes y”

)),(),(( CalvinxLxSusieLx

Page 31: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

Translating from English Sentences“All cats are gray”

“There are pigs which can fly”

Page 32: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

Logic Programming

sibling(X,Y) :- parent(Z,X), parent(Z,Y), X \= Y.brother(X,Y) :- sibling(X,Y), male(X).sister(X,Y) :- sibling(X,Y), female(X).male(chris).male(mark).female(anne).female(erin).female(jessica).female(tracy).parent(chris,mark).parent(anne,mark).parent(chris,erin).parent(anne,erin).parent(chris,jessica).parent(anne,jessica).parent(chris,tracy).parent(anne,tracy).

?sibling(erin,jessica)?sibling(mark,chris)

?parent(Z,tracy)

Page 33: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

Section 1.4 – Nested Quantifiers

)())1(0(

yyxyxxyyxx

Examples:

Order of quantification matters!Example: M(x,y) = “x is y’s mother”

),(),(yxyMxyxxMy

Page 34: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

Another Example

)),()((

)),()((

yxMySxy

yxxMySy

Translate each of these, where M is as above and S(x) = “x is a student” …

Page 35: MATH 213  A  – Discrete Mathematics for Computer Science Dr. ( Mr.)  Bancroft

English to First-Order LogicLet L(x,y) = “x loves y”. Translate…

“Everybody loves somebody.”

“There are people who love everybody”

“All students love each other”