mathcad - 1000 kl tank1

Upload: zulfikar-n-joel

Post on 03-Jun-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Mathcad - 1000 KL Tank1

    1/23

    CONTENTS

    1. GENERAL

    1.1 Outline of Structure

    1.2 Unit of Measurement1.3 Computer Software

    1.4 Codes & Standards

    1.5 Used Material & Allowable Stress

    1.6 Other Requirement Data

    2. PRELIMINARY

    2.1 Layout

    2.2 Dimension

    3. LOADING DATA

    3.1 Dead Load

    3.2 Equipment Load

    3.3 Wind Load

    3.4 Seismic Load

    3.5 Load Combination

    4. FOUNDATION DESIGN

    4.1 Bearing Capacity

    4.2 Settlement

    4.3 Sliding Check

    4.4 Overturning Check

    4.5 Check Tension

    5. FOUNDATION REINFORCEMENT

    ATTACHMENT

    1. Loading Data 4. AWWA standard 2005 Reference2. Soil Data 5. Circumferential Reference3. Engineering Drawing 6. Immediate sett lement (Bowles) Reference

  • 8/12/2019 Mathcad - 1000 KL Tank1

    2/23

    1. GENERAL

    1.1 Outline of Structure

    Project : PONDASI TANGKI SUMBAGUT

    Client : PT. PERTAMINA (Persero)

    Location : TBBM Dumai, Riau Kepulauan, Indonesia

    Equipment : Oil TankFoundation Type: Ring Beam Foundation (Shallow)

    1.2 Unit of Measurement

    Unit of measurement in design shall be in metric system.

    1.3 Computer Software

    Computer software used in design analysis are as follows :

    - MathCad

    1.4 Codes & Standards

    - ACI 318 1999

    Building COde for Structural Concrete

    - SNI 02-1726-2002

    Earthquake Resistant Code for Building in Indonesia

    - Soil Investigation Report & Recommendation

    1.5 Used Material & Allowable Stress

    Compressive concrete strength : fc 250 kg cm2

    Yield strength of rebar : fy 4000 kg cm2

    Unit weight of reinf. concrete : c 2400 kg m3

    Unit weight of soil : soil 1600 kg m3

    Unit weight of sand /filler : filler 1800 kg m3

    Unit weight of water : w 1000 kg m

    3

    Unit weight of gravel : gravel 1800 kg m3

  • 8/12/2019 Mathcad - 1000 KL Tank1

    3/23

    1.6 Other Requirement Data

    Based on soil investigation report :

    Ground water table : 8.4 m below ground level

    Allowable Bearing Capacity : qall 72.5 tonne m2

    Elev 7.00( ) BH 06

    Based on site condition after excavation there is andesite rock at elevation +7.00

    Assume bearing capacity : qall 72.5 tonne m 2

  • 8/12/2019 Mathcad - 1000 KL Tank1

    4/23

    2. PRELIMINARY

    2.1 Layout

    2.2 Dimension

    Height of Tank H 10.97 m

    Diameter of Tank D 11.64 m

    Diameter of Bolt location db D 0.1 m db 11.74 m

    Inner diameter of Ring Wall di D 400 mm di 11.24 m

    Outer diameter of Ring Wall do D 500 mm do 12.14 m

    Inner Diameter of Foundation dfi D 1500 mm dfi 10.14 m

    Outer Diameter of Foundation dfo D 1500 mm dfo 13.14 m

    Height of Ring Wall (h pad) hw 0.8 m hw 0.8 m

    Thickness of Foundation hf 0.5 m

    Base Fdn Area ( Empty) Ate 0.25 dfo2

    dfi2 Ate 54.852 m 2

    Base Fdn Area (Operational) Ato 0.25 dfo2 Ato 135.607 m 2

    Perimeter of Fdn : kt dfo kt 41.281 m

    Height soil hs 1 m

  • 8/12/2019 Mathcad - 1000 KL Tank1

    5/23

    3. LOADING DATA

    3.1 Dead Load

    Ring beam : Wbr 0.25 do2 di2 hw c Wbr 31.731 tonne

    Footing : Wf 0.25 dfo2 dfi2 hf c Wf 65.823 tonne

    Filler inside : Ws1 0.25 di2 16.8 m( )2 filler hw hf ( ) Ws1 286.522 tonne

    Filler outside : Ws2 0.25 20.8 m( )2

    do2 hw hf ( ) filler Ws2 524.261 tonne

    Weight of Foundation : Wf Wbr Wf Ws1 Ws2 Wf 335.291 tonne

    3.2 Equipment Load

    weight of roof Wr 5 tonne

    weight of wall of tank Ws 42 tonne

    Self weight of tank (erection weight) We Wr Ws We 47 tonne

    Test weight (exclude tank weight) Wt 1170 tonne

    Operational weight (exclude tank weight) Wo 1125 tonne

    3.3 Wind Load

    Base on ANSI (Wind velocity 120 MPH)

    Kz 0.85 Kzt 1 V 120km

    hr I 1

    Q 0.613 Kz KztV s

    m

    2

    IN

    m2

    Q 578.944N

    m2

    G 0.85 C 0.7 A 0.5 D H A 200.576 m

    2

    Wind load : Pw Q G C A Pw 7045.514 kg

    Moment at tank base due to wind load : Mw PwH

    2Mw 38.645 tonne m

  • 8/12/2019 Mathcad - 1000 KL Tank1

    6/23

    3.4 Seismic Load

    Seismic parameter (Zone 4, Hard soil) : C 0.6 SDS C

    Sai SDS I 1.5 R 3 (AWWA table 24 and table 28)

    Ai SaiI

    1.4 R Ai 0.214 Ac Ai

    Based on ANSI / AWWA 2005 (section 13.5.2) : (see attachment 4)

    overturning m oment at the bottom of shell do e to seismic:

    the design overturning moment at the bottom of the shell caused by horizontal design acceleration isthe SRSS combination of the impulsive and convective components and shall be determined by theeqation:

    Ms1 Ai Ws Xs Wr Hr Wi Xi( )[ ]2

    Ac Wc Xc( )2

    Xs

    for D/H >1.33Wt 62.4 G H

    D2

    4

    Wt 3457.7 tonne

    Wi tanh 0.866D

    H

    Wt

    0.866D

    H

    Wi 2263 tonne

    Wc 0.230D

    Htanh 3.67

    H

    D

    Wt Wc 1199 tonne

    Ws 92594 lb Xs1H

    2 Xs1 20.227 ft

    Wr 11023 lb Hr1 H Hr1 40.453 ft

    Xi1 0.375 HWi 4988118 lb Xi1 15.17 ft

    Wc 2643104 lb Xc1 1.0

    cosh 3.67H

    D

    1

    3.67H

    Dsinh 3.67

    H

    D

    HXc1 26.383 ft

    Ms1 Ai Ws Xs1 Wr Hr1 Wi Xi1( )[ ]2

    Ac Wc Xc1( )2

    Ms1 3099 tonne m

    Moment for Operational Condition at bottom of shell doe to seismic:

    Mo1 Ms1 Mo1 3099 tonne m

  • 8/12/2019 Mathcad - 1000 KL Tank1

    7/23

    overturning moment at the bottom of footing doe to seismic

    the design overturning moment at the bottom of footing caused by horizontal design acceleration is theSRSS combination of the impulsive and convective components and shall be determined by theeqation:

    Ms2 Ai Ws Xs Wr Hr Wi Xi Wf Xf ( )[ ]2

    Ac Wc Xc( )2

    Xs

    for D/H >1.33 Wt 62.4 G H D24

    Wt 3457.7 tonne

    Wi tanh 0.866D

    H

    Wt

    0.866D

    H

    Wi 2263 tonne

    Wc 0.230D

    Htanh 3.67

    H

    D

    Wt Wc 1199 tonne

    Xs2H

    2hw hf ( ) Xs2 24.492 ftWs 180779 lb

    Hr2 H hw hf ( ) Hr2 44.718 ftWr 22046 lb

    Xi2 0.375 H hw hf ( )Wi 4988118 lb Xi2 19.435 ft

    Wc 2643104 lb Xc2 1.0

    cosh 3.67H

    D

    1

    3.67H

    Dsinh 3.67

    H

    D

    H hw hf ( ) Xc2 30.648 f

    Wf 739191 lb Xf hw hf ( )

    2Xf 2.133 ft

    Ms2 Ai Ws Xs2 Wr Hr2 Wi Xi2 Wf Xf ( )[ ]2

    Ac Wc Xc2( )2

    Ms2 3904 tonne m

    Moment for Operational Condition at bottom of footing doe to seismic

    Mo2 Ms2 Mo2 3904 tonne m

    Soil Pressure for Seismic Condition

    friction angle : 16.4 deg

    surcharge load : q 1.00 tonne m2

    Cohession : c 2.4 tonne m2

    height of soil : hs 1m

  • 8/12/2019 Mathcad - 1000 KL Tank1

    8/23

    Coefficient of earth pressure at rest : Ko 1 sin ( ) Ko 0.718

    Earth pressure due to surcharge in Ground level

    P1 q Ko( ) P1 0.718 tonne m2

    Earth pressure from the back fill

    P2 soil Ko hs( ) P2 1.148 tonne m2 (assumed: c is neglected)

    The earth pressure during seismic is calculated as follow :

    During seismic load (internal friction angle of soil) = 0, Kp = 1, and the pressure in ultimatecondition. The nominal pressure = Ultimate pressure / Reduction factor

    R 1.6 (reduction factor)

    Earth pressure due to seismic in Ground level

    P31

    KoP1 P3 1 tonne m

    2

    Mo3 P3 hw hf ( ) 0.5 dohw hf ( )

    2Mo3 16.114 tonne m

    P41

    KoP2 P4 1.6 tonne m

    2

    Mo4 0.5 P4 hw hf ( ) 0.5 dohw hf ( )

    3Mo4 8.594 tonne m

    3.5 Load Combination

    1. 1.0 (Empty Condition)

    2. 0.75 (Empty Condition+Wind Condition)

    3. 1.0 (Operational Condition)

    4. 0.75 (Operational+Seismic Condition)

    5. 0.83 (Test Condition)

    4. FOUNDATION DESIGN

    4.1 Bearing Capacity

    Vertical load on ring beam:

    - vertical load due to tank & roof

    qt We qt 47 tonne

    - vertical load due to water

    qw 0.25 D( )2

    D 0.2 m( )2

    H w qw 72.824 tonne

  • 8/12/2019 Mathcad - 1000 KL Tank1

    9/23

    Width of Ring beam Bpdo di( )

    2Bp 0.45 m

    Area of Foundation Ap Ate Ap 54.852 m2

    Pressured on bottom of foundation

    empty condition qp1qt Wf

    Apqp1 6.969 tonne m

    2

    operational condition qp2qt qw Wf

    Apqp2 8.297 tonne m

    2

    Modulus of Base Tank :

    Statis Moment Ze dfo

    4dfi

    4 32 dfo( )

    Ze 143747 L

    4.1.1 Empty Tank Condition

    a). Bottom of Shell:

    Self Weight Tank

    qem1aWe

    Ateqem1a 0.857 tonne m

    2

    Status "Fdn Ok" qem1a( ) qallif

    "Fdn Not ok" otherwiseStatus "Fdn Ok"

    Self Weight Tank + Wind Load

    qem2a 0.75We

    Ate

    Pw H

    Ze

    qem2a 1.096 tonne m2

    Status "Fdn Ok" qem2a( ) qallif "Fdn Not Ok" otherwise Status "Fdn Ok"

    b). Bottom of Found ation :

    Self Weight Tank

    qem1bWe

    Ate

    Wf

    Ap

    qem1b 6.969 tonne m2

    Status "Fdn Ok" qem1b( ) qallif

    "Fdn Not ok" otherwiseStatus "Fdn Ok"

  • 8/12/2019 Mathcad - 1000 KL Tank1

    10/23

    Self Weight Tank + Wind Load

    qem2b 0.75We

    Ate

    Pw hw hf ( )

    Ze

    Wf

    Apqem2b 5.275 tonne m

    2

    Status "Fdn Ok" qem2b( ) qallif

    "Fdn Not Ok" otherwise Status "Fdn Ok"

    4.1.2 Operational Condition

    a). Bottom of Shell:

    Operational Weight of Tank

    qop1aWo We

    Ato

    qop1a 8.643 tonne m2

    Status "Fdn Ok" qop1a qallif

    "Fdn Not OK" otherwise Status "Fdn Ok"

    Operational weight + Seismic Load

    qop2a 0.75Wo We

    Ato

    Mo1

    Ze

    qop2a 22.653 tonne m2

    Status "Fdn Ok" qop2a qallif

    "Fdn Not Ok" otherwise Status "Fdn Ok"

    b). Bottom of Found ation :

    Operational Weight of Tank

    qop1bWo We Wf

    Ato

    qop1b 11.115 tonne m2

    Status "Fdn Ok" qop1b qallif

    "Fdn Not OK" otherwise Status "Fdn Ok"

    Operational weight + Seismic Load

    qop2b 0.75Wo We Wf

    Ato

    Mo2 Mo3 Mo4

    Ze

    qop2b 28.834 tonne m

    2

  • 8/12/2019 Mathcad - 1000 KL Tank1

    11/23

    Status "Fdn Ok" qop2b qallif

    "Fdn Not Ok" otherwise Status "Fdn Ok"

    4.1.3 Testing Condition

    a). Bottom of Shell:

    Test Weight

    qosa 0.83We Wt

    Atoqosa 21.451 tonne m

    2

    Status "Fdn Ok" qosa qallif

    "Fdn Not Ok" otherwise Status "Fdn Ok"

    b). Bottom of Found ation:

    Test Weight

    qosb 0.83 We Wt Wf Ato

    qosb 23.503 tonne m 2

    Status "Fdn Ok" qosb qallif

    "Fdn Not Ok" otherwise Status "Fdn Ok"

    Maximum soil pressure happen at Operasional condition

    qof max qem1a qem1b qem2a qem2b qop1a qop2a qop2a qop2b qosa qosb( )

    qof 28.834 tonne m2

    Status "Fdn Ok" qof qallif

    "Fdn Not Ok" otherwise Status "Fdn Ok"

    NOTES :

    The requirement bearing capacity at bottom of tank

    Qrequirement at bottom of shell: qop2a 22.653 tonne m2

    The requirement bearing capacity at bottom of footing

    Qrequirement at bottom of foundation: qop2b 28.834 tonne m2

  • 8/12/2019 Mathcad - 1000 KL Tank1

    12/23

    4.2 Settlement

    4.2.1 Immediate Settlement

    Assume : -Based on Teory Elasticity, Timoshenko and Goodier (1951)

    -Modified by Bowles (1987)

    -fleksible bottom of tank

    convert from circle area to square area

    B Ato0.5

    B 11.645 m

    assume average value of poisson ratio 0.33

    average elastic ity modulus Es 81100 tonne m2

    center point of tank side point of tank

    qcpWe Wo( )

    0.25 di2

    qst qp2

    qst 8.297 tonne m2

    qcp 11.812 tonne m2

    H hs H 1 m H 1 m

    Bc 0.5 B Bc 5.823 m Bs B Bs 11.645 m

    M 1 M 1

    Es 81100 tonne m2

    Es 81100 tonne m2

    H

    Bc0.172

    H

    Bs0.086

    mc 4 ms 2

    I1 0.028 I1s 0.009

    I2 0.061 I2s 0.041

  • 8/12/2019 Mathcad - 1000 KL Tank1

    13/23

  • 8/12/2019 Mathcad - 1000 KL Tank1

    14/23

    qst 8.297 tonne m2

    qst 8.137 10 4 N m2

    qcp 11.812 tonne m2

    qcp 1.1583 10 5 N m2

    qs max qst qcp( )

    Status "Over Consolidation" qs Pcif

    "Normal Consolidation" otherwise Status "Over Consolidation"

    Sc 0 m

    Total Settlement (St) = Immediate Settlement (Hs) + Consolidation Settlement (Sc)

    St Hc Sc

    St 0.0001781982 m

    4.3 Sliding Check

    P6

    qop2

    P4P1h1

    bp

    h2

    hh

    P2

    P3

    bb

    P5

    7P3h

    B

    h1 300 mm

    h2 hf hw h1 h3 h2 hf h2 1 m h3 0.5 m

    h h1 h2 h 1.3 m

    r 0.5 D( ) 0.175 m r 9.625 m

    Assume dimension based on Principles of Foundation Engineering Fourth Edition Braja M. Daspage 389 (not applicable with this case)

    bp min = 0.3 m

    bb = (0.45 - 0.7) x h

  • 8/12/2019 Mathcad - 1000 KL Tank1

    15/23

    dimension that shall be usebp 0.45 m

    bb 1.5m

    Friction angle of soil : 16.4 deg

    Reffer to Rankine

    Coefisien of active soil Ka tan 45deg

    2

    2

    Ka 0.56

    Coefisien of passive soil Kp tan 45deg

    2

    2

    Kp 1.787

    Active soil pressure

    P1 0.5Ka h12

    soil P1 0.04 tonne m1

    P2 Ka h12

    soil P2 0.081 tonne m1

    P3 0.5 Ka h22

    soil P3 0.448 tonne m1

    P4 qop2a Ka h P4 16.481 tonne m1

    Ta 1.7 P1 P2 P3 P4( ) r [ ] Ta 278.975 tonne

    Passive soil pressure

    c 2.4 tonne m2

    P5h2 0.3m( )

    2

    2 soil w( ) Kp w[ ] 2 c Kp h2 0.3m( )P5 4.999 tonne m

    1

    Tp 1.7 P5 r ( ) Tp 81.797 tonne

    EMPTY CONDITIONFriction between base of tank and soil (gravel) below is :

    tan 0.67 ( ) 0.194

    c 2.4 tonne m2

    Horizontal load

    Based on ANSI / AWWA 2005 (section 13.5.3) :

    Design shear at the bottom of the foundation. The design shear at the bottom of the foundation doe tohorizontal design acceleration is the SRSS combination of the impulsive and convective component andshall be determined by equation:

  • 8/12/2019 Mathcad - 1000 KL Tank1

    16/23

    Vf Ai Ws Wr Wf ( )[ ]2

    Vf 91.562 tonne empty( )

    Ph Vf Ph 91.562 tonne

    Vertical load

    Pv We Wf Pv 382.291 tonne

    Capacity of shearing force

    Fce c Ate

    Fce 131.645 tonne Cohesion Force

    d 1.2tonne

    m3

    Passive force :

    Fpph2 0.3m( )

    2

    2 soil w( ) Kp w[ ]

    dfo

    22 c Kp

    2do h2 0.3m( )

    Fpp 96.127 tonne

    Pr Pv Fce Fpp Pr 301.999 tonne

    Safety factor

    SFsPr

    PhSFs 3.298

    Status "Fdn Ok, SFs > 1.5" 1.5 SFsif

    "Fdn Not Ok" otherwise Status "Fdn Ok, SFs > 1.5"

    FULL CONDITION

    Horizontal load

    Based on ANSI / AWWA 2005 (section 13.5.3) :

    Design shear at the bottom of the foundation. The design shear at the bottom of the foundation doe tohorizontal design acceleration is the SRSS combination of the impulsive and convective component andshall be determined by equation:

  • 8/12/2019 Mathcad - 1000 KL Tank1

    17/23

    Vf Ai Ws Wr Wi Wf ( )[ ]2

    Ac Wc( )2

    Vf 631.06 tonne full( )

    Ph Vf Pw Ph 638.105 tonne

    Vertical load

    Pv We Wo Wf Pv 1507 tonne

    Capacity of shearing force

    Fco c Ato

    Fco 325 tonne Cohesion Force

    Fpp 96.127 tonne Passive Forces

    Pr Pv Fpp Fco Pr 714 tonne

    Safety factor

    SFsPr

    PhSFs 1.119

    Status "Fdn Ok, SFs > 1.5" 1.5 SFsif

    "Fdn Not Ok" otherwiseStatus "Fdn Not Ok"

    4.4 Overturning Check

    Distance from side of tank

    Lr 0.5 do Lr 6.07 m

    EMPTY CONDITION

    Total vertical load =

    wL We Wf wL 382.291 tonne

    Moment againts overturning

    Mr wL Lr Mr 2321 tonne m

    Based on ANSI / AWWA 2005 (section 13.5.2) :

    Design overturning moment at the bottom of the foundation for tanks supported by ring beam foundation

    shall include the effects of varying bottom pressures and shall be determine by the equation:

  • 8/12/2019 Mathcad - 1000 KL Tank1

    18/23

    Ms Ai Ws Xs2 Wr Hr2 Wf Xf ( )[ ]2

    Ms 207 tonne m Empty( )

    Mo1 Ms Mo1 207 tonne m

    Safety Factor

    SFmMr

    Mo1SFm 11.206

    Status "Fdn Ok, SFm > 1.5" 1.5 SFmif

    "Fdn Not Ok" otherwiseStatus "Fdn Ok, SFm > 1.5"

    FULL CONDITION

    Total vertical load =

    wL Wf Wo We wL 1507 tonne

    Moment againts overturning

    Mr wL Lr Mr 9149 tonne m

    Based on ANSI / AWWA 2005 (section 13.5.2) :

    Design overturning moment at the bottom of the foundation for tanks supported by ring beam foundationshall include the effects of varying bottom pressures and shall be determine by the equation:

    Ms Ai Ws Xs2 Wr Hr2 Wi Xi2 Wf Xf ( )[ ]2 Ac Wc Xc2( )2

    Mo2 Ms Mo2 3904 tonne m

    Safety Factor

    SFmMr

    Mo2SFm 2.344

    Status "Fdn Ok, SFm > 1.5" 1.5 SFmif

    "Fdn Not Ok" otherwise Status "Fdn Ok, SFm > 1.5"

  • 8/12/2019 Mathcad - 1000 KL Tank1

    19/23

    4.5 Check tension

    Circumferential reinforcing s teel must be provided in the concrete ringwall to develop the hoopstress produce by lateral soil pressure within the ringwall. The required area As, of circumferentialsteel is determined by:

    Tr 31.2 Ka H D d g (see attachment 5)

    As1.7Tr ( )

    0.9 fy

    Tr = ringwall tension, lbKa = lateral earth-pressure coeffic ientd = ringwall height, ftH = shell height, ftD = tank diameter, ftg = spesific gravityfy = rebar yield stress

    Tr 31.2 Ka H D d g

    Tr 1.868 10 5 lb Tr 84734 kg

    Required area (As) of circumferential steel:

    As1.7 Tr ( )

    0.9 fy As 4001 mm

    2

    5. FOUNDATION REINFORCEMENT

    Ring Wall Re-bar

    Required of rebar Area caused by lateral soil pressure within the ringwall (circumferential

    rebar) :

    As1.7 Tr

    0.9 fy As 4001 mm2

    Use D25 @ 150

    Asteel

    422 mm( )

    2 2 hw

    150 mm Asteel 4055 mm

    2

    Status "Asteel=>Aps ---- > rebar ok" Asteel Asif

    "Change rebar dimension" otherwise Status "Asteel=>Aps ---- > rebar ok"

    ( inside & outside rebar) D22 @ 150

  • 8/12/2019 Mathcad - 1000 KL Tank1

    20/23

    Comp ression rebar :

    ApvWe 0.2 m D H w( )

    0.85fy Apv 5689 mm

    2

    Use D13@200

    Asteel

    4

    1 mm( )2 2 D( )

    200 mm

    Asteel 466 mm2

    Status "Asteel => Apv -----> rebar OK" Asteel Apvif

    "Change rebar" otherwise

    Status "Change rebar"

    Horizontal Re-bar

    min 0.0018

    As min Bp hw 0.5 As 0.000324 m2

    NAsteel As

    132 mm2

    NAsteel 2.455 Use 4 D 13

    Concrete Bearin g Check

    Check :

    0.7

    Pu 1.7 0.25 D( )2 D 0.2 m( )

    2 H w We Pu 204 tonne

    P nw 0.85 fc( ) 0.25 D( )2 D 0.2 m( )2 P nw 8785 tonne

    Status "OK" P nw Puif

    "NOT OK" otherwiseStatus "OK"

  • 8/12/2019 Mathcad - 1000 KL Tank1

    21/23

    Footing reinforcement

    Earth pressure, q

    qmax qof

    qult 1.4 qmax qult 40.368 tonne m2

    Moment at the pedestal face (critical section)

    Ldfo do( )

    2L 0.5 m

    Mz 1.4 0.5 qult L2

    m Mz 7.064 tonne m

    Diameter of rebar shall be used : dia 13mm

    Concrete cover : cover 75mm

    Effective depth : d 0.5 m cover 1

    2dia d 41.85 cm

    Effective width : b 1 m b 1 m

    - Ultimate moment :

    Mult Mz Mult 7.064 tonne m

    Calculations :

    RnMult

    0.9 b d2

    Rn 44.816 tonne m2

    0.85 fc

    fy1 1

    2 Rn

    0.85 fc

    0.001132

    min 0.0018 minif

    min minif 0.0018

    Area of rebar required : As req b d As req 7.533 cm2

    Section of rebar : Asteel 0.25 dia2 Asteel 1.327 cm 2

    Number of rebar : nos As req

    Asteelnos 5.675

  • 8/12/2019 Mathcad - 1000 KL Tank1

    22/23

    For Practical used : nos ceil nos( ) nos 6

    Distance between rebar : sb

    nos 1s 200 mm

    For practical Use : Use D-13 @ 200

  • 8/12/2019 Mathcad - 1000 KL Tank1

    23/23

    ATTACHMENT 6

    IMMEDIATE SETTLEMENT (BOWLES) REFERENCE