mathematical modeling of thermal-fluid flow in the meniscus...

22
University of Illinois at Urbana-Champaign Metals Processing Simulation Lab C. Ojeda 1 ANNUAL REPORT 2006 Meeting date: June 15, 2006 Claudio Ojeda (Visiting Scholar from FUNDACION LABEIN-TECNALIA, Derio, Spain) Joydeep Sengupta (Dofasco inc., Hamilton, Canada) Brian G. Thomas Department of Mechanical & Industrial Engineering University of Illinois at Urbana-Champaign Mathematical Modeling of Thermal-Fluid Flow in the Meniscus Region University of Illinois at Urbana-Champaign Metals Processing Simulation Lab C. Ojeda 2 PHENOMENA IN THE MOLD CONTINUOUS CASTING OF STEEL INTRODUCTION “Continuous casting consortium website” ccc.me.uiuc.edu

Upload: others

Post on 13-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 1

    ANNUAL REPORT 2006Meeting date: June 15, 2006

    Claudio Ojeda(Visiting Scholar from FUNDACION LABEIN-TECNALIA, Derio, Spain)

    Joydeep Sengupta(Dofasco inc., Hamilton, Canada)

    Brian G. Thomas

    Department of Mechanical & Industrial EngineeringUniversity of Illinois at Urbana-Champaign

    Mathematical Modeling of Thermal-Fluid Flow in the

    Meniscus Region

    University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 2

    PHENOMENA IN THE MOLDCONTINUOUS CASTING OF STEEL

    INTRODUCTION

    “Continuous casting consortium website” ccc.me.uiuc.edu

  • University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 3

    OSCILLATION MARK AND HOOK DESCRIPTION

    J. Sengupta and B.G. Thomas “JOM-e(TMS)”, 2005

    University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 4

    1 mm 0

    Side view (of section)

    Entrapped bubble

    Curved hook

    10 mm

    Section cut through slab

    OM pitch

    ( )Oscillation Marks OM

    Front view (of slab)

    Casting direction

    Hook depth

    OM

    OM depth

    J. Sengupta, H. Shin, BG Thomas, et al, Acta Mat., 2005

    frequencyspeedcastingPitchOMlTheoretica =

    OM

    Hook

    Frozen meniscus

    Heat transfer to mold

    Slab surface3D view of hooks & OM

    HOOKS AND OSCILLATION MARKS

  • University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 5

    • Slag Inclusions

    • Entrapped bubbles (eg. Pencil pipe)

    • Segregation

    • Cracks (oscillation mark root)

    • Other problems (laps, blisters, bleeds, etc)

    SURFACE DEFECTS ASSOCIATED WITH HOOKS AND OSCILLATION MARKS

    University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 6

    • ~20-35% of hooks are straight • Curved hooks are ~ 1.5 times deeper• On both wide + narrow faces

    OMOM

    Curved hookStraight hook

    ScarfingCasting directionHook depth

    J.P. Birat et al., IRSID, Malzieres les Metz, France, in Mold Operation for Quality and

    Productivity, ISS, 1991, p.8

    J. Sengupta, H. Shin, BG Thomas, et al, Acta Mat., 2005

    DEEP HOOKS TRAP INCLUSIONS & REQUIRE “SCARFING”

  • University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 7

    OMOM

    OM

    Ultra-low Peritectic Medium

    10 mm

    200

    μ m

    Badri et al., Met. Trans. B, 2005

    Suzuki, CAMP-ISIJ, 1998

    • Ultra-low carbon steels have deeper OMs and are more prone to form hooks• Higher solidus (1535 °C vs 1500 °C for high carbon steels)

    thinner mushy zone (15 °C vs 50 °C for high carbon steels)

    HOOKS AND OSCILLATION MARKS WORSE WITH LOWER %CARBON

    University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 8

    HOW OSCILLATION MARKS AND MOLTENG SLAG CONSUMPTION AFFECT HEAT TRANSFER

    X

    Insulated (q=0)

    Insulated (q=0)

    conv

    ectio

    n h(

    z,do

    sc)

    0 10 20 30

    360

    370

    380

    390

    400

    410

    420

    430

    Z,t

    Liquid Steel

    Solid Shell

    1531 Tliq

    1508 Tsol

    1400

    1300

    1250

    1200

    1150

    1100

    1050

    1000

    1522

    A

    B

    X

    Insulated (q=0)

    Insulated (q=0)

    conv

    ectio

    n h(

    z,do

    sc)

    0 10 20 30

    360

    370

    380

    390

    400

    410

    420

    430

    Z,t

    Liquid Steel

    Solid Shell

    1531 Tliq

    1508 Tsol

    1400

    1300

    1250

    1200

    1150

    1100

    1050

    1000

    1522

    A

    B Effect on heat transfer with air filled depressions due to insufficient liquid slag flow into the gap between mold and steel shell (CON2D)

    Transverse cracks and breakouts

    K.-D. Schmidt, F. Fredel, K.-P. Imlau, W. Jager, and K. Muller, “Steel Research”, 2003

  • University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 9

    HOW OSCILLATION MARKS AFFECT HEAT TRANSFER

    Distance Below Meniscus (mm)

    Osc

    illat

    ion

    Mar

    kD

    epth

    (mm

    )

    She

    llTh

    ickn

    ess

    (mm

    )

    360 370 380 390 400-1

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5

    11.5

    12

    12.5

    13

    13.5

    14

    14.5

    15

    Predicted Shell Thickness (CON2D)Predicted Shell Thickness without OM (CON2D)Measured Shell ThicknessOscillation Mark Depth

    Distance Below Meniscus (mm)

    Osc

    illat

    ion

    Mar

    kD

    epth

    (mm

    )

    She

    llTh

    ickn

    ess

    (mm

    )

    360 370 380 390 400-1

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5

    7

    8

    9

    10

    11

    12

    13

    14

    15

    Predicted Shell Thickness (CON2D)Predicted Shell Thickness without OM (CON2D)Measured Shell ThicknessOscillation Mark Depth

    A

    B

    Distance Below Meniscus (mm)

    Osc

    illat

    ion

    Mar

    kD

    epth

    (mm

    )

    She

    llTh

    ickn

    ess

    (mm

    )

    360 370 380 390 400-1

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5

    7

    8

    9

    10

    11

    12

    13

    14

    15

    Predicted Shell Thickness (CON2D)Predicted Shell Thickness without OM (CON2D)Measured Shell ThicknessOscillation Mark Depth

    A

    B

    Flux Filled Marks Air Filled Marks

    B.G.Thomas, D. Lui, B. Ho, “Sensors and Modeling in Materials Processing: Techniques and Applications”, 1997

    University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 10

    HOW OSCILLATION MARKS AFFECT HEAT TRANSFER

    Distance Below meniscus (mm)

    Hea

    tFlu

    x(M

    W/m

    2)

    Tem

    pera

    ture

    (C)

    360 370 380 390 4000

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    900

    1000

    1100

    1200

    1300

    1400

    Heat FluxSteel Surface Temperature

    Distance Below Meniscus (mm)

    Hea

    tFlu

    x(M

    W/m

    2)

    Tem

    pera

    ture

    (C)

    360 370 380 390 4000

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    2.2

    2.4

    880

    900

    920

    940

    960

    980

    1000

    Heat Flux (MW/m2)Shell Temperature (C)

    Flux Filled Marks Air Filled Marks

  • University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 11

    • Different meniscus (hook) shapes: (a) straight to (c) curved• Different shapes of overflow region

    (a) (b) (c)

    HJ Shin, G Lee, S. Kim, Postech, 2004

    VARIATIONS IN HOOK AND OM SHAPE (CREATED DURING MENISCUS OVERFLOW)

    University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 12

    • Random orientation of dendrites → Heterogeneous nucleation• Fine dendrite arms near origin line → Rapid solidification of under-cooled liquid• Large sudden change of growth direction → Movement of fractured hook tip

    Solidification inward from frozen meniscus

    Solidification within the liquid overflow region towards the mold wall

    J. Sengupta, H. Shin, B. G. Thomas, et al., Acta Mat., 2006

    DENDRITE GROWTH NEAR LINE OF HOOK ORIGINREVEALED BY SPECIAL ETCHING REAGENT

  • University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 13

    -0.06-0.05-0.04-0.03-0.02-0.01

    00.010.020.030.040.050.06

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

    time(s)

    velo

    city

    (m/s

    ) s )

    -0.004

    -0.003

    -0.002

    -0.001

    0

    0.001

    0.002

    0.003

    0.004

    disp

    lace

    men

    t(m

    ) m

    )

    velocitycasting speedposition

    NST

    MOLD OSCILLATION PARAMETERS

    NST = 0.14sStroke = 6mmFreq. = 155 cpm

    University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 14

    PROPOSED OM AND HOOK FORMATION MECHANISM

    J. Sengupta and B.G. Thomas JOM-e (TMS), 2006

  • University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 15

    Symmetry

    P=1atm

    P=1atm

    Molten steel

    Air

    Molten Slag

    Variable Steel LevelSymmetry

    P=1atm

    P=1atm

    Molten steel

    Air

    Molten Slag

    Variable Steel Level

    MODEL DESCRIPTION

    Twall = 1073K

    h=100w/m2K

    T=300K Predict meniscusPhenomena:- fluid flow, - Interface motion,- Heat transport

    2-D FDM + VOF model

    •Velocity & P Navier-Stokes Eq.

    •Phase fract Volume Of Fluid

    •Surf. Tens.=1.3N/m

    •Temperature Heat Conduction Eq.Steel Shell (CON1D)

    Oscillating Mold Wall

    0.5mm interfacial gap (solid and liquid mold flux)

    University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 16

    Computational Model Governing Equations (CFD + VOF + Energy)

    Continuity Equation, Volume Fraction Equation

    Properties

    Momentum

    Energy

  • University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 17

    INTERFACIAL TENSION

    γsteel(l)-slag = steel(l)-gas+ slag-gas-2 ( steel(l)-gas slag-gas)0.5 [*]

    steel(l)-gas = 1.89 N/m [*]

    slag-gas = 0.4 N/m [*]

    = 0.55 (between 0 and1, increases with the attraction between phases) [*]

    Fe(s)-gas = 2.15N/m [*]

    steel(s)-slag = 1.02 N/m (calculated considering slag-Fe(s) = 40 [*])

    Fe(l)-Fe(s) = 0.26N/m (Sulfur is not interface active at the liquid/solid metal interface) [**]

    = contact angle = 46

    steel(l)-slag = 1.33 N/m

    [*]A.W. Cramb and I. Jimbo, “W.O. Philbrook Memorial Symposium Conference Proceedings”, 1988

    [**]G. Kaptay, “Metallurgical and Materials Transactions A”, 2002

    Liquid steel

    Solid steel

    Molten powder

    γsteel(l)-slag

    steel(s)-slagsteel(s)-steel(l)

    Liquid steel

    Solid steel

    Molten powder

    steel(l)-slag

    θ γ steel(s)-slagγsteel(s)-steel(l)

    γsteel(l)-slag = γ steel(l)-gas+ γ slag-gas-2Φ(γ steel(l)-gas γ slag-gas)0.5 [*]

    γsteel(l)-gas = 1.89 N/m [*]

    γslag-gas = 0.4 N/m [*]

    Φ = 0.55 (between 0 and1, increases with the attraction between phases) [*]

    γFe(s)-gas = 2.15N/m [*]

    γ steel(s)-slag = 1.02 N/m (calculated considering θ slag-Fe(s) = 40˚ [*])γ Fe(l)-Fe(s) = 0.26N/m (Sulfur is not interface active at the liquid/solid metal interface) [**]

    θ = contact angle = 46˚

    γ steel(l)-slag = 1.33 N/m

    [*]A.W. Cramb and I. Jimbo, “W.O. Philbrook Memorial Symposium Conference Proceedings”, 1988

    [**]G. Kaptay, “Metallurgical and Materials Transactions A”, 2002

    University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 18

    Meniscus shape analytical solution (Bikerman Eq)

  • University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 19

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    130 5 10 15 20 25 30 35 40

    Distance from wall(mm)

    Z (m

    m)

    Bikerman equation+8.5mm+10mm+11mm

    VALIDATION OF CFD+VOF MODEL

    University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 20

    SLAG PROPERTIES

    1.E-01

    1.E+00

    1.E+01

    1.E+02

    1.E+03

    1.E+04

    1.E+05

    1.E+06

    1.E+07

    1.E+08

    0 200 400 600 800 1000 1200 1400 1600 1800 2000

    Temeprature (K)

    Visc

    osity

    (Pa.

    s)

    SolidifyingMelting

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    0 200 400 600 800 1000 1200 1400 1600 1800 2000

    Temperature(K)

    Con

    duct

    ivity

    (W/m

    K)

    solidifyingmelting

    Viscosity Conductivity

    R. McDavid and B.G. Thomas, “Metallurgical and Materials Transactions B”, 1996

    Y.Meng, B.G.Thomas, A.A. Polycarpou, A.Prasad and H. Henein, “Cnadian Metallurgical Quarterly”, 2006

  • University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 21

    TEMPERATURE AND VISCOSITY CONTOURS

    TEMPERATURE CONTOURS VISCOSITY

    Molten Steel

    Molten Slag

    Solid Rim

    Powder

    Molten slag pool thickness = 13mm

    Molten Slag Pool thickness = 13mm ≈15 mm measured by H.-J. Shin (PhD Thesis)

    University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 22

    MODEL RESULTS

  • University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 23

    -0.06-0.05-0.04-0.03-0.02-0.01

    00.010.020.030.040.050.06

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

    time(s)

    v(m

    /s) Beginning

    overflow

    End overflow

    NST

    MODEL RESULTS

    University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 24

    COMPARISON OF MODEL RESULTS WITH EXPERIMENTAL DATA

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5

    5.5

    6

    0 0.5 1 1.5 2 2.5mm

    mm

    Measured lines: J. Sengupta, B.G. Thomas and H-J Shin “Metallurgical and Materials Transactions A”, 2005

    J. Sengupta, B.G. Thomas and H-J Shin, G. G. Lee and S-H Kim “Metallurgical and Materials Transactions A”, 2005

  • University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 25

    THERMAL-STRAIN CALCULATIONS

    With overflow

    Without overflow

    Difference

    Deformations x10Fractured hook tip entrapped in

    the shell

    Truncated hook Un-melted fractured tip travels to the surface

    J. Sengupta, H. Shin, B. G. Thomas, et al., Acta Mat., 2006

    Reheating due to overflow

    Line of hook origin

    Overflow region(melted back

    mold flux layer

    Scale0 1 mm

    Original position of hook tip

    Oscillation mark

    Fractured hook tip

    hook

    University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 26

    -0.06-0.05-0.04-0.03-0.02-0.01

    00.010.020.030.040.05

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4time(s)

    Slag

    con

    sum

    ptio

    n(kg

    /s m

    )

    Mean QSolid+LiquidLiquid

    COMPARISON OF MODEL RESULTS WITH EXPERIMENTAL DATA

    Mean consumption (liquid) = 0.0062Kg/ms ≈0.0058Kg/ms Experimental mean consumption (Shin et al. 2005)

    overflow

    NST

  • University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 27

    COMPARISON OF MODEL RESULTS WITH EXPERIMENTAL DATA

    K. Tsutsumi, J.-I. Ohtake and M. Hino, “ISIJ International”, 2000

    Velocity Components Close to Gap Inlet

    time (s)

    m/s

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

    -0.03

    -0.02

    -0.01

    0

    0.01

    0.02

    0.03

    NST

    overflow

    University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 28

    NST

    overflow

    PRESSURE CHANGES DURING OSCILLATION

  • University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 29

    HEAT FLUX AT MOLD WALL

    Heat Flux in Meniscus region Heat Flux at Shell Tip

    Peak Heat Flux at NST

    overflow

    NST

    University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 30

    A.Badri, T.T.Natarajan, C.C.Snyder, K.D.Powders, F.J.Mannion and A.W.Cramb, Met. and Mat. Trans. B, 2005

    AVERAGE HEAT FLUX AT MOLD WALL IN THE MENISCUS REGION

    -500000

    0

    500000

    1000000

    1500000

    2000000

    2500000

    3000000

    0 1 2 3 4 5 6

    Time (s)

    Hea

    t flu

    x (W

    /m2 )

    T/C1 (5.25")T/C2 (5.50")T/C3 (5.75")15.8mm down from meniscus (Lab frame)9.5mm down from meniscus (Lab frame)

    D.Li, “Heat transfer during continuous casting of steel”

    NST

    overflow

  • University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 31

    STEEP RIM MODEL DESCRIPTION

    AIR

    SLAG

    MOLTEN STEEL

    Unknown interface location

    Steel shell (CON1D)

    Gap between mold and steel

    0.2mm

    Symmetry

    Pressure outlet = 1atm

    Pressure inlet = 1 atm

    Oscillating mold wall2-D FDM + VOF model

    •Velocity & P Navier-Stokes Eq.

    •Phase fract Volume Of Fluid

    •Surf. Tens.=1.3N/m

    •Temperature Heat Conduction Eq.

    Predict meniscusPhenomena:- fluid flow, - Interface motion,- Heat transport

    Takeuchi et al. “Steelmaking Conference Proceedings”, 1991, pp 73-77

    University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 32

    MODEL RESULTS

    Interface evolution (phases fraction contour)

    Interface evolution (velocity vectors)

  • University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 33

    -0.06-0.05-0.04-0.03-0.02-0.01

    00.010.020.030.040.050.06

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

    time(s)

    v(m

    /s) Beginning overflow

    End overflow

    NST

    MODEL RESULTS

    University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 34

    EFFECT OF FAR FIELD STEEL LEVEL ON STAGNANT MENISCUS SHAPE

    0.000 0.005 0.010 0.015 0.020 0.025 0.0300.0700

    0.0750

    0.0800

    0.0850

    0.0900

    0.0950

    0.1000

    +11mm

    +8.7mm

    +5mm

    +2mm

    +12mm

    Dis

    tanc

    e ab

    ove

    shel

    l tip

    (m)

    Distance from mold wall (m)

    Shell tip

  • University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 35

    Deeper level drops cause more shell distortion

    0 1 2

    z(m

    m)

    0

    5

    10

    15

    20

    25

    30

    0 1 20 1 20 1 2 0 1 20 1 2

    2mm level drop

    5 mm level drop

    8 mm level drop

    10 mm level drop

    16 mm level drop

    - 0.09 mm - 0.09 mm

    No level fluctuation

    Shell thickness = 1.74 mm

    - 0.02 mm - 0.02 mm +0.07 mm +0.07 mm +0.23 mm +0.23 mm +0.36 mm +0.36 mm +0.46 mm +0.46 mm

    15001450140013501300125012001150110010501000

    Temperature (oC)

    Jog

    Shell

    Jog

    Shell

    Fredriksson and Elfsberg, Scandinavian J. of Met., 2002

    J. Sengupta and B.G. Thomas, “Modeling of Casting, Welding and Advanced Solidification Processes XI”, 2006

    University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 36

    STRAIGHT HOOKS CAN FORM BY SHELL DISTORTION FOLLOWED BY OVERFLOW CREATING OM

    -24

    -22

    -20

    -18

    -16

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    0

    2

    40 2 4 6 8Distance across slab width (mm)

    Dist

    ance

    alo

    ng m

    old

    leng

    th (m

    m)

    SOLIDSLAG

    MOLD

    LIQUID SLAG

    LIQUID STEEL

    MENISCUS(equilibrium)

    MENISCUS(after overflow)

    STEELSHELL

    -24

    -22

    -20

    -18

    -16

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    0

    2

    40 2 4 6 8Distance across slab width (mm)

    Dist

    ance

    alo

    ng m

    old

    leng

    th (m

    m)

    SOLIDSLAG

    MOLD

    LIQUID SLAG

    LIQUID STEEL

    MENISCUS(equilibrium)

    MENISCUS(after overflow)

    STEELSHELL

    Distance across slab width (mm)

    Dist

    ance

    alo

    ng m

    old

    leng

    th (m

    m)

    SOLIDSLAG

    MOLD

    LIQUID SLAG

    LIQUID STEEL

    MENISCUS(equilibrium)

    MENISCUS(after overflow)

    STEELSHELL

    HOOK

    OM

    Solidification after overflow

    0.48 mm

    0.46 mm distortion for a 16 mm level drop

    MECHANISM:• Shell distortion during negative strip causes

    shell bending away from mold (hook):e.g. sudden level drop

    • Meniscus overflows over hook

    • Solidification in overflowed region creates OM

    Effect of pressure & friction cannot be ignored!

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.50

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    POSCO 2004 resultsNarrow face + 1/4 wide face(Mean value: 66 ~ 82 hooks)

    (# o

    f hoo

    k ty

    pe) /

    (# o

    f exa

    min

    ed O

    Ms)

    Level fluctuation during sampling (mm)

    Curved type Surface type

    HJ Shin, Postech, PhD Thesis, 2006J. Sengupta and B.G. Thomas, “Modeling of Casting, Welding and Advanced Solidification Processes XI”, 2006

  • University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 37

    Thermal distortion due to level fluctuation depends on steel grade

    z(m

    m)

    0

    5

    10

    15

    20

    0 1 2 0 1 2 0 1 2

    16mm level drop

    16 mm level drop

    16mm level drop

    Temperature (oC)

    15001450140013501300125012001150110010501000

    Ultra-low carbon steel0.003% C

    Low carbon steel0.04% C

    Peritectic steel0.13% C

    +0.46 mm +0.46 mm +0.38 mm +0.38 mm +0.64 mm +0.64 mm

    z(m

    m)

    0

    5

    10

    15

    20

    0 1 2 0 1 2 0 1 2

    16mm level drop

    16 mm level drop

    16mm level drop

    Temperature (oC)

    15001450140013501300125012001150110010501000

    Ultra-low carbon steel0.003% C

    Low carbon steel0.04% C

    Peritectic steel0.13% C

    +0.46 mm +0.46 mm +0.38 mm +0.38 mm +0.64 mm +0.64 mm

    J. Sengupta and B.G. Thomas, “Modeling of Casting, Welding and Advanced Solidification Processes XI”, 2006

    University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 38

    -800-600-400-200

    0200400600800

    1000

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4time(s)

    Pres

    sure

    (Pa)

    NST

    overflow

    -800-600-400-200

    0200400600800

    1000

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4time(s)

    Pres

    sure

    (Pa)

    NST

    overflow

    -800-600-400-200

    0200400600800

    1000

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4time(s)

    Pres

    sure

    (Pa)

    NST

    overflow

    -0.02

    -0.015

    -0.01

    -0.005

    0

    0.005

    0.01

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

    time(s)

    Slag

    con

    sum

    ptio

    n(kg

    /s m

    )

    NST

    Overflow

    -0.02

    -0.015

    -0.01

    -0.005

    0

    0.005

    0.01

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

    time(s)

    Slag

    con

    sum

    ptio

    n(kg

    /s m

    )

    NST

    -0.02

    -0.015

    -0.01

    -0.005

    0

    0.005

    0.01

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

    time(s)

    Slag

    con

    sum

    ptio

    n(kg

    /s m

    )

    NST

    Overflow

    MODEL RESULTS

    Pressure changes during oscillation

    Liquid slag consumption varies during oscillation.

    Mean consumption = 0.0053Kg/ms ≈

    0.0058Kg/ms Experimental mean consumption (Shin et al. 2005)

    Larger flux rim causes overflow to occur earlier

  • University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 39

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5

    5.5

    6

    0 0.5 1 1.5 2 2.5

    COMPARISON OF MODEL RESULTS WITH EXPERIMENTAL DATA

    Measured lines: J. Sengupta, B.G. Thomas and H-J Shin “Metallurgical and Materials Transactions A”, 2005

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5

    5.5

    6

    0 0.5 1 1.5 2 2.5mm

    mm

    Steep Rim Calculated Rim

    University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 40

    -0.03

    -0.02

    -0.01

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

    time(s)

    Vel

    ocity

    (m/s

    )

    x-componenty-component

    NST

    -0.03

    -0.02

    -0.01

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

    time(s)

    Vel

    ocity

    (m/s

    )

    x-componenty-component

    NST

    -0.07-0.06-0.05-0.04-0.03-0.02-0.01

    0

    0.010.020.030.040.050.060.070.08

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

    time(s)

    Velo

    city

    (m/s

    )

    x-component

    y-component

    NST

    -0.07-0.06-0.05-0.04-0.03-0.02-0.01

    0

    0.010.020.030.040.050.060.070.08

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

    time(s)

    Velo

    city

    (m/s

    )

    x-component

    y-component

    NST

    COMPARISON OF MODEL RESULTS WITH EXPERIMENTAL DATA

    Point near gap inlet

    Point far from gap inlet

    K. Tsutsumi, J.-I. Ohtake and M. Hino, “ISIJ International”, 2000

  • University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 41

    Gap steel-moldRim Gap steel-moldRim

    MODEL RESULTS

    Note: excessive slag rim (below 4mm) melts back slightly during each cycle

    University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 42

    CONCLUSIONS

    • The oscillating solidified slag rim controls the flow pattern in the meniscus region.

    • Pressure in the gap between the shell and mold oscillates.

    • Overflow event starts earlier with a more severe solid slag rim.

    • Computations and experimental data both show that the overflow event can start at different times during the oscillation cycle, but often starts ~beginning of negative strip time.

    • Liquid flux consumption varies continuously during the oscillation cycle, but is consumed intothe gap only during negative strip time.

    • The heat flux peak occurs several mm below the meniscus level, owing to meniscus curvature.

    • The range of meniscus shapes predicted during the oscillation cycle matches well with the range of shapes of measured hooks.

    • The slight extra curvature appearing in hook measurements might be due to thermal strainand requires further study.

    • The meniscus sometimes drops below the shell tip, exposing it to slag, and creating relatively straight hooks with associated surface defects

  • University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 43

    FACTORS CONTROLLING HOOKS AND OSCILLATION MARKS

    • Steel grade (shrinkage stress & strength)

    • Meniscus heat flow (mold flux composition)– Resolidified flux rim shape; – Liquid flux consumption rate into meniscus gap

    • Fluid flow pattern

    • Level fluctuations (both rapid & gradual)

    • Superheat of molten steel

    • Oscillation practice (stroke, frequency, asymmetry ratio, negative strip time, etc.)

    University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • C. Ojeda 44

    ACKNOWLEDGMENTS

    • FUNDACION LABEIN-TECNALIA (DERIO, SPAIN)

    • National Science Foundation (Grant DMI 05-28668)

    • Continuous Casting Consortium Members at University of Illinois at Urbana-Champaign

    • Fluent Inc.

    • Ho Jung Shin, Go Gi Lee, Jose Luis Arana, Jon Barco.