mathematical problems in elasticity and plasticity - an ... elasticity and plasticity an...

26
Zentrum f ¨ ur Technomathematik Fachbereich 03 Mathematik/Informatik Mathematical Problems in Elasticity and Plasticity An Introduction oren Boettcher Zentrum f¨ ur Technomathematik - Universit¨ at Bremen January 11, 2011 S¨orenBoettcher 1 / 26 Elasticity Thermoelasticity Plasticity Outlook References

Upload: vankhanh

Post on 07-May-2018

261 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Mathematical Problems in Elasticity and Plasticity - An ... Elasticity and Plasticity An Introduction ... Gurtin, Introduction to Continuum Mechanics ... Mathematical Problems in Elasticity

Zentrum furTechnomathematik

Fachbereich 03Mathematik/Informatik

Mathematical Problemsin Elasticity and Plasticity

An Introduction

Soren Boettcher

Zentrum fur Technomathematik - Universitat Bremen

January 11, 2011

Soren Boettcher 1 / 26Elasticity Thermoelasticity Plasticity Outlook References

Page 2: Mathematical Problems in Elasticity and Plasticity - An ... Elasticity and Plasticity An Introduction ... Gurtin, Introduction to Continuum Mechanics ... Mathematical Problems in Elasticity

Zentrum furTechnomathematik

Fachbereich 03Mathematik/Informatik

Contents

1 Elasticity

2 Thermoelasticity

3 Plasticity

4 Outlook

5 References

Soren Boettcher 2 / 26Elasticity Thermoelasticity Plasticity Outlook References

Page 3: Mathematical Problems in Elasticity and Plasticity - An ... Elasticity and Plasticity An Introduction ... Gurtin, Introduction to Continuum Mechanics ... Mathematical Problems in Elasticity

Zentrum furTechnomathematik

Fachbereich 03Mathematik/Informatik

Preparations

Hooke’s law of elasticity

Tensile testing

F

A= Y

l − l0l0

Soren Boettcher 3 / 26Elasticity Thermoelasticity Plasticity Outlook References

Page 4: Mathematical Problems in Elasticity and Plasticity - An ... Elasticity and Plasticity An Introduction ... Gurtin, Introduction to Continuum Mechanics ... Mathematical Problems in Elasticity

Zentrum furTechnomathematik

Fachbereich 03Mathematik/Informatik

PreparationsHooke’s law of elasticity: material returns to original shapeafter removing stress that made it deform

stress :=force

area

strain :=change of length

initial length(deformation)

stress = Young modulus× strain

a− a0

a0=

b − b0

b0= −ν l − l0

l0, ν ∈ (0, 0.5)

Soren Boettcher 4 / 26Elasticity Thermoelasticity Plasticity Outlook References

Page 5: Mathematical Problems in Elasticity and Plasticity - An ... Elasticity and Plasticity An Introduction ... Gurtin, Introduction to Continuum Mechanics ... Mathematical Problems in Elasticity

Zentrum furTechnomathematik

Fachbereich 03Mathematik/Informatik

Preparations

Deformation

Definition

Ω body if Ω ⊂ Rn bounded Lipschitz domain

Definition

s : Ω× [0,T ]→ Rn deformation if

1 ∀ t ∈ [0,T ] s(·, t) : Ω→ s(Ω, t) bijective

2 s ∈ C 2([0,T ], [C 2(Ω)]n)

3 det(∇s(·, t)) > 0 ∀ t ∈ [0,T ]

Soren Boettcher 5 / 26Elasticity Thermoelasticity Plasticity Outlook References

Page 6: Mathematical Problems in Elasticity and Plasticity - An ... Elasticity and Plasticity An Introduction ... Gurtin, Introduction to Continuum Mechanics ... Mathematical Problems in Elasticity

Zentrum furTechnomathematik

Fachbereich 03Mathematik/Informatik

PreparationsLagrangian description

x = s(ξ, t), ξ ∈ Ω, t ∈ [0,T ] given deformation

f : Ω× [0,T ]→ M , (M 6= ∅) arbitrary function

Eulerian description

f (x , t) = f (ξ, t) = f (s−1(x , t), t), (x , t) ∈⋃

t∈[0,T ]

s(Ω, t)× t

Displacement field

u(ξ, t) := s(ξ, t)− ξ

Soren Boettcher 6 / 26Elasticity Thermoelasticity Plasticity Outlook References

Page 7: Mathematical Problems in Elasticity and Plasticity - An ... Elasticity and Plasticity An Introduction ... Gurtin, Introduction to Continuum Mechanics ... Mathematical Problems in Elasticity

Zentrum furTechnomathematik

Fachbereich 03Mathematik/Informatik

Preparations

Balance of momentum

ρ(ξ)∂2u

∂t2(ξ, t)− div((Id +∇u)S(ξ, t)) = f(ξ, t),

(ξ, t) ∈ Ω× (0,T )

ρ – density (t = 0)

S – second Piola-Kirchhoff stress tensor

f – volume density of external forces

Soren Boettcher 7 / 26Elasticity Thermoelasticity Plasticity Outlook References

Page 8: Mathematical Problems in Elasticity and Plasticity - An ... Elasticity and Plasticity An Introduction ... Gurtin, Introduction to Continuum Mechanics ... Mathematical Problems in Elasticity

Zentrum furTechnomathematik

Fachbereich 03Mathematik/Informatik

Preparations

Generalized Hooke’s law:

S = f (E)

Green strain tensor:

E :=1

2

(∇u +∇uT +∇uT∇u

)Isotropic body:

S = 2µE + λ tr(E) Id +δE2

Soren Boettcher 8 / 26Elasticity Thermoelasticity Plasticity Outlook References

Page 9: Mathematical Problems in Elasticity and Plasticity - An ... Elasticity and Plasticity An Introduction ... Gurtin, Introduction to Continuum Mechanics ... Mathematical Problems in Elasticity

Zentrum furTechnomathematik

Fachbereich 03Mathematik/Informatik

Preparations

physical linearization δ = 0

geometrical linearization E ≈ ε, Id +∇u ≈ Id

Linear elasticity theory:

ρ∂2u

∂t2− div(σ) = f

σ = 2µε+ λ tr(ε) Id (Cauchy stress tensor)

ε =1

2

(∇u +∇uT

)(linearized Green strain tensor)

Soren Boettcher 9 / 26Elasticity Thermoelasticity Plasticity Outlook References

Page 10: Mathematical Problems in Elasticity and Plasticity - An ... Elasticity and Plasticity An Introduction ... Gurtin, Introduction to Continuum Mechanics ... Mathematical Problems in Elasticity

Zentrum furTechnomathematik

Fachbereich 03Mathematik/Informatik

Lame equationdynamic

ρ∂2u

∂t2− µ∆u− (λ + µ) grad(div(u)) = f in Ω× (0,T )

u(x , 0) = u0,∂u

∂t= u1 in Ω

u = 0 on Γ0 × (0,T )

σ · ν = b on Γ1 × (0,T )

static

−µ∆u− (λ + µ) grad(div(u)) = f in Ω

Soren Boettcher 10 / 26Elasticity Thermoelasticity Plasticity Outlook References

Page 11: Mathematical Problems in Elasticity and Plasticity - An ... Elasticity and Plasticity An Introduction ... Gurtin, Introduction to Continuum Mechanics ... Mathematical Problems in Elasticity

Zentrum furTechnomathematik

Fachbereich 03Mathematik/Informatik

Lame equation

Γ0 ⊂ ∂Ω, Γ1 = ∂Ω \ Γ0

∂Ω = Γ0 displacement problem

∂Ω = Γ1 stress problem

ν – unit outward normal on Γ1

b – external force density on Γ1

µ = Y2(1+ν)

, λ = νY(1+ν)(1−2ν)

– Lame parameters

(µ – shear modulus)

Soren Boettcher 11 / 26Elasticity Thermoelasticity Plasticity Outlook References

Page 12: Mathematical Problems in Elasticity and Plasticity - An ... Elasticity and Plasticity An Introduction ... Gurtin, Introduction to Continuum Mechanics ... Mathematical Problems in Elasticity

Zentrum furTechnomathematik

Fachbereich 03Mathematik/Informatik

Lame equation

LemmaΩ ∈ C0,1 boundedΓ0 ⊂ ∂Ω closed, meas(Γ0) > 0µ, λ ∈ L∞(Ω), ∃µ0 > 0 : µ0 ≤ µ(x), 0 ≤ λ(x) f.a.a. xV := u ∈ [W 1,2(Ω)]n : u = 0 on Γ0, H := [L2(Ω)]n

A : V → V ∗

〈Au, v〉 =

∫Ω

σ : ∇u dx

(=

∫Ω

σ : ε(u)dx

)= 2

∫Ω

µε(u) : ε(v)dx +

∫Ω

λ div(u) div(v)dx ∀u, v ∈ V

is linear, continuous, symmetric and coercive.

Soren Boettcher 12 / 26Elasticity Thermoelasticity Plasticity Outlook References

Page 13: Mathematical Problems in Elasticity and Plasticity - An ... Elasticity and Plasticity An Introduction ... Gurtin, Introduction to Continuum Mechanics ... Mathematical Problems in Elasticity

Zentrum furTechnomathematik

Fachbereich 03Mathematik/Informatik

Lame equation

Lemma (Korn’s inequality)

‖ε(u)‖[L2(Ω)]n×n ≥ c(Ω, n)‖∇u‖[L2(Ω)]n×n ∀u ∈ V

Theorem (existence/uniqueness: static problem)

f ∈ H, b ∈ [L2(Γ1)]n

∃! u ∈ V : 〈Au, v〉 =

∫Ω

f · v dx +

∫Γ1

b · v dσ ∀ v ∈ V

Soren Boettcher 13 / 26Elasticity Thermoelasticity Plasticity Outlook References

Page 14: Mathematical Problems in Elasticity and Plasticity - An ... Elasticity and Plasticity An Introduction ... Gurtin, Introduction to Continuum Mechanics ... Mathematical Problems in Elasticity

Zentrum furTechnomathematik

Fachbereich 03Mathematik/Informatik

Lame equation

Theorem (existence/uniqueness: dynamic problem)

f ∈ L2(0,T ;H), b = 0, u0 ∈ V , u1 ∈ H

∃! u ∈ L2(0,T ;V ) ∩ L∞(0,T ;V ), u′ ∈ L∞(0,T ;H) :

−∫ T

0ρ(u′, v′) dt +

∫ T

0〈Au, v〉 dt =

∫ T

0(f, v) dt + ρ(u1, v(0))

u(0) = u0

∀ v ∈ L2(0,T ;V ), v′ ∈ L2(0,T ;H), v(T ) = 0

Soren Boettcher 14 / 26Elasticity Thermoelasticity Plasticity Outlook References

Page 15: Mathematical Problems in Elasticity and Plasticity - An ... Elasticity and Plasticity An Introduction ... Gurtin, Introduction to Continuum Mechanics ... Mathematical Problems in Elasticity

Zentrum furTechnomathematik

Fachbereich 03Mathematik/Informatik

Thermoelasticity

modification: adding thermal effects

S = 2µE + λ tr(E) Id +δE2 − 3Kα(θ − θ0) Id

θ – temperature

θ0 – initial temperature

K = λ + 23µ – compression modulus

α – thermal expansion coefficient

Soren Boettcher 15 / 26Elasticity Thermoelasticity Plasticity Outlook References

Page 16: Mathematical Problems in Elasticity and Plasticity - An ... Elasticity and Plasticity An Introduction ... Gurtin, Introduction to Continuum Mechanics ... Mathematical Problems in Elasticity

Zentrum furTechnomathematik

Fachbereich 03Mathematik/Informatik

ThermoelasticityBalance of momentum

ρ(ξ)∂2u

∂t2(ξ, t)− div((Id +∇u)S(ξ, t)) = f(ξ, t)

Balance of energy

ρ(ξ)ce∂θ

∂t(ξ, t)− div(κ∇θ(ξ, t)) = θ

∂S

∂θ:∂E

∂t+ r(ξ, t),

(ξ, t) ∈ Ω× (0,T )

ce – specific heat (at constant deformation)κ – heat conductivityr – volume density of heat supply

Soren Boettcher 16 / 26Elasticity Thermoelasticity Plasticity Outlook References

Page 17: Mathematical Problems in Elasticity and Plasticity - An ... Elasticity and Plasticity An Introduction ... Gurtin, Introduction to Continuum Mechanics ... Mathematical Problems in Elasticity

Zentrum furTechnomathematik

Fachbereich 03Mathematik/Informatik

Thermoelasticitylinearization classical linear thermoelasticity

ρ∂2u

∂t2− div(2µε+ λ tr(ε) Id) + grad(3Kαθ) = f

ρce∂θ

∂t− div(κ∇θ) + 3Kαθ0 div

(∂u

∂t

)= r in Ω× (0,T )

u(x , 0) = u0,∂u

∂t= u1, θ(x , 0) = θ0 in Ω

u = 0 on Γ0 × (0,T )

σ · νΓ1 = 0 on Γ1 × (0,T )

κ∇θ · ν∂Ω = δθ(θ − θΓ) on ∂Ω× (0,T )

Soren Boettcher 17 / 26Elasticity Thermoelasticity Plasticity Outlook References

Page 18: Mathematical Problems in Elasticity and Plasticity - An ... Elasticity and Plasticity An Introduction ... Gurtin, Introduction to Continuum Mechanics ... Mathematical Problems in Elasticity

Zentrum furTechnomathematik

Fachbereich 03Mathematik/Informatik

Thermoelasticity

δθ – heat-exchange coefficient

θΓ – temperature of the surrounding medium

Vu := V , Hu := H , Vθ := W 1,2(Ω), Hθ := L2(Ω)

Theorem (existence/uniqueness: dynamic problem)

ρ, µ, λ, ce , κ, θ0, δθ ∈ R+, θΓ ∈ L∞(∂Ω), u0 ∈ Vu, u1 ∈ Hu,f, f ′ ∈ L2(0,T ;Hu), r , r ′ ∈ L2(0,T ;V ∗θ )

∃! weak solution (u, θ) ∈ L2(0,T ;Vu)× L2(0,T ;Vθ) with

u′ ∈ L2(0,T ;Vu), u′′ ∈ L2(0,T ;Hu), θ′ ∈ L2(0,T ;Vθ)

Soren Boettcher 18 / 26Elasticity Thermoelasticity Plasticity Outlook References

Page 19: Mathematical Problems in Elasticity and Plasticity - An ... Elasticity and Plasticity An Introduction ... Gurtin, Introduction to Continuum Mechanics ... Mathematical Problems in Elasticity

Zentrum furTechnomathematik

Fachbereich 03Mathematik/Informatik

Introduction to PlasticityPreliminary observation: consider a metal rod (e.g. steel)that is subjected to a traction force σ and that in consequenceundergoes relative elongation ε

Soren Boettcher 19 / 26Elasticity Thermoelasticity Plasticity Outlook References

Page 20: Mathematical Problems in Elasticity and Plasticity - An ... Elasticity and Plasticity An Introduction ... Gurtin, Introduction to Continuum Mechanics ... Mathematical Problems in Elasticity

Zentrum furTechnomathematik

Fachbereich 03Mathematik/Informatik

Elastic Perfectly Plastic Case(Prandtl-Reuss law)

Generalization: plasticity describes the deformation of amaterial undergoing non-reversible changes of shape inresponse to applied forces

(deviatoric) stress exceeds a critical value material willundergo plastic deformation; critical stress can be tensileor compressive

plastic deformation is isochoric or volume preserving

hydrostatic pressure (i.e. isotropic stress) no plasticdeformation

material behaviour in plasticity is scleronomic

Soren Boettcher 20 / 26Elasticity Thermoelasticity Plasticity Outlook References

Page 21: Mathematical Problems in Elasticity and Plasticity - An ... Elasticity and Plasticity An Introduction ... Gurtin, Introduction to Continuum Mechanics ... Mathematical Problems in Elasticity

Zentrum furTechnomathematik

Fachbereich 03Mathematik/Informatik

Elastic Perfectly Plastic Case

Formulation of the material law:

small deformation: ε = ε(u) = εe + εp

volume preserving: tr(εp) = 0

Hooke’s law: σ = 2µεe + λ tr(εe) Id

yield criterion: F (σ,σ0) =

√2

3σ∗ : σ∗︸ ︷︷ ︸

=:σvM

−σ0 ≤ 0,

F – yield functionσ∗ := σ − 1

3 tr(σ) Id (deviatoric stress)σvM – von Mises stressσ0 – yield stress

Soren Boettcher 21 / 26Elasticity Thermoelasticity Plasticity Outlook References

Page 22: Mathematical Problems in Elasticity and Plasticity - An ... Elasticity and Plasticity An Introduction ... Gurtin, Introduction to Continuum Mechanics ... Mathematical Problems in Elasticity

Zentrum furTechnomathematik

Fachbereich 03Mathematik/Informatik

Elastic Perfectly Plastic Case

Formulation of the material law:

increase of plastic strain proportional to deviatoric stress:

ε′p = Λσ∗ (σ∗ = 2µ(ε∗ + εp))

in which (Λ – plastic multiplier)

Λ = 0, if F (σ,σ0) < 0

Λ ≥ 0, if F (σ,σ0) = 0 (yield condition)

(stresses with F (σ,σ0) > 0 are not allowed)

Soren Boettcher 22 / 26Elasticity Thermoelasticity Plasticity Outlook References

Page 23: Mathematical Problems in Elasticity and Plasticity - An ... Elasticity and Plasticity An Introduction ... Gurtin, Introduction to Continuum Mechanics ... Mathematical Problems in Elasticity

Zentrum furTechnomathematik

Fachbereich 03Mathematik/Informatik

Elastic Perfectly Plastic Case

Lemma (equivalent variational inequality)

(ε′p, τ − σ

)≤ 0 ∀ τ ∈ KF , KF :=

τ ∈ R3×3

sym : F (τ ,σ0) ≤ 0

Lemma (equivalent differential inclusion)

Find σ∗ ∈ W 1,2(0,T ;K ) s.t.

σ∗t (t) + ∂χK (σ∗(t)) 3 2µε∗(ut(t)) f.a.a. t, σ∗(0) = 0

K := τ ∈ L2(Ω)3×3 : τ (x) ∈ KF a.e.

Soren Boettcher 23 / 26Elasticity Thermoelasticity Plasticity Outlook References

Page 24: Mathematical Problems in Elasticity and Plasticity - An ... Elasticity and Plasticity An Introduction ... Gurtin, Introduction to Continuum Mechanics ... Mathematical Problems in Elasticity

Zentrum furTechnomathematik

Fachbereich 03Mathematik/Informatik

Elastic Perfectly Plastic Case

Mathematical formulation of elastoplasticity

ρutt − div(2µε+ λ tr(ε) Id) = − div(2µεp) + f

σ∗t + ∂χK (σ∗) 3 2µε∗(ut)

σ∗(0) = 0

plus initial and boundary conditions

Theorem (existence/uniqueness: elastoplasticity)

suitable assumptions ∃! weak solution (u,σ∗) ∈ W 1,2(0,T ;V )×W 1,2(0,T ;K )

Soren Boettcher 24 / 26Elasticity Thermoelasticity Plasticity Outlook References

Page 25: Mathematical Problems in Elasticity and Plasticity - An ... Elasticity and Plasticity An Introduction ... Gurtin, Introduction to Continuum Mechanics ... Mathematical Problems in Elasticity

Zentrum furTechnomathematik

Fachbereich 03Mathematik/Informatik

Outlook

existence/uniqueness results

additional regularity results

numerical simulations

material parameters

thermoelastoplasticity

(isotropic/kinematic) hardening

phase transitions

transformation-induced plasticity

application: SFB 570 – Distortion Engineering

Soren Boettcher 25 / 26Elasticity Thermoelasticity Plasticity Outlook References

Page 26: Mathematical Problems in Elasticity and Plasticity - An ... Elasticity and Plasticity An Introduction ... Gurtin, Introduction to Continuum Mechanics ... Mathematical Problems in Elasticity

Zentrum furTechnomathematik

Fachbereich 03Mathematik/Informatik

ReferencesAltenbach/Altenbach, Continuum Mechanics

Betten, Continuum Mechanics

Braess, Finite Elements

Chandrasekharaiah/Debnath, Continuum Mechanics

Ciarlet, Mathematical Elasticity

Dautray/Lions, Mathematical Analysis and Numerical Methods for Science andTechnology, Vol. 1/5

Duvant/Lions, Inequalities in Mechanics and Physics

Gurtin, Introduction to Continuum Mechanics

Han/Reddy, Plasticity

Haupt, Continuum Mechanics and Theory of Materials

Marsden/Hughes, Mathematical Foundations of Elasticity

Necas/Hlavacek, Mathematical Theory of elastic and elastoplastic bodies

Temam, Mathematical Problems in Plasticity

Valent, Boundary Value Problems of Finite Elasticity

Zeidler, Nonlinear functional analysis and its applications, Vol. 4

Soren Boettcher 26 / 26Elasticity Thermoelasticity Plasticity Outlook References