mathematics_numerical-graphical solutions of the non-linear vibration model

13
NUMERICAL - GRAPHICAL SOLUTIONS OF THE NON-LINEAR VIBRATION MODEL with discrete data input by CO.H . TRAN University of Natural Sciences, HCMC Vietnam [email protected] & [email protected] Copyright 2007 May 06 2007 Abstract : The system of non-linear differential quations with discrete input function is solved by Runge-Kutta method . Subjects: Vibration Mechanics , The Differential equations . NOTE: This worksheet demonstrates Maple's capabilities in the design and finding the numerical solution of the non-linear vibration system . All rights reserved. Copying or transmitting of this material without the permission of the authors is not allowed . LOI GIAI SO VA DO THI CUA MAU DAO DONG PHI TUYEN voi so lieu roi rac TRAN HONG CO Dai hoc Khoa hoc tu nhien tp HCM Vietnam [email protected] & [email protected] Step 1 : System Definition. > restart: eq1:=(m1+m2)*Diff(y,t$2)*l*cos(phi)+(m1*l^2+J)*Diff(phi,t$2)+m1*g*l*cos(phi)=f(t);eq2:=(m1+m2)*Diff(y,t$2)+m1*l*cos(phi) *Diff(phi,t$2)-m1*l*Diff(phi,t)^2*cos(phi)+b*Diff(y,t)+c1*y+c3*y^3 =h(t); (1.1)

Upload: co-tran

Post on 18-Mar-2016

220 views

Category:

Documents


1 download

DESCRIPTION

Abstract : The system of non-linear differential quations with discrete input function is solved by Runge-Kutta method . Subjects: Vibration Mechanics , The Differential equations . [email protected] & [email protected] Copyright 2007 May 06 2007 by CO.H . TRAN University of Natural Sciences, HCMC Vietnam TRAN HONG CO Dai hoc Khoa hoc tu nhien tp HCM Vietnam [email protected] & [email protected] (1.1)

TRANSCRIPT

Page 1: MATHEMATICS_NUMERICAL-GRAPHICAL SOLUTIONS OF THE NON-LINEAR VIBRATION MODEL

NUMERICAL - GRAPHICAL SOLUTIONS OF THE NON-LINEAR VIBRATION MODEL

with discrete data input

by CO.H . TRAN University of Natural Sciences,

HCMC Vietnam

[email protected] & [email protected] Copyright 2007 May 06 2007

Abstract : The system of non-linear differential quations with discrete input function is solved by Runge-Kutta method . Subjects: Vibration Mechanics , The Differential equations . NOTE: This worksheet demonstrates Maple's capabilities in the design and finding the numerical solution of the non-linear vibration system .

All rights reserved. Copying or transmitting of this material without the permission of the authors is not allowed .

LOI GIAI SO VA DO THI CUA MAU DAO DONG PHI TUYEN

voi so lieu roi rac

TRAN HONG CO Dai hoc Khoa hoc tu nhien

tp HCM Vietnam

[email protected] & [email protected] Step 1 : System Definition. > restart:

eq1:=(m1+m2)*Diff(y,t$2)*l*cos(phi)+(m1*l^2+J)*Diff(phi,t$2)+m1*g*l*cos(phi)=f(t);eq2:=(m1+m2)*Diff(y,t$2)+m1*l*cos(phi)*Diff(phi,t$2)-m1*l*Diff(phi,t)^2*cos(phi)+b*Diff(y,t)+c1*y+c3*y^3 =h(t);

(1.1)

Administrator
COHONGTRAN
Page 2: MATHEMATICS_NUMERICAL-GRAPHICAL SOLUTIONS OF THE NON-LINEAR VIBRATION MODEL

(1.1)

> with(plots): readlib(spline): with(inttrans):

Warning, the name changecoords has been redefined

Step 2 : Fitting the experimental data by Spline function. > eq1:=(m1+m2)*Diff(y,t$2)*l*cos(phi)+(m1*l^2+J)*Diff(phi,t$2)+m1*g*l*cos(phi)=f(t);eq2:=(m1+m2)*Diff(y,t$2)+m1*l*cos(phi)

*Diff(phi,t$2)-m1*l*Diff(phi,t)^2*cos(phi)+b*Diff(y,t)+c1*y+c3*y^3 =h(t);

(2.1)

(2.1)

> datax1:=[0,0.5,1,1.5,2,2.5,3,3.5,4]; datay1:=[0.2,0.5,0.7,0.4,0.65,1.2,2.4,0.9,1.1]; pldataf:= zip((x,y)->[x,y], datax1, datay1): dataplot1 := pointplot(pldataf, symbol=diamond);

(2.2)

(2.2)

(2.2)

> Ft:=spline(datax1, datay1, w, cubic);

Page 3: MATHEMATICS_NUMERICAL-GRAPHICAL SOLUTIONS OF THE NON-LINEAR VIBRATION MODEL

(2.3)

> dothif:=plot(Ft, w=0..5, color=red): display(dataplot1,dothif, axes=frame);

> fnum:=subs(w=t,Ft);eq1:=subs(f(t)=fnum,eq1);

TRANHONGCO
Approved
Page 4: MATHEMATICS_NUMERICAL-GRAPHICAL SOLUTIONS OF THE NON-LINEAR VIBRATION MODEL

(2.4)

> datax2:=[0,0.5,1,1.5,2,2.5,3,3.5,4]; datay2:=[0.3,0.5,0.58,0.4,0.85,1.2,1.4,0.9,1.55]; Ht := zip((x,y)->[x,y], datax2, datay2): dataplot2 := pointplot(Ht, symbol=cross);

(2.5)

(2.5)

(2.5)

> Ht:=spline(datax2, datay2, w, cubic);

Page 5: MATHEMATICS_NUMERICAL-GRAPHICAL SOLUTIONS OF THE NON-LINEAR VIBRATION MODEL

(2.6)

> dothih:=plot(Ht, w=0..5, color=blue): display(dataplot2,dothih, axes=frame);

> h1:=subs(w=t,Ht);eq2:=subs(h(t)=h1,eq2);

Page 6: MATHEMATICS_NUMERICAL-GRAPHICAL SOLUTIONS OF THE NON-LINEAR VIBRATION MODEL

(2.7)

Step 3 : The non-linear vibration system with discrete data input . > T:=5;m1:=1; m2:=1; b:=5; c1:= 1;c3:=1 ; l:= 0.05 ; J:= 0.5 ; g:=9.8;n:=2;

> with(DEtools):with(plots): alias(y=y(t), phi=phi(t), y0=y(0),p0=phi(0), yp0=D(y)(0),pp0=D(phi)(0)); eq1 := .10*Diff(y,`$`(t,2))*cos(phi)+.5025*Diff(phi,`$`(t,2))+.490*cos(phi) = PIECEWISE([.2000000000+.559628129599999968*t+.161487481600000010*t^3, t < .5],[.1596281296+.680743740799999997*t+.242231222385861644*(t-.5)^2-1.60743740800000001*(t-.5)^3, t < 1],[.9826030927-.282603092700000002*t-2.16892488954344652*(t-1)^2+3.06826215099999988*(t-1)^3, t < 1.5],[.6254970546-.150331369699999995*t+2.43346833578792321*(t-1.5)^2-2.26561119299999980*(t-1.5)^3, t < 2],[-.5178571430+.583928571299999977*t-.964948453608247214*(t-2)^2+3.99418262299999994*(t-2)^3, t < 2.5],[-5.336542708+2.61461708300000017*t+5.02632547864506574*(t-2.5)^2-10.9111192900000002*(t-2.5)^3, t < 3],[4.027190721-.542396906999999984*t-11.3403534609720165*(t-3)^2+12.8502945499999992*(t-3)^3, t < 3.5],[8.757603092-2.24502945500000006*t+7.93508836524300420*(t-3.5)^2-5.29005890999999994*(t-3.5)^3, otherwise]); eq2 := 2*Diff(y,`$`(t,2))+.5e-1*cos(phi)*Diff(phi,`$`(t,2))-.5e-1*Diff(phi,t)^2*cos(phi)+5*Diff(y,t)+y+y^3 = PIECEWISE([.3000000000+.401389911599999982*t-.555964654000000014e-2*t^3, t < .5],[.3013899116+.397220176799999990*t-.833946980854194387e-2*(t-.5)^2-.932201767300000039*(t-.5)^3, t < 1],[.8902706185-.310270618499999984*t-1.40664212076583217*(t-1)^2+2.61436671600000015*(t-1)^3, t < 1.5],[.342065540e-1+.243862297300000003*t+2.51490795287187030*(t-1.5)^2-2.40526509599999994*(t-1.5)^3, t < 2],[-1.059642857+.954821428699999974*t-1.09298969072164964*(t-2)^2+1.16669366700000010*(t-2)^3, t < 2.5],[-.642129970+.736851987999999958*t+.657050810014727760*(t-2.5)^2-2.66150957300000002*(t-2.5)^3, t < 3],[3.206688144-

Page 7: MATHEMATICS_NUMERICAL-GRAPHICAL SOLUTIONS OF THE NON-LINEAR VIBRATION MODEL

.602229381300000033*t-3.33521354933726099*(t-3)^2+5.07934462299999990*(t-3)^3, t < 3.5],[1.347770617-

.127934461999999998*t+4.28380338733431554*(t-3.5)^2-2.85586892500000022*(t-3.5)^3, otherwise]); G:=dsolve({eq1,eq2,y0=0,p0=0,yp0=0,pp0=0.1},[y,phi],'numeric'): print(" Loi giai so bang phuong phap RUNGE - KUTTA "); for i from 0 to T do print(G(i)); od; yy:=t-> rhs(G(t)[2]): pp:=t-> rhs(G(t)[4]): yyp:=t->rhs(G(t)[3]):ppp:=t->rhs(G(t)[5]):plot(yy,0..n*T,color=red,thickness=3,title=`tung do y(t)`); plot(pp,0..n*T,color=blue,thickness=3,title=`goc phi phi(t)`); plot(yyp,0..n*T,color=green,title=`daohamtungdo y'(t)`); plot(ppp,0..n*T,color=black,title=`daohamgocphi phi'(t)`);

TRANHONGCO
Approved
Page 8: MATHEMATICS_NUMERICAL-GRAPHICAL SOLUTIONS OF THE NON-LINEAR VIBRATION MODEL
Page 9: MATHEMATICS_NUMERICAL-GRAPHICAL SOLUTIONS OF THE NON-LINEAR VIBRATION MODEL
Page 10: MATHEMATICS_NUMERICAL-GRAPHICAL SOLUTIONS OF THE NON-LINEAR VIBRATION MODEL
TRANHONGCO
Approved
Page 11: MATHEMATICS_NUMERICAL-GRAPHICAL SOLUTIONS OF THE NON-LINEAR VIBRATION MODEL
TRANHONGCO
Approved
Page 12: MATHEMATICS_NUMERICAL-GRAPHICAL SOLUTIONS OF THE NON-LINEAR VIBRATION MODEL

Animation Code Activate the following procedure twice to obtain the result completely . (use Maple 9.5 & 10 )

Mohinh procedure > mohinh:=proc(M,lan)

> mohinh(0.75,3);

TRANHONGCO
Approved
Page 13: MATHEMATICS_NUMERICAL-GRAPHICAL SOLUTIONS OF THE NON-LINEAR VIBRATION MODEL

Legal Notice: The copyright for this application is owned by the author(s). Neither Maplesoft nor the author are responsible for any errors contained within and are not liable for any damages resulting from the use of this material. This application is intended for non-commercial, non-profit use only. Contact the author for permission if you wish to use this application in for-profit activities.