mathematicsoftheopticalfiber communication · mathematicsoftheopticalfiber communication: nonlinear...

42
Mathematics of the Optical Fiber Communication: Nonlinear Fourier Transforms and Information Theory Mansoor I. Yousefi Communications and Electronics Department Télécom ParisTech, LTCI, Université Paris-Saclay, France Horizon Maths 2017 - Mathématiques et réseaux Télécom ParisTech, Paris, France November 30, 2017

Upload: others

Post on 17-May-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Mathematics of the Optical FiberCommunication:

Nonlinear Fourier Transforms and Information Theory

Mansoor I. Yousefi

Communications and Electronics DepartmentTélécom ParisTech, LTCI, Université Paris-Saclay, France

Horizon Maths 2017 - Mathématiques et réseaux

Télécom ParisTech, Paris, FranceNovember 30, 2017

Page 2: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Thanks to:

Frank Kschischang (U. of Toronto)

Gerhard Kramer (TU Munich)

Hartmut Haffermann & Jan-Willem Goossens (Huawei Paris)

Xianhe Yangzhang (University College London)

also the orgonizers!

2

Page 3: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Table of Contents

1 Introduction to Optical Networks

2 Nonlinear Fourier Transforms

3 Information Theory of Nonlinear Channels

3

Page 4: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Wired Communication Networks

TX1

RX1

RX2

TX2 MUX

TX

Amplifier

span 1 span 2 span N

Fiber Amplifier MUX Fiber Amplifier MUX Fiber Amplifier

RX

(1) Multiple users with add-drop multiplexers (ADMs); (2) interference unknownto the user-of-interest (UOI); (3) network topology unknown

4

Page 5: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Optical Fiber

‚ Adtantages: Low-loss („ 0.2 dB/km), huge bandwidth („5-10 THzbandwidth), all-optical prosseing (laser sources, amplifiers, detectors)

‚ Challenges: Refractive index is a function of frequency and intensity

npω, |q|2q “ n0 ` n1pω ´ ω0q ` n2pω ´ ω0q2 ` ¨ ¨ ¨loooooooooooooooooooooooomoooooooooooooooooooooooon

dispersion

` γ0|q|2loomoon

Kerr nonlinearity

` ¨ ¨ ¨

intuition

1 Dispersion: n depends on frequency

2 Kerr nonlinearity: the intensity of thesignal modifies the refractive index!

3 High reliability: Pe “ 10´15

4 High speed: 400 Gb/s

5

Page 6: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Stochastic Nonlinear Schrödinger Equation

optical fiberqpt, 0qinput waveform

qpt,Lqoutput waveform

LPulse propagation in optical fibers can be modeled by thestochastic nonlinear Schrödinger (NLS) equation:

Bqpt, zqBz “ B2qpt, zq

Bt2loooomoooon

dispersion

˘ 2j |qpt, zq|2qpt, zqlooooooooomooooooooon

nonlinearity

` npt, zqloomoon

noise

qpt, zq is the signal, t is time, z is distanceDistributed white Gaussian noise` focusing regime, ´ defocusing regimeVectorial generalizations exit

6

Page 7: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Fourier Analysis of the NLS EquationAssume a Fourier series with variable coefficients for qpt, zq at z ą 0

qpt, zq “N´1ÿ

k“0

qkpzqe j2πkWt .

Substituting (1) into the NLS equation

jBqkpzqBz “ ´4π2W 2k2qkpzq

looooooooomooooooooon

dispersion

` 2|qkpzq|2qkpzqlooooooomooooooon

SPM

` 4qkpzqÿ

`‰k

|q`pzq|2loooooooooomoooooooooon

XPM

` 2ÿ

`‰m`‰k

q`pzqq˚mpzqqk`m´`pzqloooooooooooooooomoooooooooooooooon

FWM

`nkpzq,

in which nk are the noise coordinates and where we have identified thedispersion, self-phase modulation (SPM), cross-phase modulation (XPM)and four-wave mixing (FWM) terms.

7

Page 8: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Nonlinear Effects in Fibers

nonlinearitynoise

dispersion

, interactions

, deterministicsignal Ø signal

, inter-channel

, XPM , FWM

, intra-channel

, SPM , XPM , FWM

, stochastic

, signal Ø noise

, inter-channel

, intra-channel

, noise Ø noise

SPM & XPM= self- & cross- phase modulation; FWM = four-wave mixing.8

Page 9: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Example of Signal Propagation

−15 −10 −5 0 5 10 150

1

2

3

4

t

|q(t)|

z = 0 km

9

Page 10: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Example of Signal Propagation

−15 −10 −5 0 5 10 150

1

2

3

4

t

|q(t)|

z = 1000 km

9

Page 11: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Example of Signal Propagation

−15 −10 −5 0 5 10 150

1

2

3

4

t

|q(t)|

z = 5000 km

9

Page 12: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Example of Signal Propagation

−15 −10 −5 0 5 10 150

1

2

3

4

t

|q(t)|

z = 0 kmz = 1000 kmz = 5000 km

9

Page 13: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

The State-of-the-Art Approach

1 TX: Wavelength-division multiplexing (WDM)

inputoutputnoise

loomoon

COI

loomoon

out of band

loomoon

out of band f

W guard band

2 RX: Digital back-propagation (BP)

qpt,Lq “ KNLSpqpt, 0qq qpt, 0q “ K´1NLSpqpt,Lqq

qpt, 0q qpt, 0q

10

Page 14: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Current Achievable Rates

0 10 20 30 40 50 602

4

6

8

10

12

14

log(

1+

SNR)

nonlinearityimpact

SNR [dB]

Ach

ieva

ble

rate

[bit

s/s/

Hz]

Linear AWGN channelsNonlinear fiber channel

Fiber nonlinearity places an upper limit on capacity

Nonlinear Shannon limit in fiber

Capacity crunch in fiber!

Central Question:Does fiber nonlinearity really place an upper limit on achievable spectralefficiency?

11

Page 15: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Origin of the Capacity Limitation – 1Let T : H ÞÑ H be a linear map:

y “ T pxq ` n,

where x and y are input and output signals and n is noise.

Projecting signals onto an orthonormal basis tφkukPN:

x , y , n( “

8ÿ

k“1

xk , yk , nk(

φk , Thus:

yk “ xkxTφk , φky `ÿ

i‰k

xixTφi , φkylooooooomooooooon

linear interactions

`nk

However, if tφkptquk is the set of eigenvectors of T , then

yk “ λkxk ` nk

where λk is eigenvalue.12

Page 16: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Origin of the Capacity Limitations – 2

Capacity crunch occurs if the basis used for communication is notcompatible with the channel.

Deterministic nonlinear effects are not a fundamental limitation. Itis the method of the communication causing the problem

After abstracting away non-essential aspects, current methods, inessence, modulate linear-algebraic modes

In nonlinear channels, this introduces interference and ISI

BP cannot remove the interference in a network scenario

Linearmultiplexing

Pulse trains

Polarization-division multiplexing

Time-division multiplexing

Space-division multiplexing

Orthogonal frequency-division multiplexing

Wavelength-division multiplexing

13

Page 17: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Nonlinear frequency-division multiplexing (NFDM)

It was realized that the NLS equation supports nonlineareigenfunctions which have a crucial independence property, thekey to build a multiuser system

The tool necessary to reveal signal degrees of freedom is

Nonlinear Fourier Transform

Based on NFT, we constructed an NFDM, which can be viewed as ageneralization of OFDM to optical fiber

Exploiting the integrability, NFDM modulates non-interactingdegrees-of-freedom

Capacity of the NFDM in the deterministic model is infinite

14

Page 18: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Table of Contents

1 Introduction to Optical Networks

2 Nonlinear Fourier Transforms

3 Information Theory of Nonlinear Channels

15

Page 19: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Linear Convolutional Channel

Let Thpxq “ h ˙ x

yptq “ hptq˙ xptq ` nptq , 0 ď t ă T .

The eigenvectors and eigenvalues of Thpxq “ h ˙ x are

φkptq “ 1?T

expp´jkω0tq, ω0 “ 2πT,

and λk “ Fphptqqpkω0q.Fourier transform maps convolution into a multiplication operator

Y pωq “ Hpωq•X pωq ` Npωq , ω “ kω0.

1 Frequency ω is conserved in the channel

2 Channel is decomposed into parallel independent channels3 OFDM: information is encoded in spectral amplitudes X pωq

16

Page 20: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

General Waveform Channels

Instantaneous waveform channel

channelq0ptq qptq

qptq “ K pq0ptqq ` nptqEvolutionary channel. Here the signal evolves according to anevolution equation in 1+1 dimensions (time t, distance z)

BqBz “ K pqpt, zqq ` nptq

Examples: (qt :“ Btq)‚ K pqq “ j |q|2 (memoryless) ‚ K pqq “ ´jpqtt ` 2|q|2qq(NLS)‚ K pqq “ qtt (heat eq.) ‚ K pqq “ qttt ` 6qqt (KdV)

17

Page 21: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Isospectral Flow

A Key IdeaWe seek an invariant under evolution (in the absence of noise). LetL be a linear differential operator (depending on qpt, zq). It may bepossible to find an L whose (eigenvalue) spectrum remains constant,even as q evolves (in z).

channel

Lpq0ptqq Lpqptqq

q0ptq qptq

0 ¨ ¨ ¨ z ¨ ¨ ¨ L

qpt, 0q ¨ ¨ ¨ qpt, zq ¨ ¨ ¨ qpt,Lq

Lpqpt, 0qq ¨ ¨ ¨ Lpqpt, zqq ¨ ¨ ¨ Lpqpt,Lqq

Constant Spectrum18

Page 22: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Isospectral Families of Operators

If the eigenvalues of Lpzq do not depend on z , then we refer toLpzq as an isospectral family of operators.

Example:The operator L can be a matrix

Lpzq “ˆ

cospzq sinpzqsinpzq ´ cospzq

˙

, λ “ ˘1, Lpzq “ G pzqΛG´1pzq,

where Λ “ diagp1,´1q.

Compact self-adjoint operators can be diagonalized similarly, viaHilbert-Schmidt Spectral Theorem. Here, Λ is a multiplicationoperator.

19

Page 23: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Spectrum of Bounded Linear Operators

Spectrum of an operator is defined as

σpLq “ tλ ˇˇ L´ λI is not invertibleu

Example: Linear Schrödingeroperator

Lpqpt, zqq “ ´ B2

Bt2 ` qpt, zq. <pxq

=pxqspectrum of L

Classification: Spectrum can be discrete (like matrices),continuous, residual, essential, etc.

20

Page 24: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

The Lax Equation

We have Lpzq “ G pzqΛG´1pzq, where Λ does not depend on z .Assuming that Lpzq varies smoothly with z , we can form

dLpzqdz

“ G 1ΛG´1 ` GΛ`´G´1G 1G´1˘

“ G 1G´1loomoon

Mpzq

`

GΛG´1˘

loooomoooon

Lpzq

´ `

GΛG´1˘

loooomoooon

Lpzq

G 1G´1loomoon

Mpzq

“ MpzqLpzq ´ LpzqMpzq “ rM, Ls , (1)

where rM, Ls ∆“ ML´ LM is the commutator bracket. In otherwords, every diagonalizable isospectral operator Lpzq satisfies thedifferential equation (1).The converse is also true.

21

Page 25: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Lax Pairs

LemmaLet Lpzq be a diagonalizable family of operators. Then Lpzq is anisospectral family if and only if it satisfies

dL

dz“ rM, Ls, (2)

for some operator M, where rM, Ls “ ML´ LM.

DefinitionThe operators L and M satisfying (2) are calleda Lax Pair (after Peter D. Lax, who introducedthe concept [1968]).

22

Page 26: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Integrable System

Let L and M be operators (depending on qpt, zq).BLBz “ rM, Ls ðñ Bq

Bz “ K pqqoperator form signal form

Example [KdV]: Let qpt, zq be a real-valued function and choose

L “ B2t ` q3, M “ 4B3

t ` qt ` qBt .

Then:BLBz “ rM, Ls ðñ qz “ qttt ` qqt .

23

Page 27: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

NLS Equation

For the normalized nonlinear Schödinger equation

jqz “ qtt ` 2|q|2q,Zakharov and Shabat (1972) found a Lax pair:

L “ j

¨

˚

˝

BBt ´qpt, zq

´q˚pt, zq ´ BBt

˛

,

M “ˆ

2jλ2 ´ j |qpt, zq|2 ´2λqpt, zq ´ jqtpt, zq2λq˚pt, zq ´ jq˚t pt, zq ´2jλ2 ` j |qpt, zq|2

˙

.

As qpt, zq evolves according to the NLS equation, the spectrum ofL is preserved.

Thus the NLS equation is indeed generated by a Lax pair!

24

Page 28: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Nonlinear Fourier Transform. Summary-1

L “ j

¨

˚

˝

BBt ´qptq

´q˚ptq ´ BBt

˛

Generalized frequencies: eigenvalues λ of L

Nonlinear Fourier coefficients: a, b where

V pλq “ˆ

ab

˙

is a normalized eigenvector of L

25

Page 29: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Nonlinear Fourier Transform. Summary-2

The Zakharov-Shabat operator has two types of spectra:

A discrete (or point) spectrum which occurs in C` andcorresponds to solitons

A continuous spectrum, which in general includes the wholereal line R

<(λ)

=(λ)

26

Page 30: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Nonlinear Fourier Transform. Summary-3

−1.5 −1 −0.5 0 0.5 1 1.5

A

t

q(t)

−4 −2 0 2 4−5

0

5

0

1

spectrum of L

<λ=λ

∣ ∣ ∣NFT(q)(λ)∣ ∣ ∣

ba′

ba

0

0.5

1

1.5

2

2.5

-30 -20 -10 0 10 20 30

|q(λ)|

λ

-10123456

-1 -0.5 0 0.5 1

ℑ(λ)

ℜ(λ)

0

0.5

1

1.5

2

2.5

-40 -30 -20 -10 0 10 20 30 40

|q(λ)|

λ

-10123456

-1 -0.5 0 0.5 1

ℑ(λ)

ℜ(λ)

0

0.5

1

1.5

2

2.5

-40 -30 -20 -10 0 10 20 30 40|q(

λ)|

λ

-10123456

-1 -0.5 0 0.5 1

ℑ(λ)

ℜ(λ)

27

Page 31: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Properties of the NFT

1 The NFT shares some of properties of the Fourier transform (FT)

2 FT is a special case of the NFT if ||q||L1 ! 1

3

Linear: yptq “ hptq˙ xptq ÐÑ Y pωq “ HpωqX pωqIntegrable: yptq “ xptq˙ pL,M;Lq ÐÑ NFTpyqpλq “ Hpλ,LqNFTpxqpλq

where Hpλ,Lq “ e´4jλ2L is the channel filter. The generalizedfrequencies are invariant in the channel.

4 When there are a finite number of parameters, the solutions can beexpressed via theta functions.Let K be an N ˆ N complex matrix with =pKq ą 0. The Riemanntheta function is defined by

θpt|Kq “ÿ

mPZN

exp´

2πjpmT t` 12mTKmq

¯

, t P CN .

28

Page 32: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Launching a Pulse (revisited)

0

0.5

1

1.5

2

2.5

3

3.5

4

-15 -10 -5 0 5 10 15

|q(t)|

t

z=0 kmz=1000 kmz=5000 km

29

Page 33: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Launching a Pulse (revisited)

0

1

2

3

4

5

6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

|q(λ)|

λ

-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1

ℑ(λ)

ℜ(λ)

z=0 km

29

Page 34: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Launching a Pulse (revisited)

0

1

2

3

4

5

6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

|q(λ)|

λ

-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1

ℑ(λ)

ℜ(λ)

z=1000 km

29

Page 35: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Launching a Pulse (revisited)

0

1

2

3

4

5

6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

|q(λ)|

λ

-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1

ℑ(λ)

ℜ(λ)

z=5000 km

29

Page 36: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

NFDM vs WDMW “ 60 GHz, z “ 2000 km, 15 users, one symbol per user, defocusing.

´10 0 100

0.5

1

λ

|NFTpλq|

input output

NFDM

´6 ´4 ´2 0 2 4 60

1

2

f

|qpfq|

input output

WDM

−25 −20 −15 −10 −5 00

2

4

6

8

10

12

14

P [dBm]

Achievable

rate

[bits/2D

]

AWGNNFDMWDM

´1.42 ´0.71 0 0.71 1.42

¨1.41

´0.71

0

0.71

¨1.41P “ ´0.33 dBmWDM

<s r?mWs

=sr?

mWs

´1.42 ´0.71 0 0.71 1.42

¨1.41

´0.71

0

0.71

¨1.41P “ ´0.33 dBmNFDM

<s r?mWs

=sr?

mWs

Focusing regime, vectorial models, experiments, robustness toperturbations, ... 30

Page 37: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Table of Contents

1 Introduction to Optical Networks

2 Nonlinear Fourier Transforms

3 Information Theory of Nonlinear Channels

31

Page 38: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Shannon’s Formula for Linear Channels

The capacity of a channel pY |X py |xqC “ sup

pX pxq

I pX ;Y q

The mutual information is defined as

I pX ;Y q “ hpY q ´ hpY |X qwhere

hpX q “ ´ż

pxpX q logppX pxqqdx .

For a linear channels

C “ logp1` SNRq, bits/s/Hz

The capacity of optical fiber is unknown, for about 50 years. Evenppy |xq is unknown!

32

Page 39: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Upper Bound

0 10 20 30 40 502

4

6

8

10

12

14

log(

1+

SNR)

nonlinearityimpact

?

SNR [dB]

Ach

ieva

ble

rate

[bit

s/s/

Hz]

upper boundmodified lower boundlower bound

TheoremConsider the discrete-time periodic model Cn ÞÑ Cn. We have

CpPq ď logp1` SNRq.

The proof combines:

Energy and entropy conservation

Shannon’s entropy power inequality33

Page 40: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Proof: Invariant Measures for PDEs

Lemma (Volume Preservation in NLS)

Let Ω “ p`2, E , µq be a measure space, where `2 ∆“

qn | ř |qk |2 ă 8(

and

µpAq “ volpAq “ż

A

˜

k“1

dqkdq˚k

¸

, @A P E ,

is the Lebesgue measure. Transformation Tz underlying the NLS equation,as a dynamical system on Ω, is measure-preserving. That is to say

µpTzpAqq “ µpAq, @A P E .

Application 1: Theorem. The flow of Tz is entropy preserving!Application 2: There are invariant measures. Gibbs measure:

dµx “ 1Z

exp

#

´α´

mÿ

i“1

|qi |4 ´ |qi ´ qi´1|2¯

+

i“1

dqi χ||q||ď1

where α ą 0, Z is the partition function, and χS is the indicator function.34

Page 41: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Asymptotic Capacity

TheoremDiscrete-time periodic model Cn ÞÑ Cn:

CpPq “ 1nlogplogPq ` c ,

where c∆“ cpn,Pq ă 8.

With n signal DOFs, n ´ 1 DOFsare asymptotically lost to signal-noise interactions.

−20 −15 −10 −5 04

6

8

10

12

14

signal-signalinteractions

signal-noiseinteractionslog

P +c

P [dBm]

Achievable

rate

[bits/2D

]

AWGNNFDMWDM

35

Page 42: MathematicsoftheOpticalFiber Communication · MathematicsoftheOpticalFiber Communication: Nonlinear Fourier Transforms and Information Theory MansoorI.Yousefi CommunicationsandElectronicsDepartment

Conclusions

We showed examples where advanced mathematics help make progress inlong-standing engineering problems.

Nonlinear Fourier transforms could be used for data transmission

The growth of the capacity is too small compared to the linearchannel

C “ 1nlogplogPq ` c

36