matrix methods (notes only) mae 316 – strength of mechanical components nc state university...

35
Matrix Methods (Notes Only) MAE 316 – Strength of Mechanical Components NC State University Department of Mechanical and Aerospace Engineering Matrix Methods 1

Upload: claude-houston

Post on 19-Dec-2015

220 views

Category:

Documents


0 download

TRANSCRIPT

Matrix Methods(Notes Only)

MAE 316 – Strength of Mechanical ComponentsNC State University Department of Mechanical and Aerospace Engineering

Matrix Methods1

Stiffness Matrix Formation

Matrix Methods2

Consider an “element”, which is a section of a beam with a “node” at each end.

If any external forces or moments are applied to the beam, there will be shear forces and moments at each end of the element.

Sign convention – deflection is positive downward, rotation (slope) is positive clockwise.

L

1 2M1

V1

M2

V2

x

y (+v)

Note: For the element, V and M are internal shear and bending moment.

Stiffness Matrix Formation

Matrix Methods3

Integrate the load-deflection differential equation to find expressions for shear force, bending moment, slope, and deflection.

04

4

dx

vdEI

Vcdx

vdEI 13

3

Mcxcdx

vdEI 212

2

EIcxcx

cdx

dvEI 32

2

1 2

43

2

2

3

1 26cxc

xc

xcEIv

Stiffness Matrix Formation

Matrix Methods4

Express slope and deflection at each node in terms of integration constants c1, c2, c3, and c4.

EI

cvv 4

1 )0(

EI

c

dx

dv 31 )0(

43

22

31

2 26

1)( cLc

LcLc

EILvv

32

21

2 2

1)( cLc

Lc

EIL

dx

dv

Note: ν and θ (deflection and slope) are the same in the element as for the whole beam.

Stiffness Matrix Formation

Matrix Methods5

Written in matrix form

2

2

1

1

4

3

2

1

2

23

01

2

1

26

01

00

1000

v

v

c

c

c

c

EIEI

L

EI

LEIEI

L

EI

L

EI

LEI

EI

Stiffness Matrix Formation

Matrix Methods6

Solve for integration constants.

2

2

1

1

22

2323

4

3

2

1

000

000

2646

612612

v

v

EI

EIL

EI

L

EI

L

EI

L

EIL

EI

L

EI

L

EI

L

EI

c

c

c

c

Stiffness Matrix Formation

Matrix Methods7

Express shear forces and bending moments in terms of the constants.

11)0( cVV

222312131

612612 L

EIv

L

EI

L

EIv

L

EIV

21)0( cMM

2221121

2646 L

EIv

L

EI

L

EIv

L

EIM

12)( cVLV

222312132

612612 L

EIv

L

EI

L

EIv

L

EIV

212)( cLcMLM

2221122

4626 L

EIv

L

EI

L

EIv

L

EIM

Stiffness Matrix Formation

Matrix Methods8

This can also be expressed in matrix form.

Beam w/ one element: matrix equation can be used alone to solve for deflections, slopes and reactions for the beam.

Beam w/ multiple elements: combine matrix equations for each element to solve for deflections, slopes and reactions for the beam (will cover later).

2

2

1

1

2

2

1

1

22

22

3

4626

612612

2646

612612

M

V

M

V

v

v

LLLL

LL

LLLL

LL

L

EI

Cantilever beam with tip load

Examples

Matrix Methods9

L

1 2

P

Cantilever beam with tip moment

Examples

Matrix Methods10

L

1 2Mo

Cantilever beam with roller support and tip moment (statically indeterminate)

Examples

Matrix Methods11

L

1

2Mo

Matrix methods can also be used for beams with two or more elements.

We will develop a set of equations for the simply supported beam shown below.

Multiple Beam Elements

Matrix Methods12

L1

1 32

L2

PElement 1 Element 2

The internal shear and bending moment equations for each element can be written as follows.

Multiple Beam Elements

Matrix Methods13

12

12

11

11

12

12

11

11

211

211

11

211

211

11

31

4626

612612

2646

612612

M

V

M

V

v

v

LLLL

LL

LLLL

LL

L

EI

22

22

21

21

22

22

21

21

222

222

22

222

222

22

32

4626

612612

2646

612612

M

V

M

V

v

v

LLLL

LL

LLLL

LL

L

EI

Element 1

Element 2

Now, let’s examine node 2 more closely by drawing a free body diagram of an infinitesimal section at node 2.

As Δx→0, the following equilibrium conditions apply.

In other words, the sum of the internal shear forces and bending moments at each node are equal to the external forces and moments at that node.

Multiple Beam Elements

Matrix Methods14

Δx

2

P

M12

V12

M21

V21

M12

V12

M2

1

V21

021

12

21

12

MM

PVV

The two equilibrium equations can be written in matrix form in terms of displacements and slopes.

Multiple Beam Elements

Matrix Methods15

026446626

612661212612

3

3

2

2

1

1

22221

22

211

21

22

32

22

21

32

31

21

31

21

12

21

12 P

v

v

v

L

EI

L

EI

L

EI

L

EI

L

EI

L

EI

L

EI

L

EIL

EI

L

EI

L

EI

L

EI

L

EI

L

EI

L

EI

L

EI

MM

VV

Combining the equilibrium equations with the element equations, we get:

Repeat: When the equations are combined for the entire beam, the summed internal shear and moments equal the external forces.

Multiple Beam Elements

Matrix Methods16

22

22

11

11

3

3

2

2

1

1

2222

22

22

32

22

32

22221

22

211

21

22

32

22

21

32

31

21

31

1211

21

21

31

21

31

0

462600

61261200

26446626

612661212612

002646

00612612

M

V

P

M

V

v

v

v

L

EI

L

EI

L

EI

L

EIL

EI

L

EI

L

EI

L

EIL

EI

L

EI

L

EI

L

EI

L

EI

L

EI

L

EI

L

EIL

EI

L

EI

L

EI

L

EI

L

EI

L

EI

L

EI

L

EIL

EI

L

EI

L

EI

L

EIL

EI

L

EI

L

EI

L

EI

Finally, apply boundary conditions and external moments v1=v3=0 (cancel out rows & columns corresponding to v1

and v3)

M11=M2

2=0 (set equal to zero in force and moment vector)

End up with the following system of equations.

Multiple Beam Elements

Matrix Methods17

21 1 1

12 3 3 2 2 21 1 2 1 2 2 2

22 2

1 1 2 1 2 2 3

22 2 2

4 6 20

06 12 12 6 6 6

2 6 6 4 4 2 0

0

6 2 40

EI EI EI

L L L

EI EI EI EI EI EI

L L L L L L v P

EI EI EI EI EI EI

L L L L L L

EI EI EI

L L L

This assembly procedure can be carried out very systematically on a computer.

Define the following (e represents the element number)

Multiple Beam Elements

Matrix Methods18

2

2

1

1

M

V

M

V

f e

2

2

1

1

v

v

d e

22

22

3

4626

612612

2646

612612

LLLL

LL

LLLL

LL

L

EIk e

For the simply supported beam discussed before, we can now formulate the unconstrained system equations.

Multiple Beam Elements

Matrix Methods19

3

3

2

2

1

1

3

3

2

2

1

1

244

243

242

241

234

233

232

231

224

223

222

144

221

143

142

141

214

213

212

134

211

133

132

131

124

123

122

121

114

113

112

111

00

00

00

00

T

R

T

R

T

R

v

v

v

kkkk

kkkk

kkkkkkkk

kkkkkkkk

kkkk

kkkk

Where: v1, θ1, R1, T1 = displacement, slope, force and moment at node 1v2, θ2, R2, T2 = displacement, slope, force and moment at node 2v3, θ3, R3, T3 = displacement, slope, force and moment at node 3

Now apply boundary conditions, external forces, and moments.

Multiple Beam Elements

Matrix Methods20

0

0

0

0

0

00

00

00

00

3

1

3

2

2

1

244

243

242

241

234

233

232

231

224

223

222

144

221

143

142

141

214

213

212

134

211

133

132

131

124

123

122

121

114

113

112

111

R

P

R

v

kkkk

kkkk

kkkkkkkk

kkkkkkkk

kkkk

kkkk

PV

TTT

vv

2

321

31

0

0

We are left with the following set of equations, known as the constrained system equations.

The matrix components are exactly the same as in the matrix equations derived previously (slide 17).

Multiple Beam Elements

Matrix Methods21

0

0

0

0

0

3

2

2

1

244

242

241

224

222

144

221

143

142

214

212

134

211

133

132

124

123

122

Pv

kkk

kkkkkk

kkkkkk

kkk

Simply supported beam with mid-span load

Examples

Matrix Methods22

L/2

1 32

L/2

P

Many beam deflection applications involve distributed loads in addition to concentrated forces and moments.

We can expand the previous results to account for uniform distributed loads.

Distributed Loads

Matrix Methods23

1 2

L

M2V2

M1 V1

w

x

y (+v)

Note: V and M are internal shear and bending moment, w is external load.

Distributed Loads

Matrix Methods24

Integrate the load-deflection differential equation to find expressions for shear force, bending moment, slope, and deflection.

wdx

vdEI

4

4

Vcwxdx

vdEI 13

3

Mcxcwx

dx

vdEI 21

2

2

2

2

EIcxcx

cwx

dx

dvEI 32

2

1

3

26

43

2

2

3

1

4

2624cxc

xc

xc

wxEIv

Distributed Loads

Matrix Methods25

Express slope and deflection at each node in terms of integration constants c1, c2, c3, and c4.

EI

cvv 4

1 )0(

EI

c

dx

dv 31 )0(

43

22

31

4

2 2624

1)( cLc

LcLcwL

EILvv

32

21

3

2 26

1)( cLc

LcwL

EIL

dx

dv

Note: ν and θ (deflection and slope) are the same in the element as for the whole beam.

Distributed Loads

Matrix Methods26

Written in matrix form

EI

wLEI

wLv

v

c

c

c

c

EIEI

L

EI

LEIEI

L

EI

L

EI

LEI

EI

6

24

01

2

1

26

01

00

1000

3

2

4

2

1

1

4

3

2

1

2

23

Distributed Loads

Matrix Methods27

Solve for integration constants.

EI

wLEI

wLv

v

EI

EIL

EI

L

EI

L

EI

L

EIL

EI

L

EI

L

EI

L

EI

c

c

c

c

6

24

000

000

2646

612612

3

2

4

2

1

1

22

2323

4

3

2

1

Distributed Loads

Matrix Methods28

Express shear forces and bending moments in terms of the constants.

11)0( cVV

222312131

612612

2

L

EIv

L

EI

L

EIv

L

EIwLV

21)0( cMM

222112

2

1

2646

12

L

EIv

L

EI

L

EIv

L

EIwLM

12)( cwLVLV

222312132

612612

2

L

EIv

L

EI

L

EIv

L

EIwLV

21

2

2 12)( cLc

wLMLM

222112

2

2

4626

12

L

EIv

L

EI

L

EIv

L

EIwLM

Distributed Loads

Matrix Methods29

This can be expressed in matrix form.

This matrix equation contains an additional term – known as the vector of equivalent nodal loads – that accounts for the distribution load w.

L

LwL

M

V

M

V

v

v

LLLL

LL

LLLL

LL

L

EI

6

6

12

4626

612612

2646

612612

2

2

1

1

2

2

1

1

22

22

3

Propped cantilever beam with uniform load

Examples

Matrix Methods30

12

L

w

Cantilever beam with uniform load

Examples

Matrix Methods31

12

L

w

Cantilever beam with moment and partial uniform load

Examples

Matrix Methods32

13

L1

w

2

L2

Mo

Everything we have learned so far about matrix methods is foundational for finite element analysis (FEA) of simple beams.

For complex structures, FEA is often performed using computer software programs, such as ANSYS.

FEA is used to calculate and plot deflection, stress, and strain for many different applications.

FEA is covered in more depth in Chapter 19 in the textbook.

Finite Element Analysis of Beams

Matrix Methods33

Finite Element Analysis of Beams

Matrix Methods34

Nodes: 5Elements: 4kunconstrained: 10 x 10

Apply B.C.’s: v1=v5=0θ5=0

kconstrained: 7 x 7

15

w

2 3 4

P

Finite Element Analysis of Beams

Matrix Methods35

15

w

2 3 4

P

Nodes: 5Elements: 4kunconstrained: 10 x 10

Apply B.C.’s: v1=v3=v5=0θ1=0

kconstrained: 6 x 6