maxon formelsammlung e

Upload: amante-bandido

Post on 04-Apr-2018

250 views

Category:

Documents


1 download

TRANSCRIPT

  • 7/29/2019 Maxon Formelsammlung e

    1/60

    VCC

    nL ML

    Formulae

    HandbookJan Braun

    maxon academy

  • 7/29/2019 Maxon Formelsammlung e

    2/60

    Selection process

    When performing a system analysis WKH UVW VWHS LV WR GHVFULEH WKH GULYH DV D ZKROH LQ LWV

    HQYLURQPHQW7KHREMHFWLYHLVWRREWDLQDQ overviewRIWKHV\VWHPWRGHWHUPLQHWKHWKHRUHWLFDO

    IHDVLELOLW\RIDVROXWLRQDQGWRJHWDSLFWXUHRIWKHERXQGDU\FRQGLWLRQVDQGUHVWULFWLRQV See chapterA.1: Overview, system analysis

    7KHJRDORI0RWLRQRIWKHORDGLVWRGHQHWKHNH\UHTLUHPHQWVUHJDUGLQJIRUFHVWRUTXHVDQG

    YHORFLWLHV VSHHGV RIURWDWLRQ+RZ ORQJ PXVW WKH\ EHDSSOLHG" :KDW LVWKH UHTXLUHGFRQWURO

    DFFXUDF\"See chapter A.2: Motion of the load

    7KHPHFKDQLFDOGULYHGHVLJQFDQEHVNLSSHGLIWKHORDGLVGULYHQGLUHFWO\DQGWKHGULYHV\VWHPGRHV

    QRWLQFOXGHDmechanical transformation.

    Mechanical drivesWUDQVIRUPPHFKDQLFDOSRZHULQWRPHFKDQLFDOSRZHU)RUWKHVHOHFWLRQRIWKH

    GULYHWKHORDGNH\GDWDDUHFRQYHUWHGWRWKHRXWSXWRI WKHPRWRURU JHDUVKDIWSee chapter A.3:

    Mechanical drives.

    7KHVWHSIRUWKHgearhead selectionFDQEHVNLSSHGLIQRPD[RQJHDUKHDGLVXVHG*HDUKHDGVDUH

    W\SLFDOO\XVHGZKHQHYHUKLJKWRUTXHVDUHUHTXLUHGDWORZVSHHGV

    7KHSXUSRVHRIWKLVVWHSLVWRGHWHUPLQHLIDQGZKLFKmaxon gearheadFDQEHXVHG7KHNH\GDWD

    IRUWKHPRWRUVHOHFWLRQFDQWKHQEHFDOFXODWHGIURPWKHJHDUKHDGUHGXFWLRQDQGHIFLHQF\See

    chapter 3.4: maxon gearhead

    2QWKH EDVLV RI WKHWRUTXHDQG VSHHGUHTXLUHPHQWV WKHQH[WVWHS LVWR VHOHFW VXLWDEOHtypes of

    motors7KHXVHIXOOLIHFRPPXWDWLRQDQGEHDULQJV\VWHPVDOVRKDYHWREHFRQVLGHUHG See chapter

    6.5: Motor selection

    7KHselection of the windingLVPDGHRQWKHEDVLVRIDFRPSDULVRQRIWKHDSSOLHGPRWRUYROWDJH

    ZLWKWKHVSHHGDQGDFRPSDULVRQRIWKHDYDLODEOHFXUUHQWZLWKWKHWRUTXHUHTXLUHPHQWV See chapter

    6.5: Motor selection

    7KHSXUSRVHRIWKHODVWVWHSLVWKHYHULFDWLRQRIWKHFRQWUROOHUDQGVHQVRUDVZHOODVDYHULFDWLRQ

    WKDWWKHFRQWUROOHUDQGVHQVRUSUHVHOHFWHGLQWKHVLWXDWLRQDQDO\VLV6WHSDUHFRPSDWLEOHZLWKWKHVHOHFWHGPRWRU6HHFKDSWHU$9HULFDWLRQRIFRQWUROOHUDQGVHQVRU

    Step 1

    SystemOverview

    Step 2

    Load

    Step 3

    Drive

    Step 4

    Gearhead

    Step 5 + 6Motor type

    Winding

    Step 7

    SensorController

    v(t),F(t)

    Ambientconditions

    Communicaton

    Power

    Gear

    Motor

    Controlle

    r

    Load

    Start

    drive selection

    Overview, system analysis,

    preselection of controller & sensor

    Chap. A.1

    Motion of the load

    Chap. A.2

    Mechanical drive design

    Chap. A.3

    ec an ca

    trans ormat on

    Use ofgearhead?

    Motor type selection

    Chap. 6.5

    Winding selection

    Chap. 6.5

    Verification of controller & sensor

    Chap. A.3

    Drive selected

    Gearhead selection

    Chap. 3.4

    No

    No

    Yes

    Yes

  • 7/29/2019 Maxon Formelsammlung e

    3/60

  • 7/29/2019 Maxon Formelsammlung e

    4/60

    Foreword

    This Formulae Handbook lists the most important formulae in relation to all components of

    WKHGULYHV\VWHP,WPDNHVXVHRIDRZFKDUWWKDWVXSSRUWVTXLFNVHOHFWLRQRIWKHFRUUHFWGULYH

    Numerous illustrations and the clear descriptions of the symbols on the respective page help the

    reader to understand the formulae.

    Roughly speaking, it is a collection of the most important formulae from the maxon catalog, as

    ZHOODVIURPWKHERRN7KHVHOHFWLRQRIKLJKSUHFLVLRQPLFURGULYHVSXEOLVKHGE\PD[RQDFDGHP\

    7KHLQLWLDWLYHIRUZULWLQJWKLV)RUPXODH+DQGERRNZDVWKHERRN7KHVHOHFWLRQRIKLJKSUHFLVLRQ

    PLFURGULYHVE\ 'U8UV.DIDGHUZKLFKFRQWDLQVH[WHQVLYHNQRZKRZIURPWKH VXFFHVVVWRU\RI

    \HDUVRIPD[RQ'&GULYHVZLWKORZSRZHUEHORZDSSUR[:7KHFROOHFWLRQLVLQWHQGHG

    for engineers, professors, lecturers and students, as a perfect supplement to the above mentioned

    book.

    Thank you)LUVWO\ , ZRXOG OLNH WR WKDQN 'U 8UV .DIDGHU ZKR HQFRXUDJHG PH WR WDFNOH WKLV ERRN 7KH

    SURIHVVLRQDOOD\RXW DQGLOOXVWUDWLRQVZHUHGRQH E\3DWULFLD*DEULHODQG%HQL$QGHUKDOGHQ8UV

    .DIDGHU %DUEDUD 6FKOXS $QMD 6FKW] 3DWULN *QRV 6WHIDQ %DXPDQQ 0DUWLQ 5HJJ 0LFKDHO

    %DXPJDUWQHU0DUWLQ:LQGOLQ-HQV6FKXO]H$OEHUW%XFKHOL0DUWLQ2GHUPDWWDQG:DOWHU6FKPLG

    have read the manuscript and have given valuable suggestions for improvements. I also received

    H[WHQVLYHDQGUHDG\VXSSRUWIURPPDQ\RWKHUSHRSOHDWPD[RQPRWRUDJLQUHVSRQVHWRP\TXHVWLRQV

    DQGUHTXHVWVIRUDVVLVWDQFH

    6SHFLDO WKDQNV JR WR6XVDQ %HFKWLJHU 3DXO :LOOLDPV5RELQ 3KLOLSV$QWKRQ\ 0D\U DQG0DUN

    &DVH\ZKRKHOSHGLPSURYHWKHWUDQVODWLRQIURP*HUPDQLQWR(QJOLVK

    6DFKVHOQ6SULQJ

    -DQ%UDXQ

    )LUVW(GLWLRQ

    PD[RQDFDGHP\6DFKVHOQ

    7KLVZRUNLVSURWHFWHGE\FRS\ULJKW$OOULJKWVUHVHUYHGLQFOXGLQJEXWQRWOLPLWHGWRWKHULJKWVWR

    WUDQVODWLRQLQWRIRUHLJQODQJXDJHVUHSURGXFWLRQVWRUDJHRQHOHFWURQLFPHGLDUHSULQWLQJDQGSXEOLF

    SUHVHQWDWLRQ7KHXVHRISURSULHWDU\QDPHVFRPPRQQDPHVHWFLQWKLVZRUNGRHVQRWPHDQWKDW

    WKHVHQDPHVDUHQRWSURWHFWHGZLWKLQWKHPHDQLQJRIWUDGHPDUNODZ$OOWKHLQIRUPDWLRQLQWKLVZRUN

    LQFOXGLQJEXWQRWOLPLWHGWRQXPHULFDOGDWDDSSOLFDWLRQVTXDQWLWDWLYHGDWDHWFDVZHOODVDGYLFHDQG

    UHFRPPHQGDWLRQVKDVEHHQFDUHIXOO\UHVHDUFKHGDOWKRXJKWKHDFFXUDF\RIVXFKLQIRUPDWLRQDQGWKHWRWDODEVHQFHRIW\SRJUDSKLFDOHUURUVFDQQRWEH JXDUDQWHHG7KHDFFXUDF\RIWKHLQIRUPDWLRQ

    SURYLGHGPXVWEHYHULHGE\WKHXVHULQHDFKLQGLYLGXDOFDVH7KHDXWKRUWKHSXEOLVKHUDQGRUWKHLU

    DJHQWVPD\QRWEHKHOGOLDEOHIRUERGLO\LQMXU\RUSHFXQLDU\RUSURSHUW\GDPDJH

  • 7/29/2019 Maxon Formelsammlung e

    5/60

    Content 5

    A. Drive selection 6

    $ 2YHUYLHZV\VWHPDQDO\VLV

    $ 0RWLRQRIWKHORDG

    $ 9HULFDWLRQRIFRQWUROOHUDQGVHQVRU

    1. Mass, force, torque 9 )RUFHVLQJHQHUDO

    7RUTXHVLQJHQHUDO

    0RPHQWVRILQHUWLDRIYDULRXVERGLHVZLWKUHIHUHQFH

    WRWKHSULQFLSDOD[HVWKURXJKWKHFHQWHURIJUDYLW\6

    2. Kinematics

    /LQHDUHTXDWLRQVRIPRWLRQ

    5RWDU\HTXDWLRQVRIPRWLRQ

    7\SLFDOOLQHDUPRWLRQSUROHV

    7\SLFDOURWDU\PRWLRQSUROHV

    3. Mechanical drives 0HFKDQLFDOWUDQVIRUPDWLRQ

    7UDQVIRUPDWLRQRIPHFKDQLFDOGULYHVOLQHDU

    7UDQVIRUPDWLRQRIPHFKDQLFDOGULYHVURWDWLRQ

    PD[RQJHDU

    4. Bearing

    &RPSDULVRQRIFKDUDFWHULVWLFVRIVLQWHUHGVOHHYHEHDULQJVDQGEDOOEHDULQJV

    5. Electrical principles

    3ULQFLSOHVRI'&'LUHFW&XUUHQW

    (OHFWULFDOUHVLVWLYHFLUFXLWV 3ULQFLSOHVRI$&$OWHUQDWLQJ&XUUHQW

    6LPSOHOWHUV

    6. maxon motors

    *HQHUDO

    3RZHUFRQVLGHUDWLRQRIWKH'&PRWRULQJHQHUDO

    0RWRUFRQVWDQWVDQGGLDJUDPV

    $FFHOHUDWLRQ

    0RWRUVHOHFWLRQ

    7. maxon sensor

    8. maxon controller

    2SHUDWLQJTXDGUDQWV

    6HOHFWLRQRISRZHUVXSSO\

    6L]HRIWKHPRWRUFKRNHZLWK3:0FRQWUROOHUV

    9. Thermal behavior

    %DVLFV

    &RQWLQXRXVRSHUDWLRQ

    &\FOLFDQGLQWHUPLWWHQWRSHUDWLRQFRQWLQXRXVO\UHSHDWHG

    6KRUWWHUPRSHUDWLRQ

    10. Tables PD[RQ&RQYHUVLRQ7DEOHV

    7\SLFDOFRHIFLHQWVRIIULFWLRQIRUUROOLQJVWDWLFDQGNLQHWLFIULFWLRQ

    11. Symbol list for the Formulae Handbook 56

  • 7/29/2019 Maxon Formelsammlung e

    6/60

    PD[RQ)RUPXODH+DQGERRN

    A. Drive selectionA.1 Overview, system analysis

    )RUGHWDLOHGLQIRUPDWLRQUHIHUWRWKHERRN7KHVHOHFWLRQRIKLJKSUHFLVLRQPLFURGULYHVFKDSWHU

    %HIRUHWKHDFWXDOVHOHFWLRQSURFHVVEHJLQVDFRQVLGHUDWLRQZLWKWKHGULYHV\VWHPLQLWVHQWLUHW\

    LVQHHGHG7KHSRVVLEOHUDQJHRIYDULDWLRQVRIWKHNH\SDUDPHWHUVPXVWDOVREHGHWHUPLQHG$V

    DUXOHDOORIWKHVHDVSHFWVDUHFORVHO\LQWHUOLQNHG7KHGHVFULSWLRQVEHORZDUHLQWHQGHGWRKHOSFODULI\WKHVHSRLQWVDQGHVWDEOLVKDIUDPHZRUNIRUWKHIXUWKHUVHOHFWLRQSURFHVV

    Mechanical design

    JS

    p

    mR

    d1

    J2

    d2

    J1

    ,VWKHLQWHQGHGPRWLRQOLQHDURUDURWDU\"

    :KDWGULYHVSLQGOHWRRWKHGEHOWHWFRUZKDW

    FRPELQDWLRQRIGULYHVDUHJRLQJWREHXVHG

    WRDFKLHYHWKHGHVLUHGPRWLRQ",VLWDGLUHFW

    GULYH"

    'HQHWKHFRQWUROFRQFHSW

    Set value

    Actuator

    Output

    SensorFeedback

    Measurement

    :KDWYDULDEOHVDUHWREHFRQWUROOHGFXUUHQW

    VSHHGSRVLWLRQ":LWKZKDWDFFXUDF\",VDQ

    RSHQORRSFRQWUROV\VWHPVXIFLHQW"+RZLV

    WKHFRQWUROOHGYDULDEOHPHDVXUHG":KHUHGR

    WKHFRPPDQGVDQGVHWYDOXHVFRPHIURP"7KH

    DQVZHUVWRWKHVHTXHVWLRQVZLOOUHVXOWLQDSUH

    VHOHFWLRQRISRVVLEOHFRQWUROOHUVDQGVHQVRUV

    LHIRUVHOHFWLRQVWHSVHHSDJH

    Verify the power components

    ,VVXIFLHQWHOHFWULFSRZHUDYDLODEOHWRGULYH

    WKHORDGXQGHUDOORSHUDWLQJFRQGLWLRQVDQGWR

    FRPSHQVDWHIRUWKHH[SHFWHGORVVHVLQWKHGULYH

    WUDLQ":KDWDUHWKHPD[LPXPYROWDJHDQG

    FXUUHQWWKDWZLOOEHDYDLODEOH"

    Determine the boundary conditions

    l

    d

    $UHWKHUHUHVWULFWLRQVRQVL]H",QZKDWHQYL

    URQPHQWWHPSHUDWXUHDWPRVSKHUHHWFLVWKH

    GULYHUHTXLUHGWRRSHUDWH",VFRPSOLDQFHZLWK

    SDUWLFXODUVSHFLFDWLRQVRUTXDOLW\VWDQGDUGV

    UHTXLUHG":KDWLVWKHVSHFLHGXVHIXOOLIH"

    Cost considerations

    &RVWLVDOZD\VDNH\FRQVLGHUDWLRQ+RZFDQ

    WKHGULYHEHGHVLJQHGDVHFRQRPLFDOO\DVSRV

    VLEOHDQGVWLOOPHHWWKHUHTXLUHPHQWVUHJDUGLQJ

    SHUIRUPDQFHDQGXVHIXOOLIH"

  • 7/29/2019 Maxon Formelsammlung e

    7/60

    PD[RQ)RUPXODH+DQGERRN

    )RUGHWDLOHGLQIRUPDWLRQUHIHUWRWKHERRN7KHVHOHFWLRQRIKLJKSUHFLVLRQPLFURGULYHVFKDSWHU

    A.2 Motion of the load

    ,QWKHVWHSIRUGHWHUPLQLQJWKHload requirementsWKHPRWLRQVWREHH[HFXWHGPXVWEHGHQHG

    ,WLVLPSRUWDQWWRVHOHFWDSSURSULDWHPRWLRQSUROHVDQGWRFRQVLGHUZKLFKRSHUDWLQJWLPHVDUHWR

    EHH[SHFWHG

    Operating points

    123

    4

    1 32 4 1

    Time t

    Velocity v

    Speed n

    Force F, torque M

    Velocity v

    Speed n

    )RUGHWHUPLQLQJWKHDVVRFLDWHGoperating

    pointsYDOXHSDLUVRIWRUTXHDQGVSHHGRI

    URWDWLRQRURIIRUFHDQGYHORFLW\WKHUHVSHF

    WLYHWRWDOIRUFHVDQGWRUTXHVDUHLPSRUWDQW7R

    WKLVHQGDOODFWLQJIRUFHVDQGWRUTXHVKDYHWREHGHWHUPLQHG7KHVHLQWXUQGHSHQGRQWKH

    PRPHQWVRILQHUWLDDQGWKHDFFHOHUDWLRQYDOXHV

    )RUWKHSXUSRVHRIPDNLQJDVHOHFWLRQFDOFX

    ODWLQJWKHVHYDOXHVZLWKDQDFFXUDF\RIDSSUR[

    LVVXIFLHQW

    Mechanical play of the drive

    -1500 -500-1000

    -0.2

    -0.4

    0.2

    0.4

    0 500 15001000

    0

    Test torque mNm

    Twisting angle

    )XUWKHUPRUHWKHTXHVWLRQRIWKHPD[LPXP

    SHUPLVVLEOHmechanical play of the driveKDV

    WREHGHWHUPLQHG

    Key data

    Force F

    Torque M

    Fmax

    /Mmax

    FRMS

    /MRMS

    tmax

    ttot

    Time t

    7KHkey dataZKLFKFDUDFWHUL]HWKHORDGFDQ

    QDOO\EHFDOFXODWHGIURPWKHRSHUDWLQJSRLQWV

    7KH\DUHLPSRUWDQWIRUVHOHFWLQJWKHGULYH

  • 7/29/2019 Maxon Formelsammlung e

    8/60

    PD[RQ)RUPXODH+DQGERRN

    7KHcontroller and sensorYHULFDWLRQLQYROYHVFKHFNLQJZKHWKHUWKHSUHVHOHFWLRQPDGHGXULQJ

    WKHV\VWHPDQDO\VLVVHOHFWLRQVWHSVHHSDJHDUHFRPSDWLEOHZLWKWKHPRWRUIRXQG'HWDLOHG

    H[DPLQDWLRQRIWKHFRQJXUDWLRQRIWKHFRQWUROFLUFXLWDOORZVWRPDNHGHQLWLYHGHFLVLRQVUHJDU

    GLQJWKHVXLWDEOHFRPSRQHQWVFRQWUROOHUDQGVHQVRU

    Motion controller

    ,QKLJKHUOHYHOGULYHV\VWHPVWKHPRWLRQ

    FRQWUROOHULVWKHFHQWUDOHOHPHQW,WLVZKHUHDOO

    WKHWKUHDGVFRPHWRJHWKHU7KXVWKHFRQWUROOHU

    PXVWVDWLVI\DZLGHUDQJHRIUHTXLUHPHQWV

    7KHFRQWUROOHUPXVW

    EHDEOHWRFRQWUROWKHPDQLSXODWHGYDULDEOH ZLWKVXIFLHQWDFFXUDF\LQDUHDVRQDEOH

    DPRXQWRIWLPH

    EHDEOHWRSURFHVVWKHLQIRUPDWLRQSURYLGHG

    E\WKHVHQVRU

    XQGHUVWDQGWKHVHWYDOXHVDQGFRPPDQGVRI

    WKHKLJKHUOHYHOV\VWHP

    SURYLGHWKHUHTXLUHGHOHFWULFSRZHU

    EHVXLWHGWRWKHPRWRUW\SH

    EUXVKHGRUEUXVKOHVVDQGWKHFRPPXWDWLRQ

    Sensor

    7KHVHQVRUHQFRGHU'&WDFKRRUUHVROYHU

    PXVWEHDSSURSULDWHIRUWKHFRQWUROWDVNDQG

    FRPSO\ZLWKWKHRWKHUFRPSRQHQWV

    $GGLWLRQDOO\WKHIROORZLQJIXUWKHUVHOHFWLRQ

    FULWHULDDSSO\

    7KHVHQVRUKDVWR

    EHPRXQWDEOHRQWKHPRWRU

    DFFRUGLQJWRWKHPD[RQPRGXODUV\VWHP

    PHDVXUHWKHFRUUHFWFRQWUROYDULDEOH

    VSHHGSRVLWLRQGLUHFWLRQRIURWDWLRQ

    ZLWKVXIFLHQWUHVROXWLRQ

    5XOHRIWKXPE7KHUHVROXWLRQRIWKHVHQVRU

    VKRXOGEHDWOHDVWIRXUWLPHVKLJKHUWKDQWKH

    VSHFLHGDFFXUDF\RIWKHFRQWUROYDULDEOH

    $ 9HULFDWLRQRIFRQWUROOHUDQGVHQVRU

    )RUGHWDLOHGLQIRUPDWLRQUHIHUWRWKHERRN7KHVHOHFWLRQRIKLJKSUHFLVLRQPLFURGULYHVFKDSWHU

  • 7/29/2019 Maxon Formelsammlung e

    9/60

    PD[RQ)RUPXODH+DQGERRN

    1. Mass, force, torque1.1 Forces in general

    7KHIRUFHUHTXLUHGWRDFFHOHUDWHDPDVVRINJE\PVLQVKDVWKHXQLWNJPVZLWKWKH

    VSHFLDOXQLWQDPH1HZWRQ1

    Typical component forces in a drive system

    Fa

    m

    )RUFHIRUDFFHOHUDWLRQ

    PDVV[DFFHOHUDWLRQ

    [F] = kg m/s = kgm/s = N

    Fa

    = m a = m t

    v

    FG

    m*UDYLWDWLRQ

    JUDYLWDWLRQDODFFHOHUDWLRQ

    JPV1NJ1NJ

    F* = m g

    FH

    FG

    FN

    )RUFHVRQWKHLQFOLQHGSODQH

    'RZQKLOOVORSHIRUFHDQGQRUPDO

    IRUFH

    FH = F*VLQ

    FN = F*FRV

    FN

    FR

    )ULFWLRQIRUFH6OLGLQJIULFWLRQ

    FR)N

    6SULQJIRUFHFRPSUHVVLRQDQG

    H[WHQVLRQVSULQJVF6 NO

    p FP &RPSUHVVLYHIRUFH Fp S$

    Symbol Name SI

    $ &URVVVHFWLRQ P

    F )RUFH 1

    Fa $FFHOHUDWLRQIRUFH 1

    F* :HLJKWRIDERG\ 1

    FH 'RZQKLOOVORSHIRUFH 1

    FN 1RUPDOIRUFH

    IRUFHSHUSHQGLFXODUWRWKHSODQH 1Fp &RPSUHVVLYHIRUFH 1

    FR )ULFWLRQIRUFH 1

    F6 6SULQJIRUFH 1

    Symbol Name SI

    a $FFHOHUDWLRQ PV

    g *UDYLWDWLRQDODFFHOHUDWLRQ PV

    k 6SULQJFRQVWDQW 1P

    m 0DVV NJ

    p 3UHVVXUH3DN/mbar 3D

    $QJOHRIWKHLQFOLQHGSODQH

    O 'LVSODFHPHQW PW 'XUDWLRQ V

    Y 9HORFLW\FKDQJH PV

    &RHIFLHQWRIIULFWLRQVHHW DEOHFKDSW

  • 7/29/2019 Maxon Formelsammlung e

    10/60

    PD[RQ)RUPXODH+DQGERRN

    Calculating the total load force consisting of component forces

    F1

    F2

    Fx

    FL

    $GGLWLRQRIIRUFHVDFWLQJLQWKHVDPHGLUHFWLRQ FL = F + F + ...+ F

    F1

    F2

    Fx

    FL

    $GGLWLRQRIIRUFHVDFWLQJLQRSSRVLWH

    GLUHFWLRQVFL = F))

    F1

    F2

    FL

    $GGLWLRQRISHUSHQGLFXODUIRUFHV F1

    + F2

    2

    FL

    =2

    Symbol Name SI

    FL /RDGIRUFHRXWSXW 1

    F / F / Fx 3DUWLDOIRUFHV 1

  • 7/29/2019 Maxon Formelsammlung e

    11/60

    PD[RQ)RUPXODH+DQGERRN

    1.2 Torques in general

    7KHWRUTXHLVDPHDVXUHRIWKHURWDWLRQDOHIIHFWWKDWDIRUFHH[HUWVRQDURWDWLQJV\VWHP,WSOD\V

    WKHVDPHUROHIRUURWDWLRQWKDWWKHIRUFHSOD\VIRUOLQHDUPRWLRQ

    7KHHTXDWLRQVDOZD\VDSSO\IRUDGHQHGD[LVRIURWDWLRQGeneral

    F

    r

    M 7RUTXHIRUFH[OHYHUDUP

    >0@1P1P0)U

    Typical component torques in drive systems

    7RUTXHIRUDFFHOHUDWLRQRIPRPHQWVRILQHUWLD

    7RUTXHPRPHQWRILQHUWLD[DQJXODUDFFHOHUDWLRQ

    )RULQIRUPDWLRQRQFDOFXODWLQJPRPHQWVRILQHUWLD

    VHHWKHQH[WSDJHV

    M--

    W

    M

    = J 30

    W

    Q

    r

    )ULFWLRQRIEDOOEHDULQJDQG

    VLQWHUHGVOHHYHEHDULQJVLPSOLHGM

    R= F

    KL r

    KL

    7RUTXHRIVSLUDORUOHJVSULQJV 06= km

    Calculating the load torque consisting of component torques

    M1

    M2

    Mx

    ML

    $GGLWLRQRIWRUTXHVDFWLQJLQ

    VDPHGLUHFWLRQ0L000

    M1

    M2

    Mx

    ML

    $GGLWLRQRIWRUTXHVDFWLQJLQ

    RSSRVLWHGLUHFWLRQV0L000

    Symbol Name SI

    F )RUFH 1

    F./ %HDULQJORDGD[LDOUDGLDO 1

    - 0RPHQWRILQHUWLD NJP

    0 7RUTXH 1P

    0L /RDGWRUTXH 1P

    0R )ULFWLRQWRUTXH 1P

    06 7RUTXHVSLUDOVSULQJ 1P0 7RUTXHIRUDFFHOHUDWLRQ 1P

    000x 3DUWLDOWRUTXHV 1P

    km 7RUVLRQFRHIFLHQWVSULQJFRQVWDQW 1P

    Symbol Name SI

    r 5DGLXV P

    r./ 0HDQGLDPHWHUEHDULQJ P

    $QJXODUDFFHOHUDWLRQ UDGV

    W 'XUDWLRQ V

    $QJOHRIURWDWLRQ UDG

    $QJXODUYHORFLW\FKDQJH UDGV

    &RHIFLHQWRIIULFWLRQVHHW DEOHFKDSW

    Symbol Name maxon

    Q 6SHHGFKDQJH USP

  • 7/29/2019 Maxon Formelsammlung e

    12/60

    PD[RQ)RUPXODH+DQGERRN

    Body type Illustration Mass, moments of inertia

    Circular cylinder, disc 21

    121

    Pr2K

    Jx= Pr2

    Jy=J

    z= P(3r2+ K2)

    Hollow cylinder

    P(ra

    2Ui

    2) K

    JxP(r

    a

    2 + ri

    2)

    Jy

    = Jz

    =K2

    21

    41

    3PU

    a

    2 + ri

    2 +

    Circular cone

    m =

    Jx=

    Jy=J

    z= P(4r

    2 + h2)

    31

    103

    803

    Pr2

    r2 K

    Truncated circular cone

    10

    3

    P(r22 + r

    2r1+ r

    12) K

    31

    JxP

    r25r

    15

    r23

    r13

    Circular torus

    41

    m = 22r2 5

    Jx

    =Jy

    =81P(452 + 5r2)

    Jz

    = P(452 + 3r2)

    Sphere3

    4

    52

    m = r3

    Jx

    = Jy

    = Jz

    = Pr2

    1.3 Moments of inertia of various bodies with reference

    to the principal axes through the center of gravity S

    Symbol Name SI

    -x 0RPHQWRILQHUWLD

    ZLWKUHIHUHQFHWRWKHURWDWLRQD[LVx NJP

    -y 0RPHQWRILQHUWLD

    ZLWKUHIHUHQFHWRWKHURWDWLRQD[LVy NJP

    -] 0RPHQWRILQHUWLD

    ZLWKUHIHUHQFHWRWKHURWDWLRQD[LV] NJP

    R 5DGLXVFLUFXODUWRUXVDURXQG]D[LV P

    Symbol Name SI

    h +HLJKW P

    m 0DVV NJ

    r 5DGLXV P

    ra 2XWHUUDGLXV P

    ri ,QQHUUDGLXV P

    r 5DGLXV P

    r 5DGLXV P

    'HQVLW\ NJP

  • 7/29/2019 Maxon Formelsammlung e

    13/60

    PD[RQ)RUPXODH+DQGERRN

    Body type Illustration Mass, moments of inertia

    Hollow sphere34

    52

    P(ra3

    Ui

    3

    )

    Jx

    = Jy

    = JzP

    ra

    5U

    i

    5

    ra

    3U

    i

    3

    Cuboid

    m =DEF

    Jx

    =121

    P (E2+F2)

    Thin rod yym $O

    12

    1J

    x= J

    zPO2

    Square pyramid

    31

    201

    201

    43

    PDEK

    JxP(D2 + E2)

    JyP(E2 + K2)

    Arbitrary rotation body

    21

    m =x1 f2(x) G[

    Jx=

    x1f4(x) G[

    x2

    x2

    Steiner's theorem

    0RPHQWRILQHUWLDZLWKUHIHU

    HQFHWRDSDUDOOHOD[LVRIURWD

    tionx DWDGLVWDQFHRIrsWRD[LVs

    WKURXJKWKHFHQWHURIJUDYLW\6

    Jx= mr

    s

    2 + Js

    Symbol Name SI

    $ &URVVVHFWLRQ P

    -s 0RPHQWRILQHUWLDZLWKUHIHUHQFH

    WRD[LVsWKURXJKFHQWHURIJUDYLW\6 NJP

    -x 0RPHQWRILQHUWLD

    ZLWKUHIHUHQFHWRWKHURWDWLRQD[LVx NJP

    -y 0RPHQWRILQHUWLD

    ZLWKUHIHUHQFHWRWKHURWDWLRQD[LVy NJP

    -] 0RPHQWRILQHUWLD ZLWKUHIHUHQFHWRWKHURWDWLRQD[LV] NJP

    a /HQJWKRIVLGHa m

    b /HQJWKRIVLGHb m

    Symbol Name SI

    c /HQJWKRIVLGHc m

    h +HLJKW P

    l /HQJWK P

    m 0DVV NJ

    ra 2XWHUUDGLXV P

    ri ,QQHUUDGLXV P

    rs 'LVWDQFHRID[LVs IURPFHQWHURIJUDYLW\6 m

    'HQVLW\ NJP

    x 3RLQWRQWKH[D[LV P

    x 3RLQWRQWKHxD[LV P

  • 7/29/2019 Maxon Formelsammlung e

    14/60

    PD[RQ)RUPXODH+DQGERRN

    2. Kinematics2.1 Linear equations of motion

    Uniform movement

    s

    t

    v

    Velocity v

    Time t

    9HORFLW\

    YVWFRQVWDQW

    >Y@PV

    v =W

    V

    VYW

    Constant acceleration from a standing start

    s

    t

    v

    Velocity v

    Time t

    $FFHOHUDWLRQ

    DYWFRQVWDQW

    >D@PV

    YDW

    VDt22

    1

    )UHHIDOO

    YJW

    h = g t22

    1

    Constant acceleration from initial speed

    s

    t

    Velocity v

    Time t

    vstart

    vend

    vend = vstart+ a W

    VYVWDUW

    WDW22

    1

    Symbol Name SI

    a $FFHOHUDWLRQ PV

    g *UDYLWDWLRQDODFFHOHUDWLRQ PV

    h 'URSKHLJKW P

    V 'LVWDQFH P

    Symbol Name SI

    WW 7LPHGXUDWLRQ V

    YY 9HORFLW\YHORFLW\FKDQJH PV

    vend 9HORFLW\DIWHUDFFHOHUDWLRQ PV

    vstart 9HORFLW\EHIRUHDFFHOHUDWLRQ PV

    Remarks:

    7KHVKDGHGDUHDVUHSUHVHQWWKHGLVWDQFHVWUDYHOHGGXULQJWLPHSHULRGW

  • 7/29/2019 Maxon Formelsammlung e

    15/60

    PD[RQ)RUPXODH+DQGERRN

    2.2 Rotary equations of motion

    General

    1m

    1m

    1 rad =1m

    1m57.2958

    1rad

    2 rad 360

    &RQYHUVLRQ EHWZHHQ UDGLDQ

    DQGGHJUHHV7KH XQLW rad LV IUHTXHQWO\

    RPLWWHG

    1 rad 2

    360

    UDG

    &RQYHUVLRQEHWZHHQ

    DQJXODUYHORFLW\DQGVSHHG

    of rotation

    QQ30

    30

    Uniform movement

    t

    ,n

    Angular velocity,

    Speed n

    Time t

    $QJXODUYHORFLW\

    WFRQVWDQW[] = rad/s

    t

    6SHHGRIURWDWLRQ

    n = WFRQVW

    [n] = /min USP

    Q30

    t

    Constant acceleration from a standing start

    t

    Angular velocity,

    Speed n

    Time t

    , n$FFHOHUDWLRQ

    WFRQVWDQW

    [] = /s = rad/s

    t

    Qt30

    t22

    1

    Qt2

    1

    30

    Constant acceleration from initial speed

    t

    end

    , nend

    start

    , nstart

    Angular velocity,

    Speed n

    Time t

    end

    startt

    nend

    = nstart

    t30

    start

    Wt221

    Qstart

    Wnt2

    1

    30

    30

    Symbol Name SI

    WW 7LPHGXUDWLRQ V

    $QJXODUDFFHOHUDWLRQ UDGV

    $QJOHRIURWDWLRQ UDG

    $QJXODUYHORFLW\FKDQJH UDGV

    end $QJXODUYHORFLW\DIWHUDFFHOHUDWLRQ UDGV

    Symbol Name SI

    start $QJXODUYHORFLW\EHIRUHDFFHOHUDWLRQ UDGV

    Symbol Name maxon

    QQ 6SHHGRIURWDWLRQFKDQJH USP

    nend 6SHHGDIWHUDFFHOHUDWLRQ USP

    nstart 6SHHGEHIRUHDFFHOHUDWLRQ USP

    Remarks:

    7KHVKDGHGDUHDVUHSUHVHQWWKHDQJOHRIURWDWLRQWUDYHOHGGXULQJWLPHSHULRGW

    $QJOHRIURWDWLRQ= 1XPEHURIUHYROXWLRQV1XPEHURIUHYROXWLRQV

  • 7/29/2019 Maxon Formelsammlung e

    16/60

    PD[RQ)RUPXODH+DQGERRN

    3UROH General Symmetrical

    Suitability 7UDYHORYHUORQJGLVWDQFHDWOLPLWHGYHORFLW\

    Diagram

    vmax

    ta

    s

    tb

    tc

    ttot

    s

    vmax

    ta

    tb

    ta

    ttot

    Task:

    7UDYHODGLVWDQFHRIV

    in time Wtot

    vmax

    =

    2

    V

    WWRW

    WaW

    c

    amax

    =

    vmax

    Wa

    vmax

    =(W

    WRWW

    a)

    V

    Vamax

    =(W

    WRWW

    a) W

    a

    7UDYHODGLVWDQFHRIV at a

    OLPLWHGYHORFLW\RIvmax

    vmax

    2

    V+

    WaW

    c

    WWRW=

    vmax

    Waamax

    =

    vmax

    a

    max

    =

    WWRW=

    VW

    a

    vmax

    Wa

    7UDYHODGLVWDQFHRIV at a

    OLPLWHGDFFHOHUDWLRQRIamaxv

    max= a

    max W

    a

    WWRW

    =V

    Waa

    max W

    a

    &RPSOHWHPRWLRQLQWKHWLPH

    WtotDWPD[LPXPYHORFLW\vmax

    2V

    Wa

    vmax

    vmax

    WaW

    c

    Wb

    amax

    amax

    =

    vmax

    V(WWRWW

    a) v

    max

    Wa

    &RPSOHWHPRWLRQLQWKHWLPHWtotDWPD[LPXPDFFHOHUDWLRQ

    amaxv

    max= a

    max W

    a

    VDmax

    (WWRWW

    a) W

    a

    0RWLRQDWOLPLWHGYHORFLW\vmax

    DQGOLPLWHGDFFHOHUDWLRQamax

    7\SLFDOOLQHDUPRWLRQSUROHV

    Symbol Name SI

    amax 0D[LPXPDFFHOHUDWLRQ PVvmax 0D[LPXPYHORFLW\ PV

    V 'LVWDQFH P

    Symbol Name SI

    Wa 7LPHD VWb 7LPHE V

    Wc 7LPHF V

    Wtot 7RWDOWLPH V

  • 7/29/2019 Maxon Formelsammlung e

    17/60

    PD[RQ)RUPXODH+DQGERRN

    3/3 Trapezoidal Triangle

    2SWLPL]HGIRUPLQLPXPSRZHU

    DWJLYHQVDQGW0RVWDGYDQWDJHRXVIURPDWKHUPDO

    SRLQWRIYLHZ

    2SWLPL]HGIRUOLPLWHGDFFHOHUDWLRQRUIRUFH

    DWJLYHQVDQGW2SWLPL]HGIRUPLQLPXPWLPHUHTXLUHPHQW

    DWJLYHQVDQGamax

    vmax

    s

    ttot

    s

    ttot

    vmax

    vmax

    = 1.5

    amax

    = 4.5

    WWRW

    V

    W2WRW

    V

    vmax

    = 2

    amax

    = 4

    WWRW

    V

    W2WRW

    V

    vmax

    amax

    = 2 v

    2

    max

    WWRW= 1.5

    V

    V

    vmax

    amax

    =

    v2

    max

    WWRW= 2

    V

    V

    2

    3

    2

    amax

    amax

    vmax

    =

    WWRW=

    V V

    V amax Va

    max

    amax

    vmax

    =

    WWRW= 2

    V

    V amax

    3

    2 W

    WRW v

    max

    amax

    3 vmax

    V

    WWRW

    2

    1

    amax

    = 2vmax

    V

    WWRW

    WWRW v

    max

    92

    3

    1vmax

    = amax

    ttot a

    maxt

    tot

    V amax

    t2tot a

    maxt2

    tot

    vmax

    = amax

    WWRW

    V amax

    W2WRW

    2

    1

    41

    amax

    v2

    max

    WWRW= 3

    amax

    vmax

    V2amax

    v2

    max

    amax

    vmax

    V

    WWRW2

    Symbol Name SI

    amax 0D[LPXPDFFHOHUDWLRQ PVvmax 0D[LPXPYHORFLW\ PV

    Symbol Name SI

    V 'LVWDQFH PWtot 7RWDOWLPH V

  • 7/29/2019 Maxon Formelsammlung e

    18/60

    PD[RQ)RUPXODH+DQGERRN

    3UROH General Symmetrical

    Suitability /RQJURWDWLRQDWOLPLWHGVSHHGof rotation

    Diagram

    nmax

    ta

    tb

    tc

    ttot

    nmax

    ta

    tb

    ta

    ttot

    Task:

    7UDYHODQDQJOHRI

    in time Wtot

    2W

    WRW

    Wa+ W

    c

    n

    max=

    30

    max

    =

    2W

    WRW

    Wa+ W

    c

    Wa

    nmax

    =

    (WWRWW

    a)

    30

    max

    =

    (WWRWW

    a

    ) Wa

    7UDYHODQDQJOHRI

    DWDOLPLWHGVSHHGRInmax

    nmax

    2W

    WRW=

    +

    30

    W

    a+ W

    c

    ta

    max

    =nmax

    30

    nmax

    + Wa

    WWRW=

    30

    max

    =

    nmax

    Wa

    30

    7UDYHODQDQJOHRI at a

    OLPLWHGDQJXODUDFFHOHUDWLRQ

    ofmax

    max W

    a

    + Wa

    WWRW=

    nmax

    = max

    30

    &RPSOHWHPRWLRQLQWKHWLPH

    WtotDWPD[LPXPVSHHGnmax

    2=

    WaW

    c+W

    b

    30 n

    PD[

    max

    = nmax

    Wa

    30

    (WWRWW

    a

    )30

    nmax

    max

    = nmax

    Wa

    30

    &RPSOHWHPRWLRQLQWKHtimeWtotDWPD[LPXPDQJXODU

    DFFHOHUDWLRQmax

    max(WWRWWa)Wa

    max W

    anmax

    =30

    0RWLRQDWOLPLWHGVSHHG

    ofnmaxDQGOLPLWHGDQJXODU

    DFFHOHUDWLRQRImax

    7\SLFDOURWDU\PRWLRQSUROHV

    Symbol Name SI

    max 0D[LPXPDQJXODUDFFHOHUDWLRQ UDGV

    Wa 7LPHD VWb 7LPHE V

    Wc 7LPHF V

    Wtot 7RWDOWLPH V

    Symbol Name SI

    $QJOHRIURWDWLRQ UDG

    Symbol Name maxon

    nmax 0D[LPXPVSHHGLQORDGF\FOH USP

  • 7/29/2019 Maxon Formelsammlung e

    19/60

    PD[RQ)RUPXODH+DQGERRN

    3/3 Trapezoidal Triangle

    2SWLPL]HGIRUPLQLPXPSRZHU

    DWJLYHQDQGW0RVWDGYDQWDJHRXVIURPDWKHUPDO

    SRLQWRIYLHZ

    2SWLPL]HGIRUOLPLWHGDQJXODUDFFHOHUDWLRQ

    RUWRUTXHDWJLYHQDQGWDQGIRUPLQLPXPWLPHUHTXLUHPHQW

    DWJLYHQDQGmax

    nmax

    ttot

    ttot

    nmax

    WWRW

    nmax

    = 1.5 30

    max

    = 4.5 t2

    tot

    ttot

    nmax

    = 2 30

    max

    = 4 t2

    tot

    nmax

    WWRW= 1.5

    30

    max

    = 2

    n2

    max2

    302

    nmax

    WWRW= 2

    30

    max

    =

    n2

    max

    2

    302

    2

    3

    max

    max

    WWRW=

    2

    1nmax

    = max

    max

    30

    max

    W

    WRW= 2

    nmax

    = max

    30

    3

    2W

    WRW n

    max 30

    max

    = 3 nmax

    WWRW

    30

    2

    1= WWRW nmax

    30

    max= 2

    nmax

    W

    WRW

    30

    9

    2

    max t2

    tot PD[t2

    tot

    3

    1nmax

    = max W

    WRW

    maxW

    WRW30

    max t2

    tot4

    1

    nmax

    =30

    2

    1

    max W

    WRW

    ttot

    nmax

    = 2 30

    max

    = 4 t2

    tot

    max

    n2

    max

    =30

    max

    nmax

    WWRW= 2

    30

    Symbol Name SI

    max 0D[LPXPDQJXODUDFFHOHUDWLRQ UDGV

    Wtot 7RWDOWLPH V $QJOHRIURWDWLRQ UDG

    Symbol Name maxon

    nmax 0D[LPXPVSHHGLQORDGF\FOH USP

  • 7/29/2019 Maxon Formelsammlung e

    20/60

    Notes

  • 7/29/2019 Maxon Formelsammlung e

    21/60

    PD[RQ)RUPXODH+DQGERRN

    3. Mechanical drives3.1 Mechanical transformation

    Symbol Name SI

    F )RUFH 1

    FL /RDGIRUFHRXWSXW 1

    0 7RUTXH 1P

    0L /RDGWRUTXH 1P

    0in ,QSXWWRUTXH 1P

    3mech 0HFKDQLFDOSRZHU :3mech,in 0HFKDQLFDOLQSXWSRZHU :

    3mech,L 0HFKDQLFDORXWSXWSRZHU :

    v 9HORFLW\ PV

    Symbol Name SI

    vL /RDGYHORFLW\ PV

    (IFLHQF\

    $QJXODUYHORFLW\ UDGV

    L $QJXODUYHORFLW\ORDG UDGV

    in $QJXODUYHORFLW\LQSXW UDGV

    Symbol Name maxon

    n 6SHHGRIURWDWLRQ USP

    &ODVVLFDWLRQ Output power/transformation, general

    Rack and pinionSpindle

    Ball screw

    Trapezoidal screw

    Conveyor belt

    Crane

    Eccentric drive

    Crankshaft

    Linear

    Rover

    Output power, linear motion

    [:]PV1

    3mechY)

    Transformation, general

    Pmech,in

    Pmech,L

    =

    inM

    invLF

    L=

    Special design

    Cyclo gear

    Harmonic Drive

    Gearhead

    Spur gearhed

    Planetary gearhead

    Bevel gear

    Worm gear

    Wolfrom gear

    Belt

    Toothed belt

    Chain drive

    RotationOutput power, rotary motion

    [:] = s1P

    30

    P

    mech0Q0

    Transformation, general

    Pmech,in

    Pmech,L

    =

    inM

    inLM

    L=

    Designations in the formulae

    7KHORDGVLGHYDULDEOHVDWWKHRXWSXWDUHLGHQWLHGE\WKHLQGH[L

    7KHLQSXWVLGHYDULDEOHVXVXDOO\WKHPRWRUDUHLGHQWLHGE\WKHLQGH[in

  • 7/29/2019 Maxon Formelsammlung e

    22/60

    PD[RQ)RUPXODH+DQGERRN

    Spindle drive

    JS

    p

    6SHHGRIURWDWLRQp

    nin

    = vL

    60

    7RUTXH2

    Min

    = p

    FL

    $GGLWLRQDOWRUTXHIRUFRQVWDQWDFFHOHUDWLRQ

    VSHHGFKDQJHQinGXULQJSHULRGWa

    M

    LQ-

    in-

    S

    mLP

    S

    42p2

    30

    Wa

    Qin

    3OD\

    SRVLWLRQHUURU2p

    inV

    L

    Belt drive/conveyor belt/crane

    mB

    J2

    d2

    d1

    J1 6SHHGRIURWDWLRQ

    60

    d1

    vL

    nin=

    7RUTXHF

    L

    2 Min =

    d1

    $GGLWLRQDOWRUTXHIRUFRQVWDQWDFFHOHUDWLRQ

    VSHHGFKDQJHQin GXULQJSHULRGWa

    Wa

    QLQ

    +

    304M

    LQ= J

    LQ+ J

    1+

    J2

    d2

    2

    mL

    + mB

    d1

    2d1

    2

    JX

    dX

    2

    d1

    2

    +

    J1

    d1

    3OD\

    SRVLWLRQHUURU

    2

    d1

    inV

    L

    Symbol Name SI

    FL /RDGIRUFHRXWSXW 1

    -in 0RPHQWRILQHUWLDLQSXW

    PRWRUHQFRGHUEUDNH NJP

    -6 0RPHQWRILQHUWLDVSLQGOH NJP

    -X 0RPHQWRILQHUWLDGHHFWRUSXOOH\X NJP

    - 0RPHQWRILQHUWLDGULYLQJHQG NJP

    - 0RPHQWRILQHUWLDGHHFWRUSXOOH\ NJP

    0in ,QSXWWRUTXH 1P

    0LQ 7RUTXHIRUDFFHOHUDWLRQ 1P

    dX 'LDPHWHUGHHFWRUSXOOH\X md 'LDPHWHUGULYHSXOOH\ P

    d 'LDPHWHUGHHFWRUSXOOH\ P

    m% 0DVVEHOW NJ

    Symbol Name SI

    mL 0DVVRIWKHORDG NJ

    m6 0DVVVSLQGOH NJ

    p 6SLQGOHOHDGSLWFK P

    vL /RDGYHORFLW\ PV

    VL 0HFKDQLFDOSOD\RXWSXW P

    Wa $FFHOHUDWLRQWLPH V

    in 0HFKDQLFDOSOD\LQSXW UDG

    (IFLHQF\

    Symbol Name maxonnin ,QSXWVSHHG USP

    Qin 6SHHGFKDQJHLQSXW USP

    3.2 Transformation of mechanical drives, linear

  • 7/29/2019 Maxon Formelsammlung e

    23/60

    PD[RQ)RUPXODH+DQGERRN

    Rack-and-pinion drive

    p

    JP, z

    mz

    6SHHGRIURWDWLRQ nin = pz

    vL60

    7RUTXH2

    Min=p z F

    L

    $GGLWLRQDOWRUTXHIRUFRQVWDQWDFFHOHUDWLRQ

    VSHHGFKDQJHQin GXULQJSHULRGWa

    Min,

    = Jin

    + JP

    +p2 z2

    Wa

    Qin

    mL

    + mZ

    42 30

    3OD\

    SRVLWLRQHUURU2

    p z

    in= V

    L

    Rover

    JW

    mF

    d

    6SHHGRIURWDWLRQ60

    nin=

    d

    vL

    7RUTXH Min =F

    L

    2

    d

    $GGLWLRQDOWRUTXHIRUFRQVWDQWDFFHOHUDWLRQ

    VSHHGFKDQJHQin GXULQJSHULRGWa

    mL

    + mF

    4

    Wa

    QLQ

    MLQ

    =d2

    30J

    LQ+ J

    W+

    3OD\

    SRVLWLRQHUURU

    2

    d

    in= s

    L

    Symbol Name SI

    FL /RDGIRUFHRXWSXW 1

    -in 0RPHQWRILQHUWLDLQSXW

    PRWRUHQFRGHUEUDNH NJP

    -3 0RPHQWRILQHUWLDSLQLRQ NJP

    -: 0RPHQWRILQHUWLD

    DOOZKHHOVWRJHWKHU NJP

    0in ,QSXWWRUTXH 1P

    0LQ 7RUTXHIRUDFFHOHUDWLRQ 1P

    d 'LDPHWHUGULYHZKHHO P

    mF 0DVVURYHU NJmL 0DVVRIWKHORDG NJ

    mZ 0DVVJHDUUDFN NJ

    p 3LWFK P

    Symbol Name SI

    vL /RDGYHORFLW\ PV

    ] 1XPEHURIWHHWKSLQLRQ

    VL 0HFKDQLFDOSOD\RXWSXW P

    Wa $FFHOHUDWLRQWLPH V

    in 0HFKDQLFDOSOD\LQSXW UDG

    (IFLHQF\

    Symbol Name maxon

    nin ,QSXWVSHHG USP

    Qin 6SHHGFKDQJHLQSXW USP

  • 7/29/2019 Maxon Formelsammlung e

    24/60

    PD[RQ)RUPXODH+DQGERRN

    Eccentric drive

    e

    JE

    6LQXVRLGDOYHORFLW\FXUYHRIWKHORDG

    DVVXPSWLRQFRQVWDQWPRWRUVSHHGnin

    vL

    (t) = nin

    e sin nin

    t30 30

    $QJOHGHSHQGHQWSHULRGLFDFFHOHUDWLRQIRUFHIRUORDG

    SLVWRQVDQGURGVmL

    30nin

    2

    e cos

    Fa)

    aFRVP

    L

    $QJOHGHSHQGHQWWRUTXHVGXHWRGLIIHUHQWORDGFRQGLWLRQV

    0inH)LVLQ)aFRV

    0inH)LVLQ)aFRV

    $YHUDJHWRUTXHORDG

    eF F

    2 L1 L2

    2 2 2 2 +

    a2a1+Min,RMS= +FF

    $GGLWLRQDOWRUTXHIRUDFFHOHUDWLRQRIWKHHFFHQWULFGLVF

    VSHHGFKDQJHQin GXULQJSHULRGWa

    30

    Wa

    QLQ

    MLQ

    -LQ-

    E

    Symbol Name SI

    FL /RDGIRUFHVWKDOIF\FOH 1

    FL /RDGIRUFHQGKDOIF\FOH 1

    Fa $FFHOHUDWLRQIRUFH 1

    Fa 3HULRG LFDFFHOHUDW LRQIRUFHD VD

    IXQFWLRQRIWKHDQJOHRIURWDWLRQ 1

    Fa $FFHOHUDWLRQIRUFHVWQGKDOIF\FOH 1

    Fa $FFHOHUDWLRQIRUFHVWQGKDOIF\FOH 1

    -in 0RPHQWRILQHUWLDLQSXW

    PRWRUHQFRGHUEUDNH NJP

    -( 0RPHQWRILQHUWLDHFFHQWULFGLVF NJP

    0LQ506 506WRUTXH 1P0LQ 7RUTXHIRUDFFHOHUDWLRQ 1P

    0in 7RUTXHVWKDOIF\FOH 1P

    Symbol Name SI

    0in 7RUTXHQGKDOIF\FOH 1P

    e (FFHQWULFLW\ P

    mL 0DVVRIWKHORDG NJ

    vLW 6LQXVRLGDOYHORFLW\FXUYHRIWKHORDG PV

    t 7LPH V

    Wa $FFHOHUDWLRQWLPH V

    $QJOHRIURWDWLRQ UDG

    (IFLHQF\

    Symbol Name maxon

    nin ,QSXWVSHHG USPQin 6SHHGFKDQJHLQSXW USP

  • 7/29/2019 Maxon Formelsammlung e

    25/60

    PD[RQ)RUPXODH+DQGERRN

    Gearhead

    iG J

    1

    J2

    6SHHGRIURWDWLRQ nin = nL i*

    7RUTXHiG

    Min

    ML

    =

    $GGLWLRQDOWRUTXHIRUFRQVWDQWDFFHOHUDWLRQ

    VSHHGFKDQJHQin GXULQJSHULRGWa

    30 30

    Wa

    QLQ

    =

    MLQ

    = JLQ+ J

    1+

    JL

    + J2

    iG

    QLQ

    Wa

    JLQ

    + JG

    +J

    L

    iG

    2 2

    3OD\SRVLWLRQHUURU in

    L

    L*

    5HGXFWLRQUDWLR

    SODQHWDU\JHDUKHDG z1iG

    z1+ z

    3=

    Belt drive

    mR

    d1

    J2

    d2

    J1

    6SHHGRIURWDWLRQd1

    d2

    nin

    = nL

    7RUTXHd2

    d1

    ML

    Min=

    $GGLWLRQDOWRUTXHIRUFRQVWDQWDFFHOHUDWLRQ

    VSHHGFKDQJHQin GXULQJSHULRGWa

    MLQ

    =m

    Rd

    2

    1

    2

    ta

    nin

    + Jin

    + J1

    +J

    L+ J

    2d1

    4 302d2

    2

    d1

    2

    dx

    Jx

    +

    3OD\SRVLWLRQHUURU in L2

    = d

    1d

    Symbol Name SI

    -* 0RPHQWRILQHUWLD

    JHDUKHDGWUDQVIRUPHG NJP

    -in 0RPHQWRILQHUWLDLQSXW

    PRWRUHQFRGHUEUDNH NJP

    -L 0RPHQWRILQHUWLDORDG NJP

    -x 0RPHQWRILQHUWLDGHHFWRUSXOOH\X NJP

    - 0RPHQWRILQHUWLDGULYLQJHQG NJP

    - 0RPHQWRILQHUWLDRXWSXW NJP

    0in ,QSXWWRUTXH 1P

    0LQ 7RUTXHIRUDFFHOHUDWLRQ 1P

    0L /RDGWRUTXH 1Pdx 'LDPHWHUGHHFWRUSXOOH\X m

    d 'LDPHWHUGULYHSXOOH\ P

    d 'LDPHWHUORDGSXOOH\ P

    Symbol Name SI

    i* 5HGXFWLRQUDWLRJHDUKHDGFDWDORJYDOXH

    mR 0DVVEHOW NJ

    ] 1XPEHURIWHHWKVXQZKHHO

    ] 1XPEHURIWHHWKLQWHUQDOJHDU

    Wa $FFHOHUDWLRQWLPH V

    in 0HFKDQLFDOSOD\LQSXW UDG

    L 0HFKDQLFDOSOD\RXWSXW UDG

    (IFLHQF\

    Symbol Name maxon

    nin ,QSXWVSHHG USPnL /RDGVSHHG USP

    Qin 6SHHGFKDQJHLQSXW USP

    3.3 Transformation of mechanical drives, rotation

  • 7/29/2019 Maxon Formelsammlung e

    26/60

    PD[RQ)RUPXODH+DQGERRN

    ,GHQWLFDWLRQV\VWHPIRUPD[RQJHDUKHDGV

    A22GP

    Gearhead design type

    GS Spur gearheadGP Planetary gearhead

    KD Koaxdrive

    Diameterin mm

    Version

    A Metal version

    B Version with enlarged internal gear

    C Ceramic version

    HD Heavy Duty for applications in oil

    HP High power versionK Plastic version

    L Low-cost version

    M Sterilizable version for medical application

    S Spindle drive with axial bearing

    V Reinforced version

    Z Low backlash version

    Operating ranges of gearheads

    PD[RQJHDUKHDGVDUHGHVLJQHGIRUDQRSHUDWLQJOLIHRIDWOHDVWKRXUVDWWKHJLYHQPD[LPXP

    FRQWLQXRXV WRUTXH DQG PD[LPXP LQSXW VSHHG UDWLQJV 2SHUDWLRQ EHORZ WKHVH OLPLWV ZLOO

    VLJQLFDQWO\LQFUHDVHRSHUDWLQJOLIH,IWKHOLPLWVDUHH[FHHGHGWKHXVHIXOOLIHRIWKHJHDUKHDG

    PD\EHUHGXFHG

    Load speed nL

    Short-term operation

    Max. load speed

    (determined by gearhead input speed)

    Continuous operation

    MG,cont

    Load torque ML

    MG,max

    nmax,L

    nmax,L

    nmax,in

    nmax,L

    =iG

    nmax,in

    iG

    nmax,in

    3.4 maxon gear

    Symbol Name SI

    0*FRQW 0D[FRQWLQXRXVWRUTXHJHDUKHDG

    FDWDORJYDOXH 1P0*PD[ ,QWHUPLWWHQWO\SHUPLVVLEOHWRUTXH

    JHDUKHDGFDWDORJYDOXH 1P

    i* 5HGXFWLRQUDWLRJHDUKHDGFDWDORJYDOXH

    Symbol Name maxon

    nmax,in 0D[LPXPLQSXWVSHHG USP

    nmax,L 0D[LPXPORDGVSHHG USP

  • 7/29/2019 Maxon Formelsammlung e

    27/60

    PD[RQ)RUPXODH+DQGERRN

    Sintered sleeve bearings Ball bearings

    r

    Operating

    modes

    &RQWLQXRXVRSHUDWLRQ 6XLWDEOHIRUDOOW\SHVRIRSHUDWLRQ

    (VSHFLDOO\ IRU VWDUWVWRSRSHUDWLRQVDQG

    ORZVSHHGDSSOLFDWLRQV

    Speed

    range

    ,GHDODERYHDSSUR[USP

    UDQJHIRUK\GURG\QDPLF OXEULFDWLRQ

    :LWKVSHFLDOPDWHULDOSDLULQJDQG

    OXEULFDWLRQHYHQDWORZHUVSHHGV

    8SWRDSSUR[USP

    ,QVSHFLDOFDVHVXSWRUSP DQGKLJKHU

    Radial /

    axial load

    2QO\VPDOOEHDULQJORDGV +LJKHUORDGV

    3UHORDGHGEDOOEHDULQJV

    $[LDOORDGLQJXSWRWKHYDOXHRIWKH

    SUHORDG

    Additional

    operatingcriteria

    7\SLFDOLQVPDOOEUXVKHG'&PRWRUV

    XSWRDSSUR[PPGLDPHWHUDQG LQVSXUJHDUKHDGV

    1RWVXLWDEOHIRUURWDWLQJORDG

    1RWVXLWDEOHIRUYDFXXP

    DSSOLFDWLRQVRXWJDVVLQJ

    1RWVXLWDEOHIRUORZWHPSHUDWXUHV

    &

    7\SLFDOLQ'&PRWRUVDERYHPP

    GLDPHWHUDQGLQSODQHWDU\JHDUKHDGV 3UHORDGHGEDOOEHDULQJVRIIHUDYHU\

    ORQJOLIHDQGVPRRWKRSHUDWLRQ

    7\SLFDOLQEUXVKOHVV'&PRWRUV

    Bearing

    play

    $[LDOW\SLFDOO\PP

    5DGLDOW\SLFDOO\PP

    $[LDOW\SLFDOO\PP

    QRD[LDOSOD\LISUHORDGHG

    5DGLDOW\SLFDOO\PP

    &RHIFLHQW

    of friction

    K\GURG\QDPLFOXEULFDWLRQ

    Lubrica-

    tion

    +\GURG\QDPLFOXEULFDWLRQRQO\DW

    KLJKVSHHGV

    6KDIWEHDULQJPDWHULDOYHU\LPSRUWDQW

    SRUHVL]HRIWKHVLQWHUHGEHDULQJDQG

    YLVFRVLW\RIWKHOXEULFDQWDWRSHUDWLQJ

    WHPSHUDWXUHDUHFULWLFDO

    6SHFLDO6LQWHUHGLURQEHDULQJVZLWK

    FHUDPLFVKDIWIRUKLJKUDGLDOORDGV DQGORQJRSHUDWLQJOLIH

    7HPSHUDWXUHUDQJHIRUVWDQGDUG

    OXEULFDWLRQW\SLFDOO\&

    6SHFLDOOXEULFDWLRQSRVVLEOHIRUYHU\

    KLJKRUYHU\ORZRSHUDWLQJWHPSHUDWXUHV

    6HDOLQJSRVVLEOHEXWKLJKHUIULFWLRQ

    VKRUWHUOLIHDQGORZHUVSHHGOLPLW

    Costs (FRQRPLFDO 0RUHH[SHQVLYH

    4. Bearing4.1 Comparison of characteristics of sintered sleeve bearings and ball bearings

  • 7/29/2019 Maxon Formelsammlung e

    28/60

    Notes

  • 7/29/2019 Maxon Formelsammlung e

    29/60

    PD[RQ)RUPXODH+DQGERRN

    5. Electrical principles5.1 Principles of DC (Direct Current)

    Electric power

    8QLW

    [3] 9$9$

    :-V

    3RZHU

    P = U I = R I2 =

    R

    U2

    3RZHUORVV

    3V= R I

    Power adjustment

    $WRL = RiWKHPD[LPXPSRZHULVGUDZQIURPDYROWDJHVRXUFH

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    0.01 0.1 1 10 100

    RL/Ri

    P/P

    max

    I Ri

    Linear source Consumer loada

    b

    U0

    Ukl

    RL

    I

    Pmax

    =4 Ri

    U0

    2

    4

    I2

    Ri

    =Ohm's law

    V RU

    A+

    _

    I 85,

    I =R

    U

    R =I

    U

    Symbol Name SI

    I &XUUHQW $

    3 3RZHU :3max 0D[LPXPSRZHU :

    3V 3RZHUORVVHV :

    R (OHFWULFDOUHVLVWDQFH

    Symbol Name SI

    Ri ,QQHUUHVLVWDQFHYROWDJHVRXUFH

    RL /RDGUHVLVWDQFH 8 9ROWDJH 9

    80 6RXUFHYROWDJH 9

    8kl 7HUPLQDOYROWDJH 9

  • 7/29/2019 Maxon Formelsammlung e

    30/60

    PD[RQ)RUPXODH+DQGERRN

    Electrical time constant

    100

    %

    60

    40

    20

    00

    el2

    el4

    el3

    el5

    el

    Uin

    Uout

    t

    63%

    7KHHOHFWULFDOWLPHFRQVWDQW

    GHVFULEHVWKHUHDFWLRQWLPHRIWKHFXUUHQWZKHQVZLWFKLQJ

    RQRURIIDYROWDJH

    [el])$V9V

    [el]+9V$V

    &XUUHQWFKDQJHZLWK

    LQGXFWLYHORDG

    el=R

    L

    9ROWDJHFKDQJHZLWK

    FDSDFLWLYHORDG

    el= R C

    Pull-up / pull-down

    +V

    Ru

    Logic

    Pull-up

    Pull-up:UHODWLYHO\KLJKLPSHGDQFHUHVLVWRU &RQQHFWVVLJQDOOLQHZLWKKLJKHUYROWDJHSRWHQWLDO

    3XOOVWKHOLQHXSWRWKHKLJKHUSRWHQWLDOLIQRH[WHUQDO

    YROWDJHDFWLYHO\SXOOVWKHOLQHWRDORZHUSRWHQWLDO

    Logic

    Rd

    Pull-down

    Pull-down:UHODWLYHO\KLJKLPSHGDQFHUHVLVWRU

    &RQQHFWVVLJQDOOLQHZLWKORZHUYROWDJHSRWHQWLDO

    3XOOVWKHOLQHGRZQWRWKHORZHUSRWHQWLDOLIQRH[WHUQDO

    YROWDJHDFWLYHO\SXOOVWKHOLQHWRDKLJKHUSRWHQWLDO

    Open-collector output

    Logic

    Collector

    Emitter

    Base

    Ru

    +V

    Open

    Collector

    Output

    Iout

    Uout

    Open-collector output (OC):

    2XWSXWRIDQLQWHJUDWHGFLUFXLWZLWKDELSRODUWUDQVLVWRU

    ZLWKDQRSHQFROOHFWRURXWSXW

    8VXDOO\WKHRXWSXWVDUHXVHGLQFRPELQDWLRQZLWK

    DSXOOXSUHVLVWRUZKLFKUDLVHVWKHRXWSXWYROWDJHWRD

    KLJKHUSRWHQWLDOLQWKHLQDFWLYHVWDWH

    8out9 Iout Ru

    Hall sensorsXVXDOO\KDYHDQRSHQFROOHFWRURXWSXW

    ZLWKRXWSXOOXSUHVLVWRU7KHUHIRUHLWLVLQWHJUDWHGLQWRWKH

    PD[RQFRQWUROOHUV

    Symbol Name SI

    & &DSDFLWDQFH )

    Iout 2XWSXWFXUUHQW $

    L ,QGXFWDQFH +R (OHFWULFDOUHVLVWDQFH

    Rd 3XOOGRZQUHVLVWDQFH

    Ru 3XOOXSUHVLVWDQFH

    Symbol Name SI

    t 7LPH V

    8in ,QSXWYROWDJH 9

    8out 2XWSXWYROWDJH 9+V 6XSSO\YROWDJH 9

    el (OHFWULFDOWLPHFRQVWDQW V

  • 7/29/2019 Maxon Formelsammlung e

    31/60

    PD[RQ)RUPXODH+DQGERRN

    Series resistor circuits

    R2

    U

    +

    I

    U1

    U2

    R1

    ,FRQVWDQW

    888 +...

    R = R + R + ...

    =U

    2

    U1

    R2

    R1

    Parallel resistor circuits

    R2

    U

    +

    I

    I1

    I2

    R1

    8FRQVWDQW

    I = I + I +...

    R

    1=

    R1

    1+

    R2

    1+ ...

    R1+R

    2

    R1 R

    2

    R =

    =I2

    I1

    R1

    R2

    5.2 Electrical resistive circuits

    Symbol Name SI

    I 7RWDOFXUUHQW $

    I, I 3DUWLDOFXUUHQWV $

    R (TXLYDOHQWUHVLVWDQFH

    Symbol Name SI

    R, R 3DUWLDOUHVLVWDQFHV

    8 7RWDOYROWDJH 9

    88 3DUWLDOYROWDJHV 9

  • 7/29/2019 Maxon Formelsammlung e

    32/60

    PD[RQ)RUPXODH+DQGERRN

    Voltage divider, no-load

    R2

    U

    +

    I

    U2

    R1

    U1

    R1+R

    2

    R2

    U2 = U

    =U

    2

    U1

    R2

    R1

    R2

    U2

    I =R

    1+R

    2

    U

    =

    Voltage divider, under load

    R2

    U

    +

    I

    IR2

    R1

    UL

    RL

    IL

    Rx

    R1

    +

    Rx

    UL = URx+R

    1

    RL

    R2

    Rx

    =R

    L+R

    2

    R2

    IL

    = I R

    L+R

    2

    RL

    IR2

    = I R

    L+R

    2

    Potentiometer

    0

    U

    +

    A

    RL

    1

    UL

    R0

    S

    E

    x

    A: Start

    S: Wiper

    E: End

    x R0

    RL

    R =(x R

    0) + R

    L

    1RORDGR

    UL

    = UR + (1 x) R

    0

    8QGHUORDG

    xU

    L= U

    RL

    R0

    (x

    x2

    ) +1

    Winding resistance

    7HPSHUDWXUHGHSHQGDQFH RT= Rmot &X7

    Symbol Name SI

    I 7RWDOFXUUHQW $

    IL /RDGFXUUHQW $

    IR &XUUHQWWKURXJKUHVLVWRU5 $

    R (TXLYDOHQWUHVLVWDQFH

    R 5HVLVWDQFHSRWHQWLRPHWHU

    R, R 3DUWLDOUHVLVWDQFHV RL /RDGUHVLVWDQFH

    Rmot 7HUPLQDOUHVLVWDQFHPRWRUFDWDORJYDOXH

    R[ (TXLYDOHQWUHVLVWDQFHRIRDQGRL

    Symbol Name SI

    RT 5HVLVWDQFHDWWHPSHUDWXUHT

    8 7RWDOYROWDJH 9

    88 3DUWLDOYROWDJHV 9

    8L /RDGYROWDJH 9

    7 7HPSHUDWXUHGLIIHUHQFH .

    x 3RWHQWLRPHWHUSRVLWLRQ

    Symbol Name Value

    &X 5HVLVWDQFHFRHIFLHQWFRSSHU .

  • 7/29/2019 Maxon Formelsammlung e

    33/60

    PD[RQ)RUPXODH+DQGERRN

    Alternating quantities

    t

    T

    [f] = V+]

    [] = / s =

    rad / s

    f =T1

    I

    Ohm's law

    V ZU

    A~

    ~

    I8t=,t

    I(t) =Z

    U(t)

    Z =I(t)U(t)

    Resistances

    Reactance

    ~

    XL

    ,QGXFWLYH XL/I/

    ~

    XC

    &DSDFLWLYH XC=

    &1

    2I&1

    =

    Impedance (AC resistance)

    )RUVHULHVFRQQHFWLRQRIRDQGL, orRDQG& R2 + X2Z =

    5.3 Principles of AC (Alternating Current)

    Symbol Name SI

    & &DSDFLWDQFH )

    I &XUUHQW $

    L ,QGXFWDQFH +

    R (OHFWULFDOUHVLVWDQFH

    T 3HULRG V

    8 9ROWDJH 9

    Symbol Name SI

    X 6WDQGVIRUX& orXL

    X& 5HDFWDQFHFDSDFLWLYH

    XL 5HDFWDQFHLQGXFWLYH

    Z ,PSHGDQFH

    f )UHTXHQF\ +]

    t 7LPH V $QJXODUIUHTXHQF\ UDGV

  • 7/29/2019 Maxon Formelsammlung e

    34/60

    PD[RQ)RUPXODH+DQGERRN

    General

    &XWRIIIUHTXHQF\ f&

    fC

    =2 R C

    1

    orf

    C

    =2 L

    R

    3KDVHVKLIWU

    in

    Uout

    FRV

    /RZSDVVOWHUVLQWHJUDOHOHPHQW

    $OORZIUHTXHQFLHVWRSDVVYLUWXDOO\XQDIIHFWHGEHORZWKHLUFXWRIIIUHTXHQF\f&

    +LJKHUIUHTXHQFLHVDUHGDPSHQHG

    $SSOLFDWLRQVPD[RQFRQWUROOHULQSXWVFRPPXWDWLRQVLJQDOPHDVXUHPHQWRIPD[RQPRWRUV

    R

    Uin

    C Uout

    L

    Uin

    R Uout

    URI

    Uout

    Uin

    Uout

    I

    UL

    Uin

    1.0

    Uin

    Uout

    0.707

    90

    f = fC

    45

    0

    0.1

    f/fC

    100.2 0.5 1 2 5

    0.1

    0.5

    0.2

    Uin

    Uout

    1 + ( f / fC)2

    = 1

    Uout

    = Uin

    R2 +X

    c

    2

    Xc

    Uout

    = Uin

    R2 +XL

    2

    R

    6LPSOHOWHUV

    Symbol Name SI

    & &DSDFLWDQFH )

    I &XUUHQW $

    L ,QGXFWDQFH +

    R (OHFWULFDOUHVLVWDQFH 8& 9ROWDJHRYHUFDSDFLWDQFH 9

    8in ,QSXWYROWDJH 9

    8L 9ROWDJHRYHULQGXFWDQFH 9

    Symbol Name SI

    8out 2XWSXWYROWDJH 9

    8R 9ROWDJHRYHUUHVLVWDQFH 9

    X& 5HDFWDQFHFDSDFLWLYH

    XL 5HDFWDQFHLQGXFWLYH f )UHTXHQF\ +]

    f& &XWRIIIUHTXHQF\ +]

    3KDVHVKLIW

    +LJKSDVVOWHUGHULYDWLYHHOHPHQW

    $OORZIUHTXHQFLHVWRSDVVYLUWXDOO\XQDIIHFWHGDERYHWKHLUFXWRIIIUHTXHQF\f&

    /RZHUIUHTXHQFLHVDUHGDPSHQHG

    R

    Uin

    L Uout

    Uout

    I

    UC

    Uin

    UR

    I

    Uout

    Uin

    C

    Uin

    R Uout

    0.707

    f = fC

    1.0

    Uin

    Uout

    90

    45

    0

    0.1

    f/fC

    100.2 0.5 1 2 5

    0.1

    0.5

    0.2

    Uin

    Uout

    1 + ( fC

    / f)2

    =1

    Uout= UinR2 +X

    C

    2

    R

    Uout

    = Uin

    R2 +XL

    2

    XL

  • 7/29/2019 Maxon Formelsammlung e

    35/60

    PD[RQ)RUPXODH+DQGERRN

    6. maxon motors6.1 General

    What is special about maxon motors?

    7KHheartRIWKHPD[RQPRWRULVWKHself-supporting ironless copper winding

    2XWVWDQGLQJIHDWXUHVRIWKHPD[RQ'&PRWRUV

    +LJKHIFLHQF\/RZSRZHUFRQVXPSWLRQ

    9HU\ORZPRPHQWRILQHUWLD+LJKHVWDFFHOHUDWLRQ

    /RZLQGXFWDQFH/RQJVHUYLFHOLIH

    /LQHDUFKDUDFWHULVWLFV*RRGFRQWUROODELOLW\

    &RPSDFWGHVLJQ*RRGYROXPHSRZHUUDWLR

    1RPDJQHWLFFRJJLQJ

    /RZHOHFWURPDJQHWLFLQWHUIHUHQFH

    +LJKUHOLDELOLW\

    maxon DC motor (brushed permanent-magnet energized DC motors)

    RE program

    +LJKSRZHUGHQVLW\

    +LJKTXDOLW\'&PRWRUZLWK1G)H%PDJQHW

    +LJKVSHHGVDQGWRUTXHV

    5REXVWGHVLJQPHWDODQJH

    PP

    A-max program

    *RRGSULFHSHUIRUPDQFHUDWLR

    '&PRWRUZLWK$O1L&RPDJQHW $XWRPDWHGPDQXIDFWXULQJSURFHVV

    PP

    RE-max program

    +LJKSHUIRUPDQFHDWORZFRVWV

    &RPELQHVUDWLRQDOPDQXIDFWXULQJDQG

    GHVLJQRIWKH$PD[PRWRUVZLWKWKHKLJKHU

    SRZHUGHQVLW\RIWKH1G)H%PDJQHWV

    $XWRPDWHGPDQXIDFWXULQJSURFHVV

    PP

    Properties of the two brush systemsGraphite brushes

    :HOOVXLWHGIRUKLJK

    FXUUHQWVDQGSHDNFXUUHQWV

    :HOOVXLWHGIRUVWDUWVWRSDQG

    UHYHUVHRSHUDWLRQ

    /DUJHUPRWRUVIURPDSSUR[:

    +LJKHUIULFWLRQKLJKHUQRORDGFXUUHQW

    1RWVXLWHGIRUORZFXUUHQWV

    +LJKHUDXGLEOHQRLVH +LJKHUHOHFWURPDJQHWLFHPLVVLRQV

    0RUHFRPSOH[DQGKLJKHUFRVWV

    Precious metal brushes

    :HOOVXLWHGIRUORZHVW

    FXUUHQWVDQGYROWDJHV

    :HOOVXLWHGIRUFRQWLQXRXVRSHUDWLRQ

    6PDOOHUPRWRUV

    9HU\ORZIULFWLRQORZDXGLEOHQRLVH

    /RZHOHFWURPDJQHWLFHPLVVLRQV

    &RVWHIIHFWLYH

    1RWVXLWHGIRUKLJKFXUUHQWVDQG SHDNFXUUHQWV

    1RWVXLWHGIRUVWDUWVWRSRSHUDWLRQ

  • 7/29/2019 Maxon Formelsammlung e

    36/60

    PD[RQ)RUPXODH+DQGERRN

    maxon EC motor

    %UXVKOHVV'&PRWRUV%/'&PRWRUV

    0RWRUEHKDYLRUVLPLODUWREUXVKHG'&PRWRU 'HVLJQVLPLODUWRV\QFKURQRXVPRWRUSKDVHVWDWRUZLQGLQJURWDWLQJSHUPDQHQWPDJQHW

    3RZHULQJRIWKHSKDVHVDFFRUGLQJWRWKHURWRUSRVLWLRQE\DFRPPXWDWLRQHOHFWURQLFV

    maxon EC range

    3RZHURSWLPL]HGZLWKKLJKVSHHGV

    XSWRUSP

    5REXVWGHVLJQ

    9DULRXVW\SHVHJVKRUWORQJVWHULOL]DEOH

    /RZHVWUHVLGXDOLPEDODQFH

    PP

    EC-max range

    $WWUDFWLYHSULFHSHUIRUPDQFHUDWLR

    5REXVWVWHHOKRXVLQJ

    6SHHGVXSWRUSP

    5RWRUZLWKRQHSROHSDLU

    PP

    EC-4pole range

    +LJKHVWSRZHUGHQVLW\WKDQNVWRSROHURWRU

    .QLWWHGZLQGLQJV\VWHPPD[RQ ZLWKRSWLPL

    ]HGLQWHUFRQQHFWLRQRIWKHSDUWLDOZLQGLQJV 6SHHGVXSWRUSP

    +LJKTXDOLW\PDJQHWLFUHWXUQPDWHULDOWR

    UHGXFHHGG\FXUUHQWORVVHV

    0HFKDQLFDOWLPHFRQVWDQWVEHORZ

    PLOOLVHFRQGV

    PP

    PD[RQ(&DWPRWRU

    $WWUDFWLYHSULFHSHUIRUPDQFHUDWLR

    +LJKWRUTXHVGXHWRH[WHUQDO

    PXOWLSROHURWRU

    ([FHOOHQW KHDWGLVVLSDWLRQ DW KLJKHU VSHHGV

    UHVXOWLQJIURPWKHWRRSHQGHVLJQ

    6SHHGVRIXSWRUSP

    PP

    maxon EC-i range

    +LJKO\G\QDPLFGXHWRLQWHUQDO

    PXOWLSROHURWRU

    0HFKDQLFDOWLPHFRQVWDQWV

    EHORZPLOOLVHFRQGV

    6SHHGVRIXSWRUSP

    PP

  • 7/29/2019 Maxon Formelsammlung e

    37/60

    PD[RQ)RUPXODH+DQGERRN

    Electronic commutation

    Commutation type Rotor position determination

    Block commutation ZLWK+DOOVHQVRUV VHQVRUOHVV

    Turning angle

    Block-shaped phase currents

    0 36060120180 240300+

    +

    +

    U

    U

    U

    1-2

    2-3

    3-1

    1

    0

    1

    0

    10

    60 120 180 240 300 3600

    Signal sequence diagram

    for the Hall sensors (HS)

    Supplied motor voltage

    (phase to phase)

    HS 1

    HS 2

    HS 3

    0 60 120 180 240 300 360

    EMF

    EMF

    Legend

    Star point

    Time delay 30

    Zero crossing of EMF

    Sinusoidal commutation :LWKHQFRGHUDQG+DOOVHQVRUV+6

    0 36060 120 180 240 300

    Turning angle

    Sinusoidal phase currents

    EC motor with HS Encoder

    Comparison of DC and EC motors

    DC motor (brushed)

    6LPSOHRSHUDWLRQDQGFRQWURO

    HYHQZLWKRXWHOHFWURQLFV

    1RHOHFWURQLFSDUWVLQWKHPRWRU

    2SHUDWLQJOLIHOLPLWHGE\EUXVKV\VWHP

    0D[VSHHGVOLPLWHGE\EUXVKV\VWHP

    EC motor (brushless)

    /RQJRSHUDWLQJOLIHDQGKLJKVSHHGVZLWK

    SUHORDGHGEDOOEHDULQJV

    1RFRPPXWDWRUDUFLQJ

    ,URQORVVHVLQWKHPDJQHWLFUHWXUQ

    1HHGVHOHFWURQLFVIRURSHUDWLRQ PRUHFDEOHVDQGKLJKHUFRVWV

    (OHFWURQLFSDUWVLQWKHPRWRU+DOOVHQVRUV

  • 7/29/2019 Maxon Formelsammlung e

    38/60

    PD[RQ)RUPXODH+DQGERRN

    6.2 Power consideration of the DC motor: in general

    Motor as energy converter

    PJ= Rmot,mot2

    PL

    = n M30

    Pel= U

    mot,

    mot

    3RZHUEDODQFHPRWRU

    3el3L3-

    30

    U

    mot I

    mot= n M + R

    mot I

    mot

    2

    Umot

    > UN

    Umot

    = UN

    Torque M

    n0

    MH

    PL

    PL

    Power P

    Speed n,QWKHVSHHGWRUTXHGLDJUDPWKHRXWSXWSRZHU

    LVHTXLYDOHQWWRWKHDUHDRIWKHUHFWDQJOHEHORZ

    WKHVSHHGWRUTXHOLQH7KLVUHFWDQJOHLVODUJHVWDWKDOIWKHVWDOOWRUTXHDQGKDOIWKHQRORDG

    VSHHG

    7KHSRZHUFXUYHLVDSDUDERODZKRVH

    PD[LPXPYDOXHLVSURSRUWLRQDOWRWKHVTXDUH

    RIWKHPRWRUYROWDJH

    Symbol Name SI

    Imot 0RWRUFXUUHQW $

    0 7RUTXH 1P

    0H 6WDOOWRUTXH 1P

    3 3RZHU :

    3el (OHFWULFDOLQSXWSRZHU :

    3- -RXOHSRZHUORVV :3L 0HFKDQLFDORXWSXWSRZHU :

    Rmot 7HUPLQDOUHVLVWDQFHPRWRU

    FDWDORJYDOXH

    Symbol Name SI

    8mot 0RWRUYROWDJH 9

    8N 1RPLQDOYROWDJHPRWRU

    FDWDORJYDOXH 9

    Symbol Name maxon

    n 6SHHGRIURWDWLRQ USPn 1RORDGVSHHG USP

  • 7/29/2019 Maxon Formelsammlung e

    39/60

    PD[RQ)RUPXODH+DQGERRN

    6.3 Motor constants and diagrams

    Motor constants

    7KHspeed constant knDQGWKHtorque constant kMDUHWZRLPSRUWDQWFKDUDFWHULVWLFYDOXHVIRU

    WKHHQHUJ\FRQYHUVLRQ

    Speed constant kn7KHVSHHGFRQVWDQWknFRPELQHVWKHVSHHGn ZLWKWKHYROWDJH

    LQGXFHGLQWKHZLQGLQJ8ind(0)

    n = kn8ind

    Torque constant kM7KHWRUTXHFRQVWDQWk0OLQNVWKHSURGXFHGWRUTXH0ZLWKWKH

    HOHFWULFDOFXUUHQW I.

    Information:PD[RQXQLWP1P$

    0N0,mot

    Dependence between kn and kMPD[RQXQLWV

    30 000k

    n k

    M=

    Vrpm

    AmNm

    [ ]

    s Vrad

    = 1A

    Nm

    Speed-torque line

    'HVFULEHVWKHPRWRUEHKDYLRULHSRVVLEOHRSHUDWLQJSRLQWV

    Q0DWDFRQVWDQWYROWDJH8mot

    Umot>U

    N

    Torque M

    n0

    MH

    nUmot=U

    N

    Speed n

    M

    MR

    I0

    IA

    Motor current Imot

    nNn8mot

    0H= k0,$

    0R = k0,

    0

    QQN

    Q8

    mot0

    PD[RQXQLWV

    6SHHGWRUTXHJUDGLHQW

    M

    n

    30 000=

    kM

    2

    Rmot

    MH

    n0

    PD[RQXQLWV

    Symbol Name SI

    Imot 0RWRUFXUUHQW $

    I$ 6WDUWLQJFXUUHQW $

    I 1RORDGFXUUHQW $

    k0 7RUTXHFRQVWDQWFDWDORJYDOXH 1P$

    0 7RUTXH 1P

    0H 6WDOOWRUTXH 1P0R )ULFWLRQWRUTXH 1P

    Rmot 7HUPLQDOUHVLVWDQFHPRWRUFDWDORJYDOXH

    8ind ,QGXFHGYROWDJH 9

    Symbol Name SI

    8mot 0RWRUYROWDJH 9

    8N 1RPLQDOYROWDJHPRWRUFDWDORJYDOXH 9

    Symbol Name maxon

    kn 6SHHGFRQVWDQWFDWDORJYDOXH USP/9

    n 6SHHGRIURWDWLRQ USPn 1RORDGVSHHG USP

    Q0 6SHHGWRUTXHJUDGLHQWPRWRU

    FDWDORJYDOXH USPP1P

  • 7/29/2019 Maxon Formelsammlung e

    40/60

    PD[RQ)RUPXODH+DQGERRN

    Voltage equation, motor

    Imot

    +

    Umot

    Uind

    Lmot

    Rmot

    EMF

    W

    LU

    PRW= L

    PRW + R

    PRW I

    PRW+ U

    LQGR

    PRW I

    PRW+ U

    LQG

    'HULYHGIURPWKLVWKHVSHHGRIURWDWLRQDVD

    IXQFWLRQRIWKHORDGVSHHGWRUTXHOLQH

    0

    QQN

    Q8

    mot 0Q

    00

    0

    Q

    PD[RQXQLWV

    (IFLHQF\FXUYHI0

    n0

    Umot

    = UN

    Kmax

    Torque M

    Efficiency K

    Speed n

    MH

    30 000

    Umot,

    mot

    Q(005

    )(with0

    RN

    M,

    0)

    max

    =IA

    I0

    1

    2

    Symbol Name SI

    (0) (OHFWURPRWLYHIRUFH 9

    I 1RORDGFXUUHQW $

    I$ 6WDUWLQJFXUUHQW $

    Imot 0RWRUFXUUHQW $

    k0 7RUTXHFRQVWDQWFDWDORJYDOXH 1P$

    Lmot 7HUPLQDOLQGXFWDQFHPRWRUFDWDORJYDOXH +

    0 7RUTXH 1P

    0H 6WDOOWRUTXH 1P

    0R )ULFWLRQWRUTXH 1PRmot 7HUPLQDOUHVLVWDQFHPRWRUFDWDORJYDOXH

    8N 1RPLQDOYROWDJHPRWRUFDWDORJYDOXH 9

    8ind ,QGXFHGYROWDJH 9

    Symbol Name SI

    8mot 0RWRUYROWDJH 9

    L &XUUHQWFKDQJH $

    W 7LPHFKDQJH V

    (IFLHQF\

    max 0D[LPXPHIFLHQF\DW8NFDWDORJYDOXH

    Symbol Name maxon

    kn 6SHHGFRQVWDQWFDWDORJYDOXH USP9

    n 6SHHGRIURWDWLRQ USPn 1RORDGVSHHG USP

    Q0 6SHHGWRUTXHJUDGLHQWPRWRU

    FDWDORJYDOXH USPP1P

  • 7/29/2019 Maxon Formelsammlung e

    41/60

    PD[RQ)RUPXODH+DQGERRN

    Angular acceleration: Start with constant current

    ML, n

    L

    n0

    n0

    nL

    MH

    t Time t

    lmot

    = constant

    Torque M

    Speed n

    Speed n

    $FFHOHUDWLRQ

    JR-

    L

    kMI

    mot

    JR-

    L

    M

    5DPSWLPHWRORDGVSHHG

    W30

    Q

    kMI

    PRW

    JR-

    L

    30

    Q

    M

    JR-

    L

    Angular acceleration: Start with constant terminal voltage

    nL

    ML, n

    Ln

    0

    MH

    n0

    tm

    Umot

    = constant

    Time t

    Torque M

    Speed n

    Speed n

    $FFHOHUDWLRQPD[LPXP

    max

    =J

    R+ J

    L

    MH

    5DPSWLPHWRORDGVSHHG

    Wm

    ' ln

    1M

    H

    ML

    + MR

    n0

    1M

    H

    ML

    + MR

    n0n

    L

    0HFKDQLFDOWLPHFRQVWDQWZLWKORDGLQHUWLD

    m

    '

    = kM2

    (JR

    + JL) R

    mot

    Symbol Name SI

    Imot 0RWRUFXUUHQW $

    -L 0RPHQWRILQHUWLDORDG NJP

    -R 0RPHQWRILQHUWLDURWRUFDWDORJYDOXH NJP

    k0 7RUTXHFRQVWDQWFDWDORJYDOXH 1P$

    0 7RUTXH 1P

    0H 6WDOOWRUTXH 1P

    0L /RDGWRUTXH 1P

    0R )ULFWLRQWRUTXH 1P

    Rmot 7HUPLQDOUHVLVWDQFHPRWRUFDWDORJYDOXH t 7LPH V

    8mot 0RWRUYROWDJH 9

    Symbol Name SI

    $QJXODUDFFHOHUDWLRQ UDGV

    max 0D[LPXPDQJXODUDFFHOHUDWLRQ UDGV

    W $FFHOHUDWLRQWLPH V

    m 0HFKDQLFDOWLPHFRQVWDQWFDWDORJYDOXH V

    m 0HFKDQLFDOWLPHFRQVWDQW

    ZLWKDGGLWLRQDO-L V

    Symbol Name maxon

    n 6SHHGRIURWDWLRQ USPn 1RORDGVSHHG USP

    nL /RDGVSHHG USP

    Q 6SHHGFKDQJH USP

    6.4 Acceleration

  • 7/29/2019 Maxon Formelsammlung e

    42/60

    PD[RQ)RUPXODH+DQGERRN

    Motor type selection

    Speed n

    Short-term operation

    Max. permissible speed

    Continuous

    operation

    MRMS

    Torque MM

    maxM

    NM

    H

    0RWRUW\SHVHOHFWLRQ

    EDVHGRQWKHUHTXLUHGWRUTXHV0N!05060H!0max

    5RRWPHDQVTXDUHORDG506

    MRMS

    =ttot

    1(t

    1 M

    12 + t

    2 M

    22 + ... + t

    n M

    n

    2)

    Remark:

    $PRWRUW\SHHJ5(LVGHQHGE\LWVVL]HWKHPHFKDQLFDORXWSXWSRZHUWKHEHDULQJV\VWHP

    RIWKHVKDIWWKHFRPPXWDWLRQV\VWHPXVHGDQGWKHSRVVLEOHFRPELQDWLRQVZLWKJHDUKHDGVDQGVHQVRUVPD[RQPRGXODUV\VWHP

    Winding selection

    )RUDQRSWLPXPPDWFKEHWZHHQWKHHOHFWULFDODQGPHFKDQLFDOSRZHUFRPSRQHQWVRIWKHPRWRU

    Speed-torque line

    high enough for all

    operating points

    n0,theor

    Safety

    factor

    ~ 20%n

    max

    Deceleration Acceleration

    Mmax

    Speed n

    Torque M

    knVSHFLHVWKHZLQGLQJ

    6HOHFWZLQGLQJZLWK

    knN

    n,theor=

    Umot

    n0,theor

    Umot

    nmax

    +

    =0

    Q0

    max

    PD[RQXQLWV

    ZKHUHnmax0max LVWKHH[WUHPHRSHUDWLQJSRLQW

    DQGQ0 WKHDYHUDJH VSHHGWRUTXHJUDGLHQW

    RIWKHVHOHFWHGPRWRUW\SH

    Recommendation:$GGDVDIHW\IDFWRURIDSSUR[WR kn WRFRPSHQVDWHIRUWROHUDQFHVDQGORDG

    FKDQJHVEXWGRQRWVHOHFWWRRODUJHDYDOXHIRUknDVWKLVZRXOGOHDGWRODUJHFXUUHQWV

    5HTXLUHGPD[LPXPPRWRUFXUUHQW Imot

    = I0

    +k

    M

    Mmax

    6.5 Motor selection

    Symbol Name SI

    Imot 0RWRUFXUUHQW $

    I 1RORDGFXUUHQW $

    k0 7RUTXHFRQVWDQWFDWDORJYDOXH 1P$

    0...n 7RUTXHDWRSHUDWLQJSRLQWV...n 1P

    0 7RUTXH 1P

    0H 6WDOOWRUTXH 1P

    0N 1RPLQDOWRUTXHPRWRUFDWDORJYDOXH 1P

    0506 506WRUTXH 1P0max 0D[LPXPWRUTXHLQORDGF\FOH 1P

    n 6SHHGRIURWDWLRQ USP

    8mot 0RWRUYROWDJH 9

    Symbol Name SI

    tn 'XUDWLRQRIRSHUDWLQJSRLQWV...n V

    ttot 7RWDOWLPHRSHUDWLQJF\FOH V

    Symbol Name maxon

    kn 6SHHGFRQVWDQWFDWDORJYDOXH USP9

    kn,theor 5HTXLUHGVSHHGFRQVWDQW USP9

    n 6SHHGRIURWDWLRQ USP

    nmax 0D[LPXPVSHHGLQORDGF\FOH USPn,theor 5HTXLUHGQRORDGVSHHG USP

    Q0 6SHHGWRUTXHJUDGLHQWPRWRU

    FDWDORJYDOXH USPP1P

  • 7/29/2019 Maxon Formelsammlung e

    43/60

    PD[RQ)RUPXODH+DQGERRN

    7. maxon sensor

    maxon incremental encoder

    360e 90e

    Channel A

    Channel B

    Signal edges (quadcounts)

    Index channel I

    Recommended applications QUAD MEnc MR EASY MILE Optical

    +LJKQXPEHURIFRXQWV

    +LJKVSHHGV

    /RZVSHHGV

    /LQHGULYHULQWKHFDVHRIORQJ

    FDEOHVURXJKDPELHQWFRQGLWLRQV

    SRVLWLRQLQJDSSOLFDWLRQV

    /RZSRVLWLRQLQJDFFXUDF\RU

    SRVLWLRQLQJZLWKJHDUKHDG,

    +LJKSRVLWLRQLQJDFFXUDF\ ,

    ,QGH[FKDQQHOIRUSUHFLVLRQKRPLQJ

    'XVWGLUWRLO

    ,RQL]LQJUDGLDWLRQ

    ([WHUQDOPDJQHWLFHOGV

    0HFKDQLFDOO\UREXVW

    5HFRPPHQGHG :LWKUHVWULFWLRQV 2SWLRQDORQUHTXHVW 1RWUHFRPPHQGHG

  • 7/29/2019 Maxon Formelsammlung e

    44/60

    PD[RQ)RUPXODH+DQGERRN

    Counts per turn from position resolution

    5HTXLUHGFRXQWVSHUWXUQNof the

    HQFRGHUIRUDVSHFLHGSRVLWLRQLQJDFFXUDF\RI

    1 L360

    Remark:%\HYDOXDWLQJWKHTXDGFRXQWVTFDIRXUWLPHVKLJKHUUHVROXWLRQLVDFKLHYHG7KLVLV

    UHFRPPHQGHGIRUDVXIFLHQWO\DFFXUDWHSRVLWLRQLQJ

    Measurement resolution, motor speed

    Example:

    0HDVXUHPHQWUHVROXWLRQ4

    TFPV&RXQWVSHUWXUQNHQFRGHU

    &37

    Q =Q N

    4

    Q =Q N

    4=

    1ms

    qc

    CPTCPT

    qc=

    PLQ

    qc

    qc= rpm

    Comment:7KHDFKLHYDEOHVSHHGVWDELOLW\LVPXFKKLJKHUWKDQWKHDERYHPHDVXUHPHQW

    UHVROXWLRQGXHWRWKHPDVVLQHUWLDVDQGIHHGIRUZDUGLIDSSOLFDEOH

    Symbol Name SI

    N &RXQWVSHUWXUQ &37

    i 5HGXFWLRQUDWLRPHFKDQLFDOGULYH4 4XDGFRXQWVSHUSXOVH TF,03

    4 0HDVXUHPHQWUHVROXWLRQ TFPV

    Symbol Name SI

    3RVLWLRQUHVROXWLRQ

    Symbol Name maxon

    Q 0HDVXUHPHQWUHVROXWLRQPRWRUVSHHG USP

  • 7/29/2019 Maxon Formelsammlung e

    45/60

    PD[RQ)RUPXODH+DQGERRN

    8. maxon controller8.1 Operating quadrants

    Operating quadrants

    n

    M

    n

    M

    n

    M

    n

    M

    n

    M

    Quadrant II

    Braking operationClockwise (cw)

    Quadrant IIIMotor operation

    Counterclockwise

    (ccw)

    Quadrant IVBraking operation

    Counterclockwise

    (ccw)

    Quadrant I

    Motor operation

    Clockwise (cw)

    1-Q operation

    2QO\PRWRURSHUDWLRQ

    4XDGUDQW,RU4XDGUDQW,,,

    'LUHFWLRQUHYHUVDOYLDGLJLWDOVLJQDO

    7\SLFDODPSOLHUIRU(&PRWRUV

    %UDNLQJLVQRWFRQWUROOHGIULFWLRQ

    RIWHQVORZ

    4-Q operation

    &RQWUROOHGPRWRURSHUDWLRQ

    DQGEUDNLQJRSHUDWLRQLQERWK URWDWLRQGLUHFWLRQVDOOTXDGUDQWV

    $PXVWIRUSRVLWLRQLQJWDVNV

    8.2 Selection of power supply

    Required supply voltage at given load (nL, ML)

    VCC

    0

    QQ

    L0

    L+ 8

    max (maxon units)

    Q0,81

    81

    Notes:

    ,QWKHFDVHRID4VHUYRDPSOLHUWKHSRZHUVXSSO\KDVWREHDEOHWRDEVRUEWKHNLQHWLFHQHUJ\

    JHQHUDWHGIRUH[DPSOHLQDFDSDFLWRUZKHQWKHORDGLVGHFHOHUDWHG

    :KHQDVWDELOL]HGSRZHUVXSSO\LVXVHGWKHRYHUFXUUHQWSURWHFWLRQKDVWREHGHDFWLYDWHGIRU

    WKHRSHUDWLQJUDQJH

    7KHIRUPXODLQFOXGHVWKHPD[LPXPYROWDJHGURS8RIWKHFRQWUROOHUDWPD[LPXPFRQWLQXRXV FXUUHQW

    Achievable speed at given voltage supply

    nL(V

    CCU

    max) (maxon units)

    0

    Q0

    LUN

    n0,UN

    Symbol Name SI

    0 7RUTXH 1P

    0L /RDGWRUTXH 1P8N 1RPLQDOYROWDJHPRWRUFDWDORJYDOXH 9

    V&& 6XSSO\YROWDJH 9

    8max 0D[LPXPYROWDJHGURSRIWKHFRQWUROOHU 9

    Symbol Name maxon

    n 6SHHGRIURWDWLRQ USP

    nL /RDGVSHHG USPn81 1RORDGVSHHGPRWRUDW8NFDWDORJYDOXHUSP

    Q0 6SHHGWRUTXHJUDGLHQWPRWRU

    FDWDORJYDOXH USPP1P

  • 7/29/2019 Maxon Formelsammlung e

    46/60

    PD[RQ)RUPXODH+DQGERRN

    8.3 Size of the motor choke with PWM controllers

    Calculation of current ripple

    PWM scheme 1-Q 2-level (4-Q) 3-level (4-Q)

    0D[LPXP

    FXUUHQWULSSOH

    SHDNWRSHDN,

    PP,max=

    4 Ltot

    f

    PWM

    VCC

    ,PP,max

    =2 L

    tot f

    PWM

    VCC

    ,PP,max

    =4 L

    tot f

    PWM

    VCC

    &DOFXODWLRQLtot Ltot = Lint + /mot + Lext

    7KHHIIHFWLYHPRWRULQGXFWDQFHLQWKHFDVHRIVTXDUH3:0H[FLWDWLRQRQO\DPRXQWVWRDSSUR[

    RIWKHFDWDORJYDOXHLmot.

    7KHFDWDORJYDOXHLmotLVGHQHGDWDIUHTXHQF\RIN+]ZLWKVLQXVRLGDOH[FLWDWLRQ.

    $WDFXUUHQWULSSOHRI,33INWKHPRWRUFDQVWLOOEHORDGHGWRDSSUR[RIWKH

    QRPLQDOFXUUHQWINFDWDORJYDOXH

    $WDFXUUHQWULSSOHRI,33!INLWLVUHFRPPHQGHGWRXVHDQH[WHUQDOPRWRUFKRNH

    LQDFFRUGDQFHZLWKWKHIRUPXODEHORZ

    Calculation, additional external motor choke

    PWM scheme 1-Q and 3-level (4-Q) 2-level (4-Q)

    5XOHRIWKXPE Lext

    =6 I

    N f

    PWM

    VCC L

    int0.3 L

    motL

    ext=

    3 IN

    fPWM

    VCC L

    int0.3 L

    mot

    Lext 1RDGGLWLRQDOPRWRUFKRNHUHTXLUHG

    Lext > $GGLWLRQDOPRWRUFKRNHUHFRPPHQGHG

    PWMDC

    motorLmot

    Lext

    Lint

    DC amplifier

    PWM

    PWM

    PWM

    EC

    motorLmot

    1/2Lext

    1/2Lint

    1/2Lint

    1/2Lint

    1/2Lext

    1/2Lext

    EC amplifier

    Symbol Name SI

    f3:0 3:0IUHTXHQF\ +]

    IN 1RPLQDOFXUUHQWPRWRUFDWDORJYDOXH $Lext ,QGXFWDQFHDGGLWLRQDOH[WHUQDO

    PRWRUFKRNH +

    Lint ,QGXFWDQFHEXLOWLQFKRNHFRQWUROOHU +

    Symbol Name SI

    Lmot 7HUPLQDOLQGXFWDQFHPRWRUFDWDORJYDOXH +

    Ltot 7RWDOLQGXFWDQFH +V&& 6XSSO\YROWDJH 9

    ,33 &XUUHQWULSSOHSHDNWRSHDN $

    ,33PD[ 0D[LPXPFXUUHQWULSSOHSHDNWRSHDN $

  • 7/29/2019 Maxon Formelsammlung e

    47/60

    PD[RQ)RUPXODH+DQGERRN

    9. Thermal behavior9.1 Basics

    Heat sources

    Iron losses in EC

    motors and motorswith iron core winding

    5HPDJQHWL]DWLRQORVVHV

    PV, magn

    =30 n M

    magn

    (GG\FXUUHQWORVVHV

    3V,eddyFRQVWQ

    Joule power losses

    in windingTemperature T

    Resistance R

    25C TW

    Rmot

    RTW 3- = R7: Imot

    R7: = Rmot >&X T: &@

    Friction losses: in the bearings and in the brushes (brushed DC motors)

    Losses in the

    gearhead40%

    60%

    80%

    100%

    MG, cont

    Efficiency1-stage3-stage

    5-stage

    Torque M

    30

    PV,R = nmot Mmot (1G )

    30

    P

    V,R= n

    L M

    L

    G

    1G

    Stall torque reduced through temperature rise

    )LUVWDSSUR[LPDWLRQFDOFXODWHGIURPYROWDJHDQGLQFUHDVHG

    ZLQGLQJUHVLVWDQFH

    7HPSHUDWXUHGHSHQGHQFHRIk0QRWFRQVLGHUHGM

    HT= k

    M I

    AT= k

    MR

    TW

    Umot

    Storing heat

    4FP7&th7 43 vW

    :LQGLQJ&WK: = c&XP: 6WDWRU&WK6 = cFePmot *HDUKHDG&WK* = cFeP*

    Symbol Name SI

    &th +HDWFDSDFLW\ -.

    &WK* +HDWFDSDFLW\JHDUKHDG -.

    &WK6 +HDWFDSDFLW\VWDWRU -.

    &WK: +HDWFDSDFLW\ZLQGLQJ -.

    c 6SHFLFKHDWFDSDFLW\ -NJ.

    I$7 6WDUWLQJFXUUHQWDWWHPSHUDWXUHT: $Imot 0RWRUFXUUHQW $

    k0 7RUTXHFRQVWDQWFDWDORJYDOXH 1P$

    0 7RUTXH 1P

    0*FRQt 0D[LPXPFRQWLQXRXVWRUTXHJHDUKHDG

    FDWDORJYDOXH 1P

    0HT 6WDOOWRUTXHDWWHPSHUDWXUHT: 1P

    0L /RDGWRUTXH 1P

    0magn 7RUTXHIRUUHYHUVDORIPDJQHWL]DWLRQ 1P

    0mot 0RWRUWRUTXH 1P

    m 0DVV NJ

    m* 0DVVJHDUKHDG NJ

    mmot 0DVVPRWRU NJ

    m: 0DVVZLQGLQJ NJ3- -RXOHSRZHUORVVHV :

    3V 3RZHUORVVHV :

    3V,eddy (GG\FXUUHQWSRZHUORVVHV :

    Symbol Name SI

    3V,magn 3RZHUORVVHVIRUUHYHUVDORIPDJQHWL]DWLRQ :

    3V,R )ULFWLRQSRZHUORVVHV :

    4 6WRUHGKHDW -

    Rmot 7HUPLQDOUHVLVWDQFHPRWRUFDWDORJYDOXH

    R7: :LQGLQJUHVLVWDQFHDWFXUUHQWWHPST:

    T 7HPSHUDWXUH &T: :LQGLQJWHPSHUDWXUH &

    t 7LPH V

    8mot 0RWRUYROWDJH 9

    7 7HPSHUDWXUHGLIIHUHQFH .

    (IFLHQF\

    * *HDUKHDGHIFLHQF\

    Symbol Name maxon

    n 6SHHGRIURWDWLRQ USP

    nL /RDGVSHHG USP

    nmot 0RWRUVSHHG USP

    Symbol Name Value&X 5HVLVWDQFHFRHIFLHQWFRSSHU .

    c&X 6SHFLFKHDWFDSDFLW\FRSSHU -NJ.

    cFe 6SHFLFKHDWFDSDFLW\LURQ -NJ.

  • 7/29/2019 Maxon Formelsammlung e

    48/60

    PD[RQ)RUPXODH+DQGERRN

    Analogy to electrical circuit:

    Power loss PV

    Thermal Electrical Current I

    Rth1

    Rth2

    TW

    TW

    TS

    TS

    TA

    U1

    U2

    Cth,W

    R1

    R2

    C1

    C2

    GND

    Cth,s

    Thermalo+HDWRZ

    /RVVHV

    Symbol Name Unit

    4 6WRUHGKHDW -

    3V 3RZHUORVVHV :-V

    7: 7HPSHUDWXUHGLIIHUHQFHZLQGLQJDPELHQW .

    76 7HPSHUDWXUHGLIIHUHQFHVWDWRUDPELHQW .

    T$ $PELHQWWHPSHUDWXUH &.

    Rth 7KHUPUHVLVWDQFHZLQGLQJKRXVLQJ

    FDWDORJYDOXH .:

    Rth 7KHUPUHVLVWDQFHKRXVLQJDPELHQW

    FDWDORJYDOXH .:

    &WK: +HDWFDSDFLW\ZLQGLQJ -.

    &WK6 +HDWFDSDFLW\VWDWRU -.

    Electrical o&XUUHQWRZ

    &XUUHQWVRXUFH

    Symbol Name Unit

    4 (OHFWULFFKDUJH &

    I &XUUHQW $&V

    8 9ROWDJHSRWHQWLDOGLIIHUHQFH V

    8 9ROWDJHSRWHQWLDOGLIIHUHQFH V

    *1' *URXQG V

    R (OHFWULFDOUHVLVWDQFH

    R (OHFWULFDOUHVLVWDQFH

    & (OHFWULFDOFDSDFLWDQFH F

    & (OHFWULFDOFDSDFLWDQFH F

    Heating of a simple body Cooling of a simple body

    Tstart

    Tend

    Tmax = 100%

    th

    Time t

    Temperature T

    Heating

    63%

    Tend

    Tstart

    Tmax = 100%

    th Time t

    Temperature T

    Cooling63%

    th

    t

    7W =7end

    1[ ]

    th

    t

    7W =7start

    Symbol Name SI

    T 7HPSHUDWXUH &

    T$ $PELHQW7HPSHUDWXUH &

    Tend (QGWHPSHUDWXUH &Tstart 7HPSHUDWXUHDWVWDUW &

    T6 6WDWRUWHPSHUDWXUH &

    T: :LQGLQJWHPSHUDWXUH &

    Symbol Name SI

    t 7LPH V

    7max 0D[LPXPWHPSHUDWXUHFKDQJH .

    7W 7HPSHUDWXUHFKDQJHDVD IXQFWLRQRIWLPHt .

    th 7KHUPDOWLPHFRQVWDQW V

  • 7/29/2019 Maxon Formelsammlung e

    49/60

    PD[RQ)RUPXODH+DQGERRN

    &RQWLQXRXVRSHUDWLRQLVFKDUDFWHUL]HGE\DWKHUPDOHTXLOLEULXP$IWHUVHYHUDOVWDWRUWLPHFRQVWDQWVWKHWHPSHUDWXUHGLIIHUHQFHEHWZHHQWKHURWRUDQGVWDWRUVWD\VFRQVWDQWDVWKHLUWHPSHUDWXUHVGRQRWLQFUHDVHIXUWKHU

    Motor: Winding and stator temperature

    Temperature T140

    1 10 100 1000 10000

    Stator

    Temperature

    difference

    Winding

    TW,

    TS,

    Rth1

    Rth2

    TW

    TS

    TA

    Time t

    0

    120

    100

    80

    40

    20

    60

    Heating of the winding in accordancewith the thermal time constant

    of the winding W

    Heating of the stator in accordancewith the thermal time constant

    of the stator s

    Thermal equilibriumafter several stator time

    constants

    7: = T:7$ = Rth + Rth3-

    Rth1

    RTA

    Imot

    2

    7W

    =1

    Cu R

    th1 R

    TA I

    mot

    2

    Rth2

    7S

    = 7S7

    A=

    Rth1

    + Rth2

    7W

    Gearhead: Housing temperature

    PV, G

    TG

    Rth,G

    TG

    TA

    PV, G

    7* = T*7$ = RWK*39*

    RWK*: HJHVWLPDWHGZLWKRWK of

    PRWRUVZLWKWKHVDPHVL]H

    9.2 Continuous operation

    Symbol Name SI

    Imot 0RWRUFXUUHQW $

    3- -RXOHSRZHUORVVHV :

    39* 3RZHUORVVHVJHDUKHDG :

    R7$ :LQGLQJUHVLVWDQFHDWWHPSHUDWXUHT$

    Rth,* 7KHUPUHVLVWDQFHJHDUKHDGDPELHQW .:

    Rth 7KHUPUHVLVWDQFHZLQGLQJKRXVLQJ

    FDWDORJYDOXH .:

    Rth 7KHUPUHVLVWDQFHKRXVLQJDPELHQW

    FDWDORJYDOXH .:

    T 7HPSHUDWXUH &T$ $PELHQWWHPSHUDWXUH &

    T* *HDUKHDGWHPSHUDWXUH &

    T6 6WDWRUWHPSHUDWXUH &

    Symbol Name SI

    T6 (QGWHPSHUDWXUHVWDWRU &

    T: :LQGLQJWHPSHUDWXUH &

    T: (QGWHPSHUDWXUHZLQGLQJ &

    t 7LPH V

    7* 7HPSHUDWXUHGLIIHUHQFHJHDUKHDGDPELHQW .

    76 7HPSHUDWXUHGLIIHUHQFHVWDWRUDPELHQW .

    7: 7HPSHUDWXUHGLIIHUHQFHZLQGLQJDPELHQW .

    6 7KHUPWLPHFRQVWDQWVWDWRUFDWDORJYDOXH V

    : 7KHUPWLPHFRQVWDQWZLQGLQJ

    FDWDORJYDOXH V

    Symbol Name Value

    &X 5HVLVWDQFHFRHIFLHQWFRSSHU .

  • 7/29/2019 Maxon Formelsammlung e

    50/60

    PD[RQ)RUPXODH+DQGERRN

    Permissible nominal currentIN

    IN

    MN

    nN

    Speed n

    Torque M

    Motor current Imot

    Continuous

    operation

    Short-term

    operation

    Max. permissible speed

    7HPSHUDWXUHGHSHQGHQFHXQGHUVWDQGDUGPRXQWLQJ

    FRQGLWLRQVIUHHDLUFRQYHFWLRQDW&PRXQWHGKRUL]RQWDOO\RQSODVWLFSODWH

    Tmax

    TA

    IN,TA

    = IN

    T

    max25C

    7HPSHUDWXUHGHSHQGHQFHXQGHUPRGLHGPRXQWLQJ

    FRQGLWLRQV

    Tmax TAI

    N,TA= I

    N

    Tmax

    25C

    Rth1 + Rth2R

    th1+ R

    th2,mod

    DeterminingRth2,mod

    TW

    TA

    TS

    Rth2, mod

    Rth1

    TS

    PV

    PV

    PV

    Motor under original conditions

    ,QVWDOODWLRQIDVWHQLQJDLUFLUFXODWLRQ

    Separate measurement during

    continuous operation$WDQ\PRWRUFXUUHQWImot

    6WDWRUWHPSHUDWXUHT6 $PELHQWWHPSHUDWXUHT$

    1Cu

    Rth1

    RTA

    Imot

    2

    Rth2,mod

    7S

    R

    TA I

    mot

    2 (1Cu

    7S)

    Symbol Name SI

    Imot 0RWRUFXUUHQW $

    IN 1RPLQDOFXUUHQWPRWRUFDWDORJYDOXH $

    I17$ 1RPLQDOFXUUHQWDVDIXQFWLRQRIT$ $

    0 7RUTXH 1P

    0N 1RPLQDOWRUTXHPRWRUFDWDORJYDOXH 1P

    3V 3RZHUORVVHV :

    R7$ :LQGLQJUHVLVWDQFHDWWHPSHUDWXUHT$

    Rth 7KHUPUHVLVWDQFHZLQGLQJKRXVLQJ

    FDWDORJYDOXH .:

    Rth 7KHUPUHVLVWDQFHKRXVLQJDPELHQW

    FDWDORJYDOXH .:Rth,mod 7KHUPUHVLVWDQFH

    KRXVLQJDPELHQWPRGLHG .:

    T$ $PELHQWWHPSHUDWXUH &

    Symbol Name SI

    Tmax 0D[SHUPLVVLEOHZLQGLQJWHPSHUDWXUH

    FDWDORJYDOXH &

    T6 6WDWRUWHPSHUDWXUH &

    T: :LQGLQJWHPSHUDWXUH &

    76 7HPSHUDWXUHGLIIHUHQFH

    VWDWRUDPELHQW .

    Symbol Name maxon

    n 6SHHGRIURWDWLRQ USP

    nN 1RPLQDOVSHHGPRWRUFDWDORJYDOXH USP

    Symbol Name Value

    &X 5HVLVWDQFHFRHIFLHQWFRSSHU .

  • 7/29/2019 Maxon Formelsammlung e

    51/60

    PD[RQ)RUPXODH+DQGERRN

    5HSHWLWLYHZRUNF\FOHVRIVKRUWGXUDWLRQW\SLFDOO\RQO\DIHZVHFRQGVFDQEHDVVHVVHGZLWKWKH

    VDPHIRUPDOLVPDVFRQWLQXRXVRSHUDWLRQ

    TemperatureT

    90.00

    80.00

    70.00

    60.00

    50.00

    40.00

    30.000.1 1 10 100 1000

    On

    (1s)

    Averageend temparture,

    winding

    10000Time t

    Off

    (3s)

    On

    Time constant

    winding 9s

    Off

    Average temperature rise during intermittent operation

    8VHHIIHFWLYHFXUUHQWYDOXH506DVPRWRU

    ORDG(R

    th1+ R

    th2R

    TAI

    RMS

    2

    7W

    =1

    Cu(R

    th1+ R

    th2R

    TAI

    RMS

    2

    Rth2

    7S

    =(R

    th1+ R

    th2)7

    W

    Intermittent operation

    Temperature T

    Time t

    Current I IonIRMS

    TW,avf

    TS,

    Tmax

    ton

    toff

    506FXUUHQWtonI

    RMS= I

    on

    ton

    + toff

    %DVLFUHTXLUHPHQWI506,17$

    0D[LPXPORDGFXUUHQWIRUDJLYHQWLPHF\FOH

    Tmax

    TA

    Ion,

    N

    Tmax

    25C

    ton t

    off

    ton

    2))GXUDWLRQIRUDORDGRIIonGXULQJton

    toff

    Ion

    2

    Tmax

    7A

    Tmax

    25CIN2

    1 ton

    9.3 Cyclic and intermittent operation (continuously repeated)

    Symbol Name SI

    I &XUUHQW $

    IN 1RPLQDOFXUUHQWPRWRUFDWDORJYDOXH $

    I17$ 1RPLQDOFXUUHQWDVDIXQFWLRQRIT$ $

    Ion &XUUHQWGXULQJ21SKDVH $

    I506 506FXUUHQW $

    R7$ :LQGLQJUHVLVWDQFHDWWHPSHUDWXUHT$

    Rth 7KHUPUHVLVWDQFHZLQGLQJKRXVLQJ

    FDWDORJYDOXH .:

    Rth 7KHUPUHVLVWDQFHKRXVLQJDPELHQW FDWDORJYDOXH .:

    T 7HPSHUDWXUH &

    T$ $PELHQWWHPSHUDWXUH &

    Symbol Name SI

    Tmax 0D[SHUPLVVLEOHZLQGLQJWHPSHUDWXUH

    FDWDORJYDOXH &

    T6 (QGWHPSHUDWXUHVWDWRU &

    T:DY $YHUDJHHQGWHPSHUDWXUHZLQGLQJ &

    t 7LPH V

    toff 2))WLPH V

    ton 21WLPH V

    76 7HPSHUDWXUHGLIIHUHQFHVWDWRUDPELHQW .

    7: 7HPSHUDWXUHGLIIHUHQFHZLQGLQJDPELHQW .

    Symbol Name Value

    &X 5HVLVWDQFHFRHIFLHQWFRSSHU .

  • 7/29/2019 Maxon Formelsammlung e

    52/60

    PD[RQ)RUPXODH+DQGERRN

    +LJKEULHIRQHWLPHRYHUORDGRIWKHPRWRU7KHRSHUDWLRQGXUDWLRQLVVRVKRUWWKDWWKHWHPSHUDWXUH

    RIWKHWKHUPDOO\LQHUWVWDWRUGRHVQRWLQFUHDVHVLJQLFDQWO\WKLVFRUUHVSRQGVWRDQ21WLPHRI

    DSSUR[6 Z

    2QO\WKHKHDWLQJRIWKHZLQGLQJZKLFKFRUUHVSRQGVWRWKHKHDWLQJRIDVLPSOHERG\ VHHFKDSWHUKDVWREHWDNHQLQWRDFFRXQW

    140

    1 10 100 10000

    120

    100

    80

    4020

    60

    0.1 s

    10000

    Temperature T

    Stator

    Temperature

    difference

    Winding

    Time t

    TW,

    Rth1

    TS,

    TW

    TA

    Rth2

    T6 = T$

    7: = Rth3-

    Rth1

    RTA

    Imot

    2

    7W

    =1Cu Rth1 RTA Imot

    2

    Overload factor K

    4XDQWLFDWLRQRIWKHRYHUORDG

    Meaning:

    .TmaxLVQRWUHDFKHGGXULQJVKRUWWHUPRSHUDWLRQ

    .!/LPLWPD[LPXP21WLPHton

    Tmax

    25CK =

    Tmax

    TS

    R

    th1

    Rth1+

    R

    th2

    Imot

    IN

    0D[LPXPSHUPLVVLEOHRYHUORDGDWJLYHQ21WLPHton

    1K =

    1 exp ton

    W

    0D[LPXP21WLPHtonDWJLYHQRYHUORDGIDFWRU.K2

    ton

    W ln

    K2 1

    0D[LPXPPRWRUFXUUHQWImotDWJLYHQ

    RYHUORDGIDFWRU.

    Tmax

    TS

    Imot

    = K IN

    T

    max25 C

    Rth1

    + Rth2

    Rth1

    9.4 Short-term operation

    Symbol Name SI

    Imot 0RWRUFXUUHQW $

    IN 1RPLQDOFXUUHQWPRWRUFDWDORJYDOXH $

    . 2YHUORDGIDFWRU

    3- -RXOHSRZHUORVVHV :

    R7$ :LQGLQJUHVLVWDQFHDWWHPSHUDWXUHT$

    Rth 7KHUPUHVLVWDQFHZLQGLQJKRXVLQJ .:

    FDWDORJYDOXH

    Rth 7KHUPUHVLVWDQFHKRXVLQJDPELHQW .:

    FDWDORJYDOXH

    T 7HPSHUDWXUH &T$ $PELHQWWHPSHUDWXUH &

    Tmax 0D[SHUPLVVLEOHZLQGLQJWHPSHUDWXUH

    FDWDORJYDOXH &

    Symbol Name SI

    T: (QGWHPSHUDWXUHZLQGLQJ &

    T6 6WDWRUWHPSHUDWXUH &

    T6 (QGWHPSHUDWXUHVWDWRU &

    t 7LPH V

    ton 21WLPH V

    7: 7HPSHUDWXUHGLIIHUHQFHZLQGLQJDPELHQW .

    6 7KHUPWLPHFRQVWDQWVWDWRU

    FDWDORJYDOXH V

    : 7KHUPWLPHFRQVWDQWZLQGLQJ

    FDWDORJYDOXH V

    Symbol Name Value

    &X 5HVLVWDQFHFRHIFLHQWFRSSHU .

  • 7/29/2019 Maxon Formelsammlung e

    53/60

    PD[RQ)RUPXODH+DQGERRN

    10. Tables10.1 maxon Conversion Tables

    Power 3>:@

    % $ R]LQV R]LQUSP LQOEIV IWOEIV 1PV: mW NSPV P1PUSP

    :1PV

    mW

    R]LQV

    IWOEIV

    NSPV

    Torque 0>1P@

    % $ R]LQ IWOEI 1P:V 1FP P1P NSP SFP

    1P

    P1P

    NSP

    R]LQ

    IWOEI

    Moment of inertia ->NJP]

    % $ R]LQ R]LQV OELQ OELQV 1PVNJP P1PV JFP NSPV

    JFP 6

    NJP1PV

    R]LQ 5

    OELQ

    Mass P>NJ@ Force )>1@

    % $ R] OE JUJUDLQ NJ g %$ R] OEI 1 NS p

    NJ 1

    g NS

    R] R]

    OE

    OEI

    JUJUDLQ 6 SGO

    Length O>P@

    % $ in ft \G 0LO m FP mm P

    m

    FP

    mm

    in

    ft

    Angular velocityZ>V

    ]Angular acceleration >V]

    % $ V+] rpm UDGV % $ min V UDGV USPV

    UDGV S S V

    S

    rpm

    SUDGV S S

    S

    Linear velocity Y>PV]

    % $ LQV LQUSP IWV IWUSP PV FPV PPV m rpm

    PV

    LQV

    IWV 5

    Temperature 7>.@

    % $ )DKUHQKHLW &HOVLXV .HOYLQ

    .HOYLQ )

    &HOVLXV )

    )DKUHQKHLW & .

    General Information

    4XDQWLWLHVDQGWKHLUEDVLFXQLWVLQWKH

    ,QWHUQDWLRQDO6\VWHPRI8QLWV6,

    4XDQWLW\ %DVHXQLW 8QLWVLJQ

    /HQJWK meter m

    0DVV NLORJUDP NJ

    7LPH VHFRQG V

    (OHFWULF

    FXUUHQW ampere $

    7KHUPRG\QDPLF

    WHPSHUDWXUH NHOYLQ .

    Conversion example

    $.QRZQXQLW

    %8QLWVRXJKW

    .QRZQ 0XOWLSO\E\ 6RXJKW

    R]LQ P1P

    Factors used for

    conversions:

    R] NJ

    LQ m

    gravitational acceleration:

    J PV

    LQV

    derived units:

    \G IWLQ

    OE R]JUJUDLQVNS NJPV

    1 NJPV

    : 1PVNJPV

    - 1PV:V

    Decimal multiples and fractions of units

    3UH[$EEUH

    YLDWLRQ

    3RZHU

    of ten3UH[

    $EEUH

    YLDWLRQ

    3RZHU

    of ten

    GHFD GD GHFL G

    KHFWR h FHQWL F

    NLOR N PLOOL m

    PHJD 0 6 PLFUR m

    JLJD * 9 QDQR n

    WHUD 7 SLFR p

    8QLWVXVHGLQ

    WKHPD[RQFDWDORJ

  • 7/29/2019 Maxon Formelsammlung e

    54/60

    PD[RQ)RUPXODH+DQGERRN

    7\SLFDOFRHIFLHQWVRIIULFWLRQIRUUROOLQJVWDWLFDQGNLQHWLFIULFWLRQ

    Type of friction Friction condition Description

    .LQHWLFIULFWLRQ

    6ROLGWRVROLGIULFWLRQ

    GU\NLQHWLFIULFWLRQ

    'LUHFWFRQWDFWEHWZHHQWKH

    IULFWLRQSDUWQHUV

    %RXQGDU\IULFWLRQOXEULFDWHG

    NLQHWLFIULFWLRQ

    6SHFLDOFDVHRIVROLGWR

    VROLGIULFWLRQZLWKDGVRUEHGOXEULFDQWRQWKHVXUIDFHV

    0L[HGIULFWLRQ

    6ROLGWRVROLGIULFWLRQDQG

    XLGIULFWLRQFRPELQHGQH[W

    WRHDFKRWKHU

    )OXLGIULFWLRQ

    )ULFWLRQSDUWQHUVDUH

    FRPSOHWHO\VHSDUDWHGIURPHDFKRWKHUE\DOPRIXLG

    SURGXFHGK\GURVWDWLFDOO\RU

    K\GURG\QDPLFDOO\

    *DVIULFWLRQ

    )ULFWLRQSDUWQHUVDUH

    FRPSOHWHO\VHSDUDWHGIURP

    HDFKRWKHUE\DJDVOP

    SURGXFHGDHURVWDWLFDOO\RU

    DHURG\QDPLFDOO\

    6WDWLFIULFWLRQKLJKHUWKDQ

    NLQHWLFIULFWLRQ

    5ROOLQJIULFWLRQ

    5ROOLQJIULFWLRQ%RGLHVVHSDUDWHGE\

    OXEULFDWHGUROOHUEHDULQJV

    &RPELQHGUROOLQJDQGVOLGLQJ

    IULFWLRQ

    5ROOLQJIULFWLRQZLWKD

    NLQHWLFFRPSRQHQWVOLS

  • 7/29/2019 Maxon Formelsammlung e

    55/60

    PD[RQ)RUPXODH+DQGERRN

    7\SLFDOFRHIFLHQWRIIULFWLRQ Examples &RHIFLHQWRIIULFWLRQ

    6LQWHUHGEURQ]H6WHHO

    3ODVWLF*UD\FDVWLURQ

    6WHHO6WHHO

    1LWULGHGVWHHO1LWULGHGVWHHO

    &RSSHU&RSSHU

    &KURPLXP&KURPLXP

    $ODOOR\$ODOOR\

    6WHHO6WHHO

    6OHHYHEHDULQJOXEULFDWHGDWORZVSHHGVRIURWDWLRQ

    6LQWHUHGEURQ]H6WHHO

    6LQWHUHGEURQ]H6WHHO

    7HPSHUHGVWHHO7HPSHUHGVWHHO

    6LQWHUHGVOHHYHEHDULQJOXEULFDWHGDWKLJKVSHHGVRIURWDWLRQ

    DQGORZUDGLDOORDG

    6WHHO6WHHOGU\

    6WHHO6WHHOOXEULFDWHG

    6LQWHUHGEURQ]H6WHHOGU\

    6LQWHUHGEURQ]H6WHHOOXEULFDWHG

    3ODVWLF*UD\FDVWLURQGU\

    %DOOEHDULQJV

  • 7/29/2019 Maxon Formelsammlung e

    56/60

    56 PD[RQ)RUPXODH+DQGERRN

    11. Symbol list for the Formulae HandbookName Symbol Unit Page number$FFHOHUDWLRQ a PV $FFHOHUDWLRQIRUFH Fa 1 $FFHOHUDWLRQIRUFHVWQGKDOIF\FOH Fa / Fa 1 $FFHOHUDWLRQWLPH Wa V $FFHOHUDWLRQWLPH W V $PELHQWWHPSHUDWXUH T$ & $QJOHRIURWDWLRQ UDG $QJOHRIWKHLQFOLQHGSODQH 9

    $QJXODUDFFHOHUDWLRQ UDGV

    $QJXODUIUHTXHQF\ UDGV $QJXODUYHORFLW\$QJXODUYHORFLW\FKDQJH UDGV $QJXODUYHORFLW\DIWHUEHIRUHDFFHOHUDWLRQ endstart UDGV $QJXODUYHORFLW\LQSXWORDG inL UDGV $YHUDJHHQGWHPSHUDWXUHZLQGLQJ T:DY & %HDULQJORDGD[LDOUDGLDO F./ 1 &DSDFLWDQFH & ) &RHIFLHQWRIIULFWLRQVHHWDEOHFKDSW &RPSUHVVLYHIRUFH Fp 1 9&RXQWVSHUWXUQ&37 N &URVVVHFWLRQ $ m &XUUHQW I $ &XUUHQWFKDQJH i $ &XUUHQWGXULQJ21SKDVH Ion $ &XUUHQWULSSOHSHDNWRSHDN ,33 $ &XUUHQWWKURXJKUHVLVWRUR IR $ &XWRIIIUHTXHQF\ f& +] 'HQVLW\ NJP 'LDPHWHUGHHFWRUSXOOH\ d m 'LDPHWHUGHHFWRUSXOOH\X dX m 'LDPHWHUGULYHSXOOH\ d m 'LDPHWHUGULYHZKHHO d m 'LDPHWHUORDGSXOOH\ d m 'LVSODFHPHQW l m 9'LVWDQFH VVV m 'LVWDQFHRID[LVsIURPFHQWHURIJUDYLW\6 rs m 'RZQKLOOVORSHIRUFH FH 1 9'URSKHLJKW h m 'XUDWLRQ W V 'XUDWLRQRIRSHUDWLQJSRLQWV...n t n V (FFHQWULFLW\ e m (GG\FXUUHQWSRZHUORVVHV 3V,eddy W (IFLHQF\ (OHFWULFFKDUJH 4 &

    (OHFWULFDOFDSDFLWDQFH && ) (OHFWULFDOLQSXWSRZHU 3el W (OHFWULFDOUHVLVWDQFH R / R / R (OHFWULFDOWLPHFRQVWDQW el V (OHFWURPRWLYHIRUFH (0. 9 (QGWHPSHUDWXUH Tend & (QGWHPSHUDWXUHVWDWRUZLQGLQJ T6 / T: & (TXLYDOHQWUHVLVWDQFH R (TXLYDOHQWUHVLVWDQFHRIRDQGRL Rx )RUFH F 1 )UHTXHQF\ f +] )ULFWLRQIRUFH FR 1 9)ULFWLRQSRZHUORVVHV 3V,R W )ULFWLRQWRUTXH 0R 1P *HDUKHDGHIFLHQF\ * *HDUKHDGWHPSHUDWXUH T* & *UDYLWDWLRQDODFFHOHUDWLRQ g PV *URXQG *1' 9 +HDWFDSDFLW\ &th -. +HDWFDSDFLW\JHDUKHDGVWDWRUZLQGLQJ &WK*&WK6&WK: -. +HLJKW h m ,PSHGDQFH Z ,QGXFHGYROWDJH 8ind 9 ,QGXFWDQFH L + ,QGXFWDQFHDGGLWLRQDOH[WHUQDOPRWRUFKRNH Lext + ,QGXFWDQFHEXLOWLQFKRNHFRQWUROOHU Lint + ,QQHUUDGLXV ri m ,QQHUUHVLVWDQFHYROWDJHVRXUFH Ri ,QSXWVSHHG nin rpm ,QSXWWRUTXH 0in 1P ,QSXWYROWDJH 8in 9 ,QWHUPLWWHQWO\SHUPLVVLEOHWRUTXHJHDUKHDGFDWDORJYDOXH 0*PD[ 1P -RXOHSRZHUORVV 3- W /HQJWK l m /HQJWKRIVLGHabc abc m

    /RDGFXUUHQW IL $ /RDGIRUFHRXWSXW FL 1 /RDGIRUFHVWQGKDOIF\FOH FL / FL 1 /RDGUHVLVWDQFH RL /RDGVSHHG nL rpm /RDGWRUTXH 0L 1P

  • 7/29/2019 Maxon Formelsammlung e

    57/60

    PD[RQ)RUPXODH+DQGERRN

    Name Symbol Unit Page number/RDGYHORFLW\ vL PV /RDGYROWDJH 8L 9 0DVV m NJ 0DVVRIWKHORDG mL NJ 0DVVEHOW m% NJ 0DVVEHOW mR NJ 0DVVJHDUUDFN mZ NJ 0DVVJHDUKHDG m* NJ 0DVVPRWRU mmot NJ 0DVVURYHU mF NJ

    0DVVVSLQGOH m6 NJ 0DVVZLQGLQJ m: NJ 0D[LPXPDFFHOHUDWLRQ amax PV

    0D[LPXPDQJXODUDFFHOHUDWLRQ max UDGV

    0D[LPXPFRQWLQXRXVWRUTXHJHDUKHDGFDWDORJYDOXH 0*FRQW 1P 0D[LPXPFXUUHQWULSSOHSHDNWRSHDN ,33PD[ $ 0D[LPXPHIFLHQF\DW8NFDWDORJYDOXH max 0D[LPXPLQSXWVSHHG nmax,in rpm 0D[LPXPORDGVSHHG nmax,L rpm 0D[LPXPSHUPLVVLEOHZLQGLQJWHPSHUDWXUHFDWDORJYDOXH Tmax & 0D[LPXPSRZHU 3max W 0D[LPXPVSHHGLQORDGF\FOH nmax rpm 0D[LPXPWHPSHUDWXUHFKDQJH 7max . 0D[LPXPWRUTXHLQORDGF\FOH 0max 1P 0D[LPXPYHORFLW\ vmax PV 0D[LPXPYROWDJHGURSRIWKHFRQWUROOHU 8max 9 0HDQGLDPHWHUEHDULQJ r./ m 0HDVXUHPHQWUHVROXWLRQ 4 TFPV 0HDVXUHPHQWUHVROXWLRQPRWRUVSHHG Q rpm 0HFKDQLFDOLQSXWSRZHU 3mech,in W 0HFKDQLFDORXWSXWSRZHU 3L3mech,L W 0HFKDQLFDOSOD\LQSXW in UDG 0HFKDQLFDOSOD\RXWSXW VLL PUDG 0HFKDQLFDOSRZHU 3mech W 0HFKDQLFDOWLPHFRQVWDQWFDWDORJYDOXH m V 0HFKDQLFDOWLPHFRQVWDQWZLWKDGGLWLRQDO-L m V 0RPHQWRILQHUWLD - NJP 0RPHQWRILQHUWLDZLWKUHIHUHQFHWRWKHD[LVsWKURXJKWKHFHQWHURIJUDYLW\6-s NJP

    0RPHQWRILQHUWLDZLWKUHIHUHQFHWRWKHURWDWLRQD[LVx -x NJP

    0RPHQWRILQHUWLDZLWKUHIHUHQFHWRWKHURWDWLRQD[LVy -y NJP

    0RPHQWRILQHUWLDZLWKUHIHUHQFHWRWKHURWDWLRQD[LV] -] NJP

    0RPHQWRILQHUWLDDOOZKHHOVWRJHWKHU -: NJP

    0RPHQWRILQHUWLDGHHFWRUSXOOH\X --X NJP

    0RPHQWRILQHUWLDGULYLQJHQG - NJP

    0RPHQWRILQHUWLDHFFHQWULFGLVF -( NJP

    0RPHQWRILQHUWLDJHDUKHDGWUDQVIRUPHG -* NJP

    0RPHQWRILQHUWLDLQSXWPRWRUHQFRGHUEUDNH -in NJP

    0RPHQWRILQHUWLDORDG -L NJP

    0RPHQWRILQHUWLDRXWSXW - NJP

    0RPHQWRILQHUWLDSLQLRQ -3 NJP

    0RPHQWRILQHUWLDURWRUFDWDORJYDOXH -R NJP

    0RPHQWRILQHUWLDVSLQGOH -6 NJP

    0RWRUFXUUHQW Imot $ 0RWRUVSHHG nmot rpm 0RWRUWRUTXH 0mot 1P 0RWRUYROWDJH 8mot 9

    1RORDGFXUUHQW I $ 1RORDGVSHHG n rpm 1RORDGVSHHGRIPRWRUDW8NFDWDORJYDOXH n81 rpm 1RPLQDOFXUUHQWDVDIXQFWLRQRIT$ I17$ $ 1RPLQDOFXUUHQWPRWRUFDWDORJYDOXH IN $ 1RPLQDOVSHHGPRWRUFDWDORJYDOXH nN rpm 1RPLQDOWRUTXHPRWRUFDWDORJYDOXH 0N 1P 1RPLQDOYROWDJHPRWRUFDWDORJYDOXH 8N 9 1RUPDOIRUFHIRUFHSHUSHQGLFXODUWRWKHVXUIDFHRIFRQWDFW FN 1 91XPEHURIWHHWKLQWHUQDOJHDUSLQLRQVXQZKHHO ]]] 2))WLPH toff V 21WLPH ton V 2XWHUUDGLXV ra m 2XWSXWFXUUHQW Iout $ 2XWSXWYROWDJH 8out 9 2YHUORDGIDFWRU . 3DUWLDOFXUUHQWV I, I $ 3DUWLDOIRUFHV F/ F/ Fx 1 3DUWLDOUHVLVWDQFHV R, R 3DUWLDOWRUTXHV 000x 1P 3DUWLDOYROWDJHV 88 9 3HULRG T V 3HULRGLFDFFHOHUDWLRQIRUFHDVDIXQFWLRQRIWKHDQJOHRIURWDWLRQ Fa 1 3KDVHVKLIW

    3LWFK p m 3RLQWRQWKHxD[LV x/ x m 3RVLWLRQUHVROXWLRQ 3RWHQWLRPHWHUSRVLWLRQ x 3RZHU 3 W 3RZHUORVVHVSRZHUORVVHVJHDUKHDG 3V39* W

  • 7/29/2019 Maxon Formelsammlung e

    58/60

    PD[RQ)RUPXODH+DQGERRN

    Name Symbol Unit Page number3RZHUORVVHVIRUUHYHUVDORIPDJQHWL]DWLRQ 3V,magn W 3UHVVXUH3D1PEDU p 3D 93XOOGRZQUHVLVWDQFH Rd 3XOOXSUHVLVWDQFH Ru 3:0IUHTXHQF\ f3:0 +] 4XDGFRXQWVSHUSXOVH 4 TF,03 5DGLXV5DGLXV5DGLXV r / r / r m 5DGLXVFLUFXODUWRUXVDURXQG]D[LV R m 5HDF