maxwell’s equations and electromagnetic...

16
PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively November 13 th , 2015

Upload: others

Post on 17-Mar-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic

WavesJ. B. Snively

November 13th, 2015

Page 2: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Today’s Class

Maxwell’s EquationsIntro to WavesSummary

Page 3: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Maxwell’s EquationsI

⇥E · d ⇥A =Q

encl

�o

Gauss’s Law:(E Field)

I�B · d �A = 0

Gauss’s Law:(B Field)

I⇥B · d⇥l = µ

o

✓iC

+ �o

d�E

dt

encl

Ampere’s Law:(B Field)

I�E · d�l = �d�B

dt

Faraday’s Law:(E Field)

Page 4: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Together with the Lorentz Force (F=qE+qvxB), these equations describe classical electromagnetic interactions.

With some math, can be expressed in “point form” or “differential form”, which allows convenient calculation of the electromagnetic wave equations.

Maxwell’s Equations

Page 5: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Maxwell’s EquationsGauss’s Law:

(E Field)

Gauss’s Law:(B Field)

Ampere’s Law:(B Field)

Faraday’s Law:(E Field)

r⇥ ⇤B = µo

⇤J + �

o

⇥ ⇤E

⇥t

!

r⇥ ⇥E = �� ⇥B

�t

� · �B = 0

� · ⇤E =⇥

�o

Page 6: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Electromagnetic Radiation (i.e., Radiation of Waves)

Acceleration of Charge

Changing Currentor

Occurs as a result of:

Page 7: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Today’s Class

Maxwell’s EquationsIntro to WavesSummary

Page 8: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Electromagnetic Waves

Transverse – E and B fields are perpendicular to the direction of propagation. Propagates in direction of ExB.

In a vacuum (Free Space), the wave propagates at the speed of light “c”.

Magnitudes of E and B are related by

Page 9: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Electromagnetic Waves Wavelength and Frequency

Propagate at the speed of light:

c =1

p�o

µo

k= c

k=wavenumber, where wavelength: � =2⇥

k

and frequency (Hertz) is given by:

We can thus write: � =c

f

f =⇥

2�

Page 10: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Electromagnetic Waves The Spectrum

Page 11: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Electromagnetic Plane Waves

Page 12: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Electromagnetic Waves Sinusoidal Solutions...

E = Emax

cos(kx� �t)

B = Bmax

cos(kx� �t)

Emax

= cBmax

Field amplitudes determined by speed of light:

c =1

p�o

µo

For a plane wave traveling in the x-direction:

Page 13: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Electromagnetic Waves Sinusoidal Solutions...

⇥E =

ˆjEmax

cos(kx� �t)⇥B =

ˆkBmax

cos(kx� �t)

⇥B = �ˆkBmax

cos(kx+ �t)

⇥E =

ˆjEmax

cos(kx+ �t)

Page 14: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Electromagnetic Waves Materials other than “Free Space”

Define wave speed v, where v≤c:

v =1

p�µ

� = K�o

µ = Km

µo

Recall that: ,

v =1

p�µ

=1p

KKm

1p�o

µo

=cp

KKm

Page 15: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Electromagnetic Waves “Index of Refraction”

Can define index of refraction, relating the wave speed v in a material with speed of light c:

n =c

v=

pKKm

Keep in mind, however, that dielectric “constant” K varies with frequency.

(Also note that Km = 1 for many materials.)

Page 16: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Summary / Next Class:

Mastering Physics for Monday.

Homework for next-next Wednesday