may 14, 2014 do now: talk to a partner and match the processes 1-4 with the trophic groups that...

12
May 14, 2014 Do Now: Talk to a partner and match the processes 1-4 with the trophic groups that carry out those processes… Due today: Biology EOC Review 12-20. Lesson: Go over answers to multiple choice, discuss hints for the short answer questions, & preview tomorrow’s homework. Homework for tomorrow: Do ALL of the Plant and Animal Interdependence packet 1. Turn CO 2 into glucose 2. Turn glucose into CO 2 3. Take in O 2 and give off CO 2 4. Take in CO 2 and give off O 2 A. Producers (1, 4) B. Primary Consumers (2,3) C. Secondary Consumers (2,3) D. Detritivores (2,3)

Upload: stanley-thompson

Post on 16-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: May 14, 2014 Do Now: Talk to a partner and match the processes 1-4 with the trophic groups that carry out those processes… Due today: Biology EOC Review

May 14, 2014Do Now: Talk to a partner and match the processes 1-4 with the trophic groups that carry out those processes…

Due today: Biology EOC Review 12-20.

Lesson: Go over answers to multiple choice, discuss hints for the short answer questions, & preview tomorrow’s homework.

Homework for tomorrow: Do ALL of the Plant and Animal Interdependence packet

1. Turn CO2 into glucose2. Turn glucose into CO2

3. Take in O2 and give off CO2

4. Take in CO2 and give off O2

A. Producers (1, 4)B. Primary Consumers (2,3)C. Secondary Consumers (2,3)D. Detritivores (2,3)

Page 2: May 14, 2014 Do Now: Talk to a partner and match the processes 1-4 with the trophic groups that carry out those processes… Due today: Biology EOC Review

The diagram below shows some of the organisms that would be in a forest ecosystem. Tussock moths are native to the forest ecosystem. In the fall, tussock moths lay eggs on Douglas fir trees. In the spring, tussock moth larvae eat the needles of the Douglas fir trees.

Page 3: May 14, 2014 Do Now: Talk to a partner and match the processes 1-4 with the trophic groups that carry out those processes… Due today: Biology EOC Review

12. Students used a greenhouse as a model of a forest ecosystem to predict the effects of air temperature changes on tussock moths in a forest.

Describe two ways the greenhouse model may lead to unreliable predictions about the effects of air temperature changes on a moth population in a forest ecosystem.

In your description, be sure to:• Describe two differences that make a forest ecosystem more complex than the

greenhouse.• Describe how each of the differences could cause the students’ predictions about

a moth population in a forest ecosystem to be unreliable.

One way:The weather in the greenhouse is stable with no rain or snow.

Another way:Other animals such as birds and frogs are not in a greenhouse.

Weather conditions such as snow could kill larvae or tree branches and affect population growth.

The absence of predators can increase the population of moths and make observations unreliable.

1 pt

1 pt

Page 4: May 14, 2014 Do Now: Talk to a partner and match the processes 1-4 with the trophic groups that carry out those processes… Due today: Biology EOC Review

Along a StreamPaige and Logan did a field study to learn about the distribution of plants near a stream. They found the high flow line (the highest level stream water reaches) to be 4 meters from the stream. Paige and Logan counted the number of plants at, below, and above the high flow line of the stream.

Field Study Question: how does distance from the stream affect the number of plants growing there?

1 meter square

sample area

High flow line

plant

stream

Page 5: May 14, 2014 Do Now: Talk to a partner and match the processes 1-4 with the trophic groups that carry out those processes… Due today: Biology EOC Review

How does this procedure illustrate the following criteria?

• Logical steps to do the field study• Conditions to be compared (at least

3 conditions!)• Data to be collected• Method for collecting data

• How often (how many times) the data should be collected and recorded

• Environmental conditions to be recorded

Procedure:1. Go to the field study location when the stream is low. Record the

location, data and time.2. Select a 1-meter square sample area two meters from the stream.3. Count the number of plants within the sample area. Record as Trial 1

for two meters.4. Repeat steps 2 and 3 in three different locations as Trials 2 through 4.5. Repeat steps 2 through 4 at distances of four and six meters from the

stream.6. Calculate and record the average number of plants at each distance

from the stream.

Page 6: May 14, 2014 Do Now: Talk to a partner and match the processes 1-4 with the trophic groups that carry out those processes… Due today: Biology EOC Review

13. What did Paige and Logan do to make the results of the field study valid?

A. Choose a stream behind the school

B. Collected field study data for four trials

C. Conducted the field study during the afternoon

D. Collected data at three distances from the stream

14. The high flow line can move if the amount of water in a stream changes. Based on Paige and Logan’s results, what would happen to the plants if the high flow line moved farther from the stream?

A. The number of plants four meters from the stream would decrease

B. The mass of the plants two meters from the stream would increase

C. The height of the plants six meters from the stream would decrease

D. The reproduction rate of plants four meters from the stream would increase

15. Paige and Logan counted a total of 480 plants in 12 square meters. What was the population density of these plants?

A. 40 plants per square meter

B. 480 plants per square meter

C. 492 plants per square meter

D. 5,760 plants per square meter

Reliability (more trials)

Validity (more levels of controlled variable)

480 plants/12 square meters = 40

Page 7: May 14, 2014 Do Now: Talk to a partner and match the processes 1-4 with the trophic groups that carry out those processes… Due today: Biology EOC Review

16. How would a fish population affect the stream ecosystem?

A. Fish would lower the water temperature

B. Fish would produce oxygen from the water

C. Fish would block sunlight, increasing plant growth.

D. Fish would produce waste, providing nutrients to plants.

17. A year after their field study, Paige and Logan collected new data and found an average of only 5 plants per square meter at locations two meters from the stream. Which could explain why the number of plants two meters from the stream decreased?

A. The new data were collected later in the day.

B. The topsoil had been washed away by a flood.

C. A larger sample area was used to count plants.

D. The animals that ate the plants had moved away.

Distance from the stream (m)

Number of Plants (per 1 meter square)

Trial 1 Trial 2 Trial 3 Trial 4 Average

2 16 18 19 20 18

4 (high flow line) 47 49 50 45 48

6 55 53 52 56 54

Page 8: May 14, 2014 Do Now: Talk to a partner and match the processes 1-4 with the trophic groups that carry out those processes… Due today: Biology EOC Review

18. Why do frogs and fish in the stream have similar genes?

A. Frogs and fish are made of molecules.

B. Frogs and fish share a common ancestor.

C. Frogs and fish get nutrients from the stream.

D. Frogs and fish compete in the stream ecosystem.

19. People often build homes near streams. Which action represents sustainable use of resources in the construction of new homes?

A. Installing furnaces that burn fossil fuels.

B. Installing refrigerators made in another country.

C. Using materials from old buildings for new homes.

D. Using wood from old-growth forests fro new homes.

Page 9: May 14, 2014 Do Now: Talk to a partner and match the processes 1-4 with the trophic groups that carry out those processes… Due today: Biology EOC Review

20. Plan a field study to answer the question:

Be sure your procedure includes:

A. Logical steps to do the field study

B. Conditions to be compared

C. Data to be collectedD. Method for collecting data

E. How often the data should be collected and recorded

F. Environmental conditions to be recorded.

Procedure:1. Record the temperature and weather conditions.2. Measure the depth of the stream.3. Place a thermometer on the surface of the stream4. Record the temperature.5. Wait 5 minutes.6. Repeat 3-5 for trials 2 and 3, placing the thermometer at the same spot.7. Repeat 3-6 for half the depth of the stream and the full depth of the stream8. Calculate the average temperature for each depth.

(How you will control your measurements to be consistent)

(at least 3 conditions!)

(detailed enough to repeat the study)

B

B

C

DE

FA

(how many times you’ll collect data)

How does water depth affect the temperature of water in a stream?

Page 10: May 14, 2014 Do Now: Talk to a partner and match the processes 1-4 with the trophic groups that carry out those processes… Due today: Biology EOC Review

Does this answer satisfy all the requirements? Procedure:1. Measure different depths of the stream (3ft, 5ft, 10ft).2. Collect data by checking the temperature of the different depths in the

stream on 3 different days.3. Record data found in a chart.4. Compare data and make a conclusion tot tell how water depth affects the

temperature of the water in the stream.

Controlled variable?

Conditions compared?

Data collected?

Record measurements?

Observations are repeated?

Record environ. conditions?

Logical steps?

Total

NO None

YES 3 conditions (1)

YES check temperature (2)

YES Record data found in a chart (3)

YES 3 different days (2)

NO None

YES Detailed enough to be repeated5 1 point (max 2)

Page 11: May 14, 2014 Do Now: Talk to a partner and match the processes 1-4 with the trophic groups that carry out those processes… Due today: Biology EOC Review

Does this answer satisfy all the requirements? Procedure:The water closest to the top is usually warmer than near the bottom of the stream. In that case, you’d find the temperature of the water at the top then at the bottom of the stream. The time of year when being measured would also matter. It would be colder in the winter than in the summer, meaning you should check every season. You’d have to use an accurate thermometer. If it’s raining, the water will be colder than it would be if it was sunny, would would play a role in the scenario.

Controlled variable?

Conditions compared?

Data collected?

Record measurements?

Observations are repeated?

Record environ. conditions?

Logical steps?

Total

NO

NO

NO

NO

NO

NO

NO0 0 point (max 2)

Page 12: May 14, 2014 Do Now: Talk to a partner and match the processes 1-4 with the trophic groups that carry out those processes… Due today: Biology EOC Review

Homework for 5.15.14: Plant and Animal Interdependence

packet