md he tema asme v0.1 (1)

30
Doc. No. Date Revision 0 1 1. I ntr odu cti on Sheet No. 1 of 1 This guide is intended to outline a program for mechnical design of heat exchangers in accordance with TEMA and ASME. 2. References The program is based on the following, which shall be referred to for further understanding. Design TEMA, 8th Ed., 1999  ASME Sec. VIII, Div. 1 Materials  ASME Sec. II - D JIS B 8243 - 1981, 압력용기의 구조 Technicals 프로세스기기 구조설계 시리즈 6, " 열교환기 " Process Vessel Design Manual, Dennis R. Moss Design of Process Equipment, 3rd Ed., K. K. Mahajan Catalogues for Flanges 3. Future Development Pipe Shell Nozzle Saddle Nozzle External Load Thermal Stress Calculation Shell Expansion Joint Floating Head 4. Program Architecture Inside the Program " IS " Input and Summary Sheet " shell " Calculation Sheet for Shell " channel " Calculation Sheet for Channel " s…... " Calculation Sheet for Shell …... " c…... " Calculation Sheet for Channel …... " cv " Calculation Sheet for Cover " ts " Calculation Sheet for Tubesheet " s.flg " Calculation Sheet for Shell Flange " c.flg " Calculation Sheet for Channel Flange Data Files " materials ASTM " Stress Values of ASTM / ASME materials " m teri ls common " Material Index, Flange Data, Modulus of Elasticity, …... " materials JIS " Stress Values of JIS materials " materials KS " Stress Values of KS materials 5. General Information Data are inputed via cells with blue words / numbers and comboboxes.  Attention shall be paid to cells with red words / numbers. 각 Sheet 의 하단에 나타나는 회사명을 바꾸려면 아래에 있는 회사명을 바꾸기만 하면 된다.  NTES Narai Thermal Engineering Services 05. 8. 15. 0.1 05. 8. 15. 0.1  Program User Guide : Description PUG - MDHE - 100 2005. 8. 15. Mechanical Design of H / E in acc. with TEMA & ASME Date Version Remarks

Upload: bytejuice

Post on 18-Oct-2015

126 views

Category:

Documents


6 download

DESCRIPTION

tema asme

TRANSCRIPT

  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    1/30

    Doc. No.

    Date

    Revision 0 1

    1. Introduction Sheet No. 1 of 1

    This guide is intended to outline a program for mechnical design of heat exchangersin accordance with

    TEMAand ASME.

    2. References

    The program is based on the following, which shall be referred to for further understanding.

    Design TEMA, 8th Ed., 1999

    ASME Sec. VIII, Div. 1

    Materials ASME Sec. II - D

    JIS B 8243 - 1981,

    Technicals 6, " "

    Process Vessel Design Manual, Dennis R. Moss

    Design of Process Equipment, 3rd Ed., K. K. Mahajan

    Catalogues for Flanges

    3. Future Development

    Pipe Shell

    Nozzle

    Saddle

    Nozzle External Load

    Thermal Stress Calculation

    Shell Expansion Joint

    Floating Head

    4. Program Architecture

    Inside the Program

    "IS " Input and Summary Sheet

    "shell " Calculation Sheet for Shell

    "channel " Calculation Sheet for Channel

    "s... " Calculation Sheet for Shell ...

    "c... " Calculation Sheet for Channel ...

    "cv " Calculation Sheet for Cover

    "ts " Calculation Sheet for Tubesheet

    "s.flg " Calculation Sheet for Shell Flange

    "c.flg " Calculation Sheet for Channel Flange

    Data Files

    "materials ASTM " Stress Values of ASTM/ ASME materials

    "m teri ls common " Material Index, Flange Data, Modulus of Elasticity, ..."materials JIS" Stress Values of JIS materials

    "materials KS" Stress Values of KS materials

    5. General Information

    Data are inputed via cells with bluewords / numbers and comboboxes.

    Attention shall be paid to cells with redwords / numbers.

    Sheet .

    NTES Narai Thermal Engineering Services

    05. 8. 15. 0.1

    05. 8. 15. 0.1

    Program User Guide :

    Description

    PUG - MDHE - 100

    2005. 8. 15.

    Mechanical Design of H / E in acc. with TEMA & ASME

    Date Version Remarks

  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    2/30

    Doc. No.

    Date

    Revision 0

    1. Introduction Sheet No. 1 of 1

    These notes are intended to help designers follow normal design practices, and further reach an optimum

    design.

    2. Notes

    Flange

    The procedures are from Taylor Forge Bulletin No. 502, 7th Ed., " Modern Flange Design ".

    In general, bolts should be used in multiples of four(4).

    For large diameter flanges, many smaller bolts on a tight bolt circle are recommended to reduce the f lange

    thickness.

    NTES Narai Thermal Engineering Services

    Design Notes :

    DN - MDHE - 100

    2005. 3. 17.

    Mechanical Design of H / E in acc. with TEMA & ASME

  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    3/30

    D E S I G N D A T A

    Code / Standard TEMA "R" / ASME Sec. VIII Div. 1

    Type Designation A E S

    Design Press. kg/cm2.g

    Design Temp.

    No. of Passes per Shell

    Corrosion Allowance mm

    Gasket

    Bolts JIS

    Ambient Temperature

    C O N S T R U C T I O N D A T A

    Shell plate SB 410 #### Pipe Shell 400 A Sch.40

    Shell Cover plate 2:1 Ellipsoidal SB 410 #### Reduction after Forming

    Shell Flange forging TEMA WN SF 440 A #### Confined BSA

    Flat Cover forging Welded SF 440 A #### * for Air Cooler

    Channel plate SB 410 #### Pipe Chnl 400 A Sch.40

    Bonnet Cover plate 2:1 Ellipsoidal SB 410 - N/A - Reduction after Forming

    Channel Cover forging Bolted SF 440 A #### Deflection Check #### BSA

    Channel Flange forging TEMA WN SF 440 A #### Confined BSA

    Pass Partition plate SB 410 ####

    Pattern Rotated Triangular

    Pitc Rati

    Tubesheet forging Fixe Gasketed SF 440 A #### Groove Depth > Shell Side

    Baffle, Trans. plate SB 410 X ! Unsupported Tube Length

    Baffle, Long. plate SB 410 - N/A -

    N O Z Z L E S

    SS >N1 pipe Inserted STPG 370 E #### C.A

    Pad > pipe STPG 370 E ### ### Ar ### Sr ### Acces

    TS > N3 pipe Inserted STPG 370 E #### C.A

    Pad > pipe STPG 370 E ### ### Ar ### Sr ### Acces

    Notes : 1. t, min. : Minimum thickness required by TEMA. BSA Requirement for Bo

    2. - N/R - : Not Required. BSP Requirement for Bo

    3. - N/A - : Not Applicable GW Requirement for Ga

    4. Bolt Bolt Detail, Size / Q

    NTES

    24.5

    1.316

    ####### 30 150 lb

    S45C

    JIS

    JIS

    JIS

    1

    Type

    0.85

    JIS

    3

    Thickness, mm

    #######

    I.D., mm

    30

    #######JIS 9

    t, req. t, used

    ####### 9#######

    ####### 9

    ####### 30

    Tube Side

    5

    3

    100

    4

    Shell Side

    10

    300

    1

    Job No.

    Project

    Item No.

    Service

    HE - 01

    Jacket Metal,SUS Jacket Metal,SUS

    Heat Exchanger

    S - 01

    Sample

    I N P U T & S U M M A R Y S H E E T f o r H / E M E C H. D E S I G N

    400

    0.85

    Joint Eff.

    400

    Description MaterialsCode Spec. No. t, min.

    ####### 29

    9

    Tube 19

    #######

    1

    OD >

    JIS

    JIS

    #######

    #######

    4.8

    JIS

    JIS

    10

    JIS

    JIS

    JIS

    JIS

    1JIS

    JIS

    JIS

    Pad OD >

    Pad OD >

    Pad Th'k>

    Pad Th'k>300

    35

    19.5

    #######

    #######

    25

    #######

    ####### #######

    150 lb

    50 A Sch.160

    30

    150 A Sch.80

    #######

    1 #######

    100

    1 #######

  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    4/30

    Doc. No.

    Job No. : S - 01

    Project : Sample

    Client : End User Name

    Contractor : Engineering Company Name

    Item No. : HE - 01

    Service Heat Exchanger

    5

    4

    3

    2

    1

    0 Issued for approval.

    1500-11, Songjung Dong, Kangseo Gu, Busan, Korea, 618-270 Tel. 82 -51 -832 -1715~8

    Homepage www.hanilboiler.co.kr Fax. 82 -51 -832 -1719E-mail [email protected]

    NTES Narai Thermal Engineering Services

    M E C H A N I C A L D E S I G N

    H E A T E X C H A N G E R

    MD - PV - 000

    S. J. Lee05. 8. 15.

    Narai Thermal Engineering Services

    LSJ Lee

    Rev. PreparedDescriptionDate ApprovedReviewed

    http://www.hanilboiler.co.kr/mailto:[email protected]:[email protected]://www.hanilboiler.co.kr/
  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    5/30

    H E A T E X C H A N G E R : Doc. No.

    Date

    Rev. 0

    Sheet No. 1 of 1

    1. Design Data and Summary

    2. Shell

    3.

    4.

    5.

    6.

    7.

    8.

    9.

    10.

    NTES Narai Thermal Engineering Services

    MD - HE - 100

    05. 8. 15.

    T a b l e of C o n t e n t s

    M E C H A N I C A L D E S I G N

  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    6/30

    H E A T E X C H A N G E R : Doc. No.

    Date

    1 Revision 0

    2 Sheet No. 1 x

    3

    4 Project Sample

    5 Item No. HE - 01

    6 Service Heat Exchanger

    78

    9

    10 Standard TEMA Class "R" Type

    11 Code ASME Sec. VIII Div. 1

    12

    13 Pressure kg/cm2.g kg/cm2.g

    14 Temperature

    15 No. of Passes per Shell

    16 mm mm

    17 Nozzle mm mm

    18 Tube mm

    19 Joint Efficiency Shell / Cover / /

    20 Radiography Shell / Cover / /

    21 Method22 Pressure kg/cm2.g kg/cm2.g

    23

    24

    25

    26 Min. Req. Used

    27

    28 Shell SB 410 #### #### 9

    29 Shell Cover 2:1 Ellipsoidal SB 410 #### 9

    30 Shell Flange TEMA / WN SF 440 A #### 30 150 lb

    31 Flat Cover Welded SF 440 A #### 30

    32 Channel SB 410 #### #### 9

    33 Bonnet Cover

    34 Channel Cover Bolted SF 440 A #### 35

    35 Channel Flange TEMA / WN SF 440 A #### 30 150 lb36 Pass Partition SB 410 #### 10

    37

    38

    39

    40 Min. Req. Used

    41

    42 Tube 19

    43 Tubesheet Gasketed SF 440 A 19.5 #### 29

    44 Baffle, Trans. SB 410 4.8 4.5

    45 Baffle, Long.

    46

    47

    48

    49 Req. Used. OD t50

    51 N1 STPG 370 E #### #### #### #### #### #### ####

    52 N3 STPG 370 E #### #### #### #### #### #### ####

    53

    54

    55

    56 Remarks :

    57

    58

    59

    60

    NTES Narai Thermal Engineering Services

    Description Type Material

    #VALUE!Shell

    Thickness

    mm

    RemarksID OD

    Thickness Pad

    T U B E B U N D L E

    N O Z Z L E S

    Shell #VALUE!

    RemarkMaterialmm mm

    1

    0.85

    0.5

    Corrosion Allowance

    400

    Description Material LocationID OD

    100

    S H E L L S I D E

    510Design

    300

    MD - HE - 100

    M E C H A N I C A L D E S I G N

    D E S I G N D A T A

    05. 8. 15.

    of

    T U B E S I D E

    3

    D E S I G N S U M M A R Y

    Spot

    0.85

    Spot

    Pressure Test

    1

    No or Full

    400

    A E S

    1.5 1.5

    1

    No or Full

    4

    3

    Description Type MaterialID

    Thickness

    Remarks

    mm

  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    7/30

    H E A T E X C H A N G E R :

    Project Sample Doc. No.

    Item No. HE - 01 Sheet No. 0 of x

    Service Heat Exchanger Revision 0

    Code : ASME Sec. VIII Div. 1 UG-27 ( c ) ( 1 ) * Circumferential Stress in the Logitudinal Joint

    0.6 P - 0.6

    Where, t minimum required thickness of shell mm

    P internal design pressure kg/cm2.g

    R inside radius of the shell course under consideration mm

    S maximum allowable stress value kg/cm2

    E joint efficiency for, or the efficiency of, appropriate joint in cylindical or spherical shell

    corrosion allowance mm

    NTES Narai Thermal Engineering Services

    ######

    P R

    S E -+ #VALUE!

    0.85=

    Part : Shell

    = 9 mm used.t

    M E C H A N I C A L D E S I G N

    MD - HE - 100

    10.0

    10.0 203+ ##3.0 = ######

  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    8/30

    H E A T E X C H A N G E R :

    Project Sample Doc. No.

    Item No. HE - 01 Sheet No. 0 of x

    Service Heat Exchanger Revision 0

    Code : ASME Sec. VIII Div. 1 UG-32 ( d ) * 2:1 Ellipsoidal Head, t / L >= 0.002

    S E - 0.1 P 100 - r - 0.1 -

    = ## mm used. ###

    Where, t minimum required thickness of shell mm

    P internal design pressure kg/cm2.gR inside radius of the shell course under consideration mm

    S maximum allowable stress value kg/cm2

    E lowest efficiency of any joint in the head; for hemi-spherical heads, this includes head-to-shell joint;for welded vessels, use the efficiency specified in UW-12

    corrosion allowance mm

    r thickness reduction rate after forming %

    Code : ec. v. - e * 10 % Dished Head ( Torispherical Head ), t / L >= 0.002

    S E - 0.1 P 100 - r - 0.1 -

    = ## mm used. ###

    Where, L inside spherical or crown radius mm

    NTES Narai Thermal Engineering Services

    Part : Shell Cover

    ######

    )100

    = (t = (0.885 P L

    9

    0.885 10.0 406+ 3.0 )

    10.01######+

    t

    ######

    = (P R 10.0

    = (1 15

    + )100

    + 3.010.0######

    M E C H A N I C A L D E S I G N

    MD - HE - 100

    9

    100

    100

    100

    100

    15

    203)

  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    9/30

    1 Project Sample Doc. No.

    2 Item No. HE - 01 Serivice Heat Exchanger Sheet No. 1 of 1

    3 Description * Design result ### Revision 0

    4 Design Pressure kg/cm2.g

    5 Design Temperature

    6 Atm. Temp. Material JIS Material JIS

    7 Corrosion Allowance mm at Design TempSfo kg/cm2 at Design Temp Sb kg/cm2

    8 at Atm. Temp. Sfa kg/cm2 at Atm. Temp. Sa kg/cm2

    9 Gasket Material Wm2 = b G y kg Am= greater of Wm2/Sa10 Gasket Width, N cm HP = 2 b G m P kg or Wm1/Sb11 m H = G

    P / 4 kg Ab= / 4 d2 n cm2

    12 y kg/cm2 Wm1 = HP+ H kg Check Ab > Am13 b0 / b cm W = 0.5 ( Am+ Ab ) Sa kg

    14 G cm

    15 Bolt Size / Q'ty, n Required Gasket Width

    16 Bolt Dia. / Root Dia., d2 cm Nr = AbSa/ 2 y G < N

    17 Bolt Spacing cm

  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    10/30

    1 Project Sample Doc. No.

    2 Item No. HE - 01 Serivice Heat Exchanger * Type Loose Sheet No. 1 of 1

    3 Description * Design result ### Revision 0

    4 Design Pressure kg/cm2.g

    5 Design Temperature

    6 Atm. Temp. Material JIS Material JIS

    7 Corrosion Allowance mm at Design TempSfo kg/cm2 at Design Temp Sb kg/cm2

    8 at Atm. Temp. Sfa kg/cm2 at Atm. Temp. Sa kg/cm2

    9 Gasket Material Wm2 = b G y kg Am= greater of Wm2/Sa10 Gasket Width, N cm HP = 2 b G m P kg or Wm1/Sb11 m H = G

    P / 4 kg Ab= / 4 d2 n cm2

    12 y kg/cm2 Wm1 = HP+ H kg Check Ab > Am13 b0 / b cm W = 0.5 ( Am+ Ab ) Sa kg

    14 G cm

    15 Bolt Size / Q'ty, n Required Gasket Width

    16 Bolt Dia. / Root Dia., d2 cm Nr = AbSa/ 2 y G < N

    17 Bolt Spacing cm

  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    11/30

    1 Project Sample Doc. No.

    2 Item No. HE - 01 Serivice Heat Exchanger * Type Loose Sheet No. 1 of 1

    3 Description * Design result ### Revision 0

    4 Design Pressure kg/cm2.g

    5 Design Temperature

    6 Atm. Temp. Material JIS Material JIS

    7 Corrosion Allowance mm at Design TempSfo kg/cm2 at Design Temp Sb kg/cm2

    8 at Atm. Temp. Sfa kg/cm2 at Atm. Temp. Sa kg/cm2

    9 Gasket Material Wm2 = b G y + HGY kg Am= greater of Wm2/Sa10 HP = 2 b G m P kg or Wm1/Sb11 m HP= ( hG/ hG) HP Ab= / 4 d2 n cm2

    12 y kg/cm2 H = GP / 4 kg Check Ab > Am

    13 b = ( C - B ) / 4 cm Wm1 = HP+ HP+ H kg W = 0.5 ( Am+ Ab ) Sa kg

    14 G = C - 2 hG cm HGY= ( hG/ hG) b G y

    15 Bolt Size / Q'ty, n

    16 Bolt Dia. / Root Dia., d2 cm Bolt Hole Dia., dh cm

    17 Bolt Spacing cm

  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    12/30

    1 Project Sample Doc. No.

    2 Item No. HE - 01 Serivice Heat Exchanger * Type Loose Sheet No. 1 of 1

    3 Description * Design result ### Revision 0

    4 Design Pressure kg/cm2.g

    5 Design Temperature

    6 Atm. Temp. Material JIS Material JIS

    7 Corrosion Allowance mm at Design Temp Sfo kg/cm2 at Design Temp Sb kg/cm2

    8 at Atm. Temp. Sfa kg/cm2 at Atm. Temp. Sa kg/cm2

    9 Gasket Material Wm2 = b G y kg Am= greater of Wm2/Sa10 Gasket Width, N cm HP = 2 b G m P kg or Wm1/Sb11 m H = G

    P / 4 kg Ab= / 4 d2 n cm2

    12 y kg/cm2 Wm1 = HP+ H kg Check Ab > Am13 b0 / b cm W = 0.5 ( Am+ Ab ) Sa kg

    14 G cm

    15 Bolt Size / Q'ty, n Required Gasket Width

    16 Bolt Dia. / Root Dia., d2 cm Nr = AbSa/ 2 y G < N17 Bolt Spacing cm

  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    13/30

    1 Project Sample Doc. No.

    2 Item No. HE - 01 Serivice Heat Exchanger * Type Loose Sheet No. 1 of 1

    3 Description * Design result ### Revision 0

    4 Design Pressure kg/cm2.g

    5 Design Temperature

    6 Atm. Temp. Material JIS Material JIS

    7 Corrosion Allowance mm at Design Temp Sfo kg/cm2 at Design Temp Sb kg/cm2

    8 at Atm. Temp. Sfa kg/cm2 at Atm. Temp. Sa kg/cm2

    9 Gasket Material Wm2 = b G y + H GY kg Am= greater of Wm2/Sa10 HP = 2 b G m P kg or Wm1/Sb11 m H P= ( hG/ hG) HP Ab= / 4 d2 n cm2

    12 y kg/cm2 H = GP / 4 kg Check Ab > Am

    13 b = ( C - B ) / 4 cm Wm1 = HP+ HP+ H kg W = 0.5 ( Am+ Ab ) Sa kg

    14 G = C - 2 hG cm HGY= ( hG/ hG) b G y

    15 Bolt Size / Q'ty, n

    16 Bolt Dia. / Root Dia., d2 cm Bolt Hole Dia., dh cm

    17 Bolt Spacing cm

  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    14/30

    H E A T E X C H A N G E R :

    Project Sample Doc. No.

    Item No. HE - 01 Sheet No. 0 of x

    Service Heat Exchanger Revision 0

    Code : ASME Sec. VIII Div. 1 UG-34 ( c ) (2)

    t = d + = / + 3.0

    = ## mm used. ###

    Where, C a factor depending upon the method of attachment of head, shell dimensions, and other items as listed in (d)

    m = x = for * Welded

    Where, m the ratio, tr / ts tr - required thickness of seamless channel

    ts - nominal thickness of channel

    = / =

    Code : ASME Sec. VIII Div. 1 UG-34 ( c ) (2)

    100 - r -

    = ## mm used. ###

    Where, C a factor depending upon the method of attachment of head, shell dimensions, and other items as listed in (d)

    for * Formed & Welded

    NTES Narai Thermal Engineering Services

    M E C H A N I C A L D E S I G N

    MD - HE - 100

    Part : Shell Flat Cover, Unstayed Flat Head

    * Welded

    C P / S E 406 ###### 10.0 ###### 1

    0.33 0.33 ###### ###### * min. 0.2

    ###### 9 ######

    * Formed & Welded

    ###### 30

    100= (t = ( d C P / S E

    100

    100 15###### 1 + 3.0

    ###### 0

    0.17

    )406 0.17 10.0 /+ )

    t

    dt

    Sketch

    r = 3 t min.

    W.L T.L.

    t

    dt

    t

    dt

    Sketch Sketch (f)

  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    15/30

    H E A T E X C H A N G E R :

    Project Sample Doc. No.

    Item No. HE - 01 Sheet No. 0 of x

    Serivice Heat Exchanger Revision 0

    Code : ec. v. - c * Circumferential Stress in the Logitudinal Joint

    0.6 P - 0.6

    Where, t minimum required thickness of shell mm

    P internal design pressure kg/cm2.g

    R inside radius of the shell course under considerat ion mm

    S maximum allowable stress value kg/cm2E joint efficiency for, or the efficiency of, appropriate joint in cylindical or spherical shell

    corrosion allowance mm

    NTES Narai Thermal Engineering Services

    MD - HE - 100

    t =P R

    +S E -

    Part : Channel or Bonnet

    =5.0 203

    ###### 0.85 5.0

    M E C H A N I C A L D E S I G N

    #VALUE!+ 3.0 = ###### ## 9 mm used.

  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    16/30

    H E A T E X C H A N G E R :

    Project Sample Doc. No.

    Item No. HE - 01 Sheet No. 0 of x

    Service Heat Exchanger Revision 0

    Code : ASME Sec. VIII Div. 1 UG-32 ( d ) * 2:1 Ellipsoidal Head, t / L >= 0.002

    S E - 0.1 P 100 - r - 0.1 -

    = ## mm used. ###

    Where, t minimum required thickness of shell mm

    P internal design pressure kg/cm2.gR inside radius of the shell course under consideration mm

    S maximum allowable stress value kg/cm2

    E lowest efficiency of any joint in the head; for hemi-spherical heads, this includes head-to-shell joint;for welded vessels, use the efficiency specified in UW-12

    corrosion allowance mm

    r thickness reduction rate after forming %

    Code : ASME Sec. VIII Div. 1 UG-32 ( e ) * 10 % Dished Head ( Torispherical Head ), t / L >= 0.002

    S E - 0.1 P 100 - r - 0.1 -

    = ## mm used. ###

    Where, L inside spherical or crown radius mm

    NTES Narai Thermal Engineering Services

    100

    15

    100

    100

    t = (

    = (

    ######

    ######

    Part : Bonnet Cover

    t = (0.885 P L

    + )100

    = (5.0P R

    + )100

    ###### 1

    MD - HE - 100

    )203

    5.0

    9

    5.0 100+ 3.0

    15

    M E C H A N I C A L D E S I G N

    ###### 9

    )5.0 406

    + 3.01

    0.885

  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    17/30

    H E A T E X C H A N G E R :

    Project Sample Doc. No.

    Item No. HE - 01 Sheet No. 0 of x

    Service Heat Exchanger Revision 0

    Code : ASME Sec. VIII Div. 1 UG-34 ( c ) ( 2 )

    for operating conditions

    t = d C P / S E + 1.9 W hG/ S E d + dg

    = / + 1.9 / ^3 + 4

    = ## mm used. ###

    for gasket seating

    t = / + 1.9 / ^3 + 4

    = ## mm used. ###Where, t minimum required thickness of flat head mm

    d diameter measured as indicated in Fig. UG-34 mm

    C a factor depending upon the method of attachment of head, shell dimensions, and other items as listed in (d)

    for * Bolted, Confined Gasket, Sketch (j)

    P internal design pressure kg/cm2.g

    S maximum allowable stress value in tension kg/cm2

    E joint efficiency

    W total bolt load, Formula 2-5 (e) kg/cm2.mm2

    for operating conditions

    = = = . + x . m

    = ^2 + ( 2 x ) =

    for gasket seating

    = ( Am + Ab ) Sa / 2 * Wm2 = = =

    = ( + ) / 2 =

    * required total bolt area, Am ## -> ###* required gasket width = Ab Sa / 2 y G = ## gasket width, used = -> ###

    Where, G diameter at location of gasket load reaction mm

    b effective gasket or joint-contact-surface seating width mm

    m gas e ac or, a e - .

    y gasket or joint-contact-surface unit seating load kg/cm2

    Am total required cross-sectional area of bolts mm2

    Ab cross-sectional area of the bolts using the root diameter of the thread or

    least diameter of unthreaded position, if less. mm2

    Sa allowable bolt stress at atmospheric temp. kg/cm2

    hG gasket moment arm, equal to the radial distance from the center line of the bolts to the line of the gasket reac

    dg groove depth plus corrosion allowance in excess of the groove depth mm

    deflection limit - . * for checking excessive leakage through gasket between the cover and the pass partition plate.

    G ^3

    = ## mm max. -> ###

    Where, Y Channel cover deflection at the center mm

    E Modulus of elasticity at design temp. kg/cm2

    t Channel cover thickness mm

    SB Allowable bolting stress at design temp. kg/cm2

    Sketch Bolting Data

    t * STD * TEMA Min. Nominal Bolt Size

    Actual Bolt Dia. mm

    Root Dia. mm

    No. of Bolts

    Bolt Spacing mm -> ###

    " " , TEMA Min. mm

    * " " , TEMA Max mm

    b0 =

    b =

    NTES Narai Thermal Engineering Services

    * Bolted, Confined Gasket, Sketch (j)

    ###

    Part : Channel Cover, Unstayed Flat Head

    ######

    ######

    ######

    ###

    ##

    ######

    ######

    ######

    ######

    ######

    )

    ###### 0.8

    0.5 ###### ###### ######5.0 +^3

    35######

    Y = ( 0.0435 G3P + 0.5 SBAb hG) = #VALUE! 31###### ( 0.0435 ######

    #VALUE

    ###### ###### ###### #VALUE

    3.14 b G y 3.14 ######

    Wm1

    0.785

    #######VALUE!

    #VALUE

    ######

    ###### 3.75

    ###### 35

    #VALUE! ############ 1

    ###### 5.0

    H + Hp

    ###### 1

    ######

    #VALUE!

    Gasket Width

    ######

    ######

    MD - HE - 100

    ###### 0.3 5.0 ###### 1

    = G

    ###### 0.3

    0.3

    0.0 ###### 1

    ######

    hG

    ######

    ######

    G

    40

    0

    ###

    ##

    ###

    ## #

    #####

    ###

    M E C H A N I C A L D E S I G N

    ###### ######

    ###### 3.14 5.0

    633######

    Ab

  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    18/30

    H E A T E X C H A N G E R :

    Project Sample Doc. No.

    Item No. HE - 01 Sheet No. 0 of x

    Service Heat Exchanger Revision 0

    Code : ASME Sec. VIII Div. 1 UG-34 ( c ) (2)

    t = d + = / + 3.0

    = ## mm used. ###

    Where, t minimum required thickness of flat head mm

    d diameter measured as indicated in Fig. UG-34 mm

    C a factor depending upon the method of attachment of head, shell dimensions, and other items as listed in (d)

    for * Bolted with Full Face Gasket

    P internal design pressure kg/cm2.g

    S maximum allowable stress value in tension kg/cm2

    E joint efficiency

    corrosion allowance mm

    Code : ASME Sec. VIII Div. 1 UG-34 ( c ) (2)

    t = d + = / + 3.0

    = ## mm used. ###

    Where, C a factor depending upon the method of attachment of head, shell dimensions, and other items as listed in (d)

    m = x = for * Welded

    Where, m the ratio, tr / ts tr - required thickness of seamless channel

    ts - nominal thickness of channel

    = / =

    Code : ASME Sec. VIII Div. 1 UG-34 ( c ) (2)

    100 - r -

    = ## mm used. ###

    Where, C a factor depending upon the method of attachment of head, shell dimensions, and other items as listed in (d)

    for * Formed & Welded

    NTES Narai Thermal Engineering Services

    Channel Cover, Unstayed Flat Head

    C P / S E ###### 0.25

    * Bolted with Full Face Gasket

    5.0

    Part :

    )######5.0 /

    * Welded

    ###### 1

    ###### 35

    t = ( d C P / S E

    0.25

    MD - HE - 100

    100

    100 153.0

    35

    0.17

    100+ ) = ( 1 +406 0.17

    ######

    406 ###### 5.0 ###### 1

    ###### 9 ######

    * Formed & Welded

    35

    C P / S E

    0.33 0.33 ###### 0.2* min.######

    ######

    M E C H A N I C A L D E S I G N

    t

    d t

    Sketch

    r = 3 t min.

    W.L T.L.

    t

    dt

    t

    dt

    Sketch Sketch (f)

    d

    Sketch

    t

  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    19/30

    1 Project Sample Doc. No.

    2 Item No. HE - 01 Serivice Heat Exchanger Sheet No. 1 of 1

    3 Description * Design result ### Revision 0

    4 Design Pressure kg/cm2.g

    5 Design Temperature

    6 Atm. Temp. Material JIS Material JIS

    7 Corrosion Allowance mm at Design Temp Sfo kg/cm2 at Design Temp Sb kg/cm2

    8 at Atm. Temp. Sfa kg/cm2 at Atm. Temp. Sa kg/cm2

    9 Gasket Material Wm2 = b G y kg Am= greater of Wm2/Sa10 Gasket Width, N cm HP = 2 b G m P kg or Wm1/Sb11 m H = G

    P / 4 kg Ab= / 4 d2 n cm2

    12 y kg/cm2 Wm1 = HP+ H kg Check Ab > Am13 b0 / b cm W = 0.5 ( Am+ Ab ) Sa kg

    14 G cm

    15 Bolt Size / Q'ty, n Required Gasket Width

    16 Bolt Dia. / Root Dia., d2 cm Nr = AbSa/ 2 y G < N

    17 Bolt Spacing cm

  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    20/30

    1 Project Sample Doc. No.

    2 Item No. HE - 01 Serivice Heat Exchanger * Type Loose Sheet No. 1 of 1

    3 Description * Design result ### Revision 0

    4 Design Pressure kg/cm2.g

    5 Design Temperature

    6 Atm. Temp. Material JIS Material JIS

    7 Corrosion Allowance mm at Design TempSfo kg/cm2 at Design Temp Sb kg/cm2

    8 at Atm. Temp. Sfa kg/cm2 at Atm. Temp. Sa kg/cm2

    9 Gasket Material Wm2 = b G y kg Am= greater of Wm2/Sa10 Gasket Width, N cm HP = 2 b G m P kg or Wm1/Sb11 m H = G

    P / 4 kg Ab= / 4 d2 n cm2

    12 y kg/cm2 Wm1 = HP+ H kg Check Ab > Am13 b0 / b cm W = 0.5 ( Am+ Ab ) Sa kg

    14 G cm

    15 Bolt Size / Q'ty, n Required Gasket Width

    16 Bolt Dia. / Root Dia., d2 cm Nr = AbSa/ 2 y G < N

    17 Bolt Spacing cm

  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    21/30

    1 Project Sample Doc. No.

    2 Item No. HE - 01 Serivice Heat Exchanger * Type Loose Sheet No. 1 of 1

    3 Description * Design result ### Revision 0

    4 Design Pressure kg/cm2.g

    5 Design Temperature

    6 Atm. Temp. Material JIS Material JIS

    7 Corrosion Allowance mm at Design Temp Sfo kg/cm2 at Design Temp Sb kg/cm2

    8 at Atm. Temp. Sfa kg/cm2 at Atm. Temp. Sa kg/cm2

    9 Gasket Material Wm2 = b G y + H GY kg Am= greater of Wm2/Sa10 HP = 2 b G m P kg or Wm1/Sb11 m H P= ( hG/ hG) HP Ab= / 4 d2 n cm2

    12 y kg/cm2 H = GP / 4 kg Check Ab > Am

    13 b = ( C - B ) / 4 cm Wm1 = HP+ HP+ H kg W = 0.5 ( Am+ Ab ) Sa kg

    14 G = C - 2 hG cm HGY= ( hG/ hG) b G y

    15 Bolt Size / Q'ty, n

    16 Bolt Dia. / Root Dia., d2 cm Bolt Hole Dia., dh cm

    17 Bolt Spacing cm

  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    22/30

    1 Project Sample Doc. No.

    2 Item No. HE - 01 Serivice Heat Exchanger * Type Loose Sheet No. 1 of 1

    3 Description * Design result ### Revision 0

    4 Design Pressure kg/cm2.g

    5 Design Temperature

    6 Atm. Temp. Material JIS Material JIS

    7 Corrosion Allowance mm at Design TempSfo kg/cm2 at Design Temp Sb kg/cm2

    8 at Atm. Temp. Sfa kg/cm2 at Atm. Temp. Sa kg/cm2

    9 Gasket Material Wm2 = b G y kg Am= greater of Wm2/Sa10 Gasket Width, N cm HP = 2 b G m P kg or Wm1/Sb11 m H = G

    P / 4 kg Ab= / 4 d2 n cm2

    12 y kg/cm2 Wm1 = HP+ H kg Check Ab > Am13 b0 / b cm W = 0.5 ( Am+ Ab ) Sa kg

    14 G cm

    15 Bolt Size / Q'ty, n Required Gasket Width

    16 Bolt Dia. / Root Dia., d2 cm Nr = AbSa/ 2 y G < N17 Bolt Spacing cm

  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    23/30

    1 Project Sample Doc. No.

    2 Item No. HE - 01 Serivice Heat Exchanger * Type Loose Sheet No. 1 of 1

    3 Description * Design result ### Revision 0

    4 Design Pressure kg/cm2.g

    5 Design Temperature

    6 Atm. Temp. Material JIS Material JIS

    7 Corrosion Allowance mm at Design Temp Sfo kg/cm2 at Design Temp Sb kg/cm2

    8 at Atm. Temp. Sfa kg/cm2 at Atm. Temp. Sa kg/cm2

    9 Gasket Material Wm2 = b G y + H GY kg Am= greater of Wm2/Sa10 HP = 2 b G m P kg or Wm1/Sb11 m H P= ( hG/ hG) HP Ab= / 4 d2 n cm2

    12 y kg/cm2 H = GP / 4 kg Check Ab > Am

    13 b = ( C - B ) / 4 cm Wm1 = HP+ HP+ H kg W = 0.5 ( Am+ Ab ) Sa kg

    14 G = C - 2 hG cm H GY= ( hG/ hG) b G y

    15 Bolt Size / Q'ty, n

    16 Bolt Dia. / Root Dia., d2 cm Bolt Hole Dia., dh cm

    17 Bolt Spacing cm

  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    24/30

    H E A T E X C H A N G E R :

    Project Sample Doc. No.

    Item No. HE - 01 Sheet No. 0 of x

    Service Heat Exchanger Revision 0

    Code : - . * Tubesheet Formula - Bending* Tubesheet Formula - Shear is not calculated because shear does not control the design.

    F G P

    3 S

    = ## mm used. ###

    Where, t Effective tubesheet thickness mm

    S Code al lowable stress in tension kg/cm2

    P s e ne n - . , or for fixed tubesheets kg/cm2.g

    for other type tubesheets * Class

    G Shell inside diameter for fixed tubesheet H/E mm

    Port inside diameter for kettle type H/E

    for other type tubesheets

    ( /

    for square or rotated square tube patterns

    for triangular or rotated triangular tube patterns

    F for unsupported tubesheets ( e.g., U-tube tubesheets ) gasketed both sides

    for supported tubesheets ( e.g., fixed and floating tubesheets ) gasketed both sides

    for unsupported tubesheets ( e.g., U-tube tubesheets ) integral with either or both sides

    for supported tubesheets ( e.g., fixed and floating tubesheets ) integral with either or both sides

    dgs Shell side groove depth plus corrosion allowance in excess of the groove depth

    dgt Tube side groove depth plus corrosion allowance in excess of the groove depth

    NTES Narai Thermal Engineering Services

    10.0

    ######

    406

    0.476+t = =

    1.00

    3+

    RCB- 7.132

    acc. to Figure

    1.25

    1

    1.00

    dgtdgs +

    =19

    c- =

    0.9071 -

    3 +

    0.476=

    ###### 29

    4

    M E C H A N I C A L D E S I G N

    Part : Tubesheet, Stationary

    MD - HE - 100

    0.785c =

    0.907

    25( Pitch / Tube OD )

  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    25/30

    H E A T E X C H A N G E R : Doc. No.

    Revision 0

    Sheet No. 0 x

    ASME Sec. VIII, Div. 1

    UG - 45 Nozzle Neck Thickness

    UW - 16 Minimum Requirements for Attachment Welds at Openings

    Material Code JIS JIS

    Material specification SB 410 STPG 370 E / 50 A / Sch.160

    Internal design pressure P kg/cm2.g kg/cm2.g

    Design temperature

    Inside diameter Uncorroded mm mm

    Inside diameter Corroded D mm Dn mm

    Inside radius Corroded R mm Rn mm

    Maximum allowable stress value S kg/cm2 Sn kg/cm2

    Joint efficiency E En

    Corrosion allowance mm n mm

    Nominal wall thickness Uncorroded mm mm

    Wall thickness Corroded t mm tn mm

    Minimum Nozzle Wall Thickness * UG - 45

    UG - 45 ( a ) & UG - 27 ( c ) ( 1 )

    Checks : tr1 = ## R = -> ##

    P = ## 0.385 S E = -> ##

    0.6 P - 0.6

    UG - 45 ( b )

    ( 1 ) Shell or head thickness ( E = 1 ) tr2 = mm

    UG - 16 ( b ) Minimum thickness tr3 = mm

    ( 4 ) Minimum thickness of standard wall pipe tr4 = mmarger o r or r tr5 = mm

    tr6 = ma er o r or r = mm

    -> arger o r or r = mm ## mm used. -> ##

    ##

    Size of Weld Required * UW - 16 ( c )

    Inner Fillet Weld tmin = ## =

    tc min = Smaller of 6 mm or 0.7 tmin =tc act = 0.7 Leg41 = -> ##

    Outer Fillet Weld tmin = Smaller of 19 mm or te or t =

    tw min = 0.5 tmin =

    tw act = 0.7 Leg42 = -> ##

    -> ##

    ##

    ## ## ##

    ## ##

    NTES Narai Thermal Engineering Services

    203

    ######

    ######

    ######

    ############

    ######

    9

    6

    ++Sn En -

    #VALUE!

    0.85

    3

    n =

    0.5 #VALUE!

    10.0

    N1

    MD - HE - 100

    of

    1.510.0

    C A L C U L A T I O N

    ######

    tr1 =P Rn

    #VALUE!

    #VALUE!

    Part

    Code

    1010

    N O Z Z L ES H E L L

    D E S I G N D A T A

    Shell SideNozzle >

    1.5

    mm

    ######

    #VALUE!

    #VALUE!

    ######

    ######

    ####### 1

    ######

    ######

    =#VALUE!

    #VALUE!

    ######

    ######

    ######

    300300

    400

    406

    #VALUE!

    #VALUE!

    1

    M E C H A N I C A L D E S I G N

    10

  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    26/30

    H E A T E X C H A N G E R : Doc. No.

    Revision 0

    Sheet No. 1 x

    Code UG - 37 Reinforcements required for Openings in Shells and Formed Heads

    Nozzle Placemenent Inserted

    Finished diameter of circular opening = Dn d mm

    Corrction factor F

    Required thickness of a seamless shell or head tr mm

    Required thickness of a seamless nozzle wall trn mm

    Allowable stress value in tension, Nozzle Sn kg/cm2

    Allowable stress value in tension, Vessel Sv kg/cm2Strength reduction factor, 1.0 = Sn/Sv fr1Strength reduction factor, 1.0 = Sn/Sv fr2

    E1

    Pad material code ##

    Pad material specification ##

    Pad O.D. mm

    Pad thickness te mm

    Allowable stress value in reinforcing element Sp kg/cm2Strength reduction factor, 1.0 =( lesser of Sn or Sp )/ Sv fr3 kg/cm2Strength reduction factor, 1.0 = Sp/Sv fr4

    Size of Weld Required * UW - 16 ( c )

    Leg41 mm * Min.

    Leg42 mm * Min.

    Leg43 mm * Min.

    Limit of reinforcement * UG - 40 mm * Larger of d or Rn + tn + t

    Outside diameter of reinforcing element Dp mm

    = A, Area required = d tr F + 2 tn tr F ( 1 - fr1 )

    = mm2

    = A1, Area available in shell

    = Larger of d ( E1 t - F tr ) - 2 tn ( E1 t - F tr ) ( 1 - fr1 ) or 2 ( t + tn ) ( E1 t - F tr ) - 2 tn ( E1 t - F tr ) ( 1 - fr1 )

    = mm2

    = A2, Area available in nozzle projecting outward = Smaller of ##

    = mm2

    = A3, Aea available in inward nozzle = Smallest of 5 t ti fr2, 5 ti ti fr2 or 2 h ti fr2

    = mm2

    = , rea ava a e n ou war we = outward nozzle weld = ##

    = mm2

    = , rea ava a e n ou er we = outer element weld = (leg)^2 fr4

    = mm2

    = , rea ava a e n nwar we = inward nozzle weld = (leg)^2 fr2

    = mm2

    = , rea ava a e n e emen = ( Dp - d - 2 tn ) te fr4

    = mm2

    ## A = ## ##

    NTES Narai Thermal Engineering Serv

    ######

    ######

    1

    ######

    ######

    #######

    ######

    ######

    1

    ######

    ######

    ######

    #######

    - N/A -

    #VALUE!

    ######

    #VALUE!

    #VALUE!

    - N/A -

    #VALUE!

    #VALUE!

    #VALUE!

    - N/A -

    Part

    D E S I G N D A T A

    C A L C U L A T I O N

    #######

    ######

    ######

    ######

    #VALUE! #VALUE!######

    ######

    ######

    MD - HE - 100

    M E C H A N I C A L D E S I G N

    Shell Side Nozzle > N1

    of

    t R

    Dp

    trn

    tr

    c

    hti

    d

    t

    * 1 : Smaller of 2.5 t or 2.5 tn + te

    * 2 : Smallest of h, 2.5 t, or 2.5 ti

    Larger of

    d or Rn + tn +

    For nozzle wall inserted

    Larger of

    d or Rn + tn + t

    For nozzle wall abu

    the vessel wallthrough the vessel wall

    * 1

    * 2

  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    27/30

    H E A T E X C H A N G E R : Doc. No.

    Revision 0

    Sheet No. 2 x

    Code UG - 41 Strength of Reinforcement

    Allowable Unit Stresses * UG - 45 ( c ) & UW - 15 ( c )

    Fillet Weld Shear Sfs = x = kg/cm2

    Nozzle Wall Shear Sns = x = kg/cm2

    Groove Weld Tension Sgt = x = kg/cm2

    Groove Weld Shear Sgs = x = kg/cm2

    Strength of Connection Elements * Dimensions are in cm.

    Inner Fillet Weld Shear

    (a) = / 2 x Nozzle OD x Weld Leg x Sfs

    = / 2 x x x = kgf = N

    Nozzle Wall Shear

    (b) = / 2 x Mean Nozzle Dia. x tn x Sns

    = / 2 x x x = kgf = N

    Groove Weld Tension

    (c) = / 2 x Nozzle OD x t x Sgt

    = 2 x x x = kgf = N

    Outer Fillet Weld Shear

    (d) = / 2 x Pad OD x Weld Leg x Sfs

    = / 2 x x x = kgf = N

    Upper Groove Weld Tension

    (e) = / 2 x Nozzle OD x te x Sgt

    = 2 x x x = kgf = N

    Lower Fillet Weld Shear

    (f) = / 2 x Nozzle OD x Weld Leg x Sfs

    = / 2 x x x = kgf = N

    Load to be carried by Welds * UG - 41 ( b ) ( 1 ) & ( 2 )

    Weld Load for Strength Path 1 - 1

    W1-1 = ( A2 + A5 + A41 + A42 ) Sv = kgf = N

    Weld Load for Strength Path 2 - 2

    W2-2 = ( A2 + A3 + A41 + A43 + 2 tn t fr1 ) Sv = kgf = N

    Weld Load for Strength Path 3 - 3

    W3-3 = ( A2 + A3 + A5 + A41 + A42 + A43 + 2 tn t fr1 ) Sv = kgf = N

    Total Weld Load

    W = [ A - A1 + 2 tn fr1 ( E1 t - F tr ) ] Sv = kgf = N

    Check Strength Paths * UG - 41 ( b ) ( 1 ) & ( 2 )

    Path 1-1 (d) + (b) = + = N -> ##

    Load for Path 1-1 = Smaller of W1-1 or W = N

    Path 2-2 (a) + (c) + (e) = + + = N -> ##

    Load for Path 2-2 = ma er o - or = N

    Path 3-3 (d) + (c) = + = N -> ##

    Load for Path 3-3 = Smaller of W3-3 or W = N

    -> ## ##

    NTES Narai Thermal Engineering Services

    #VALUE!

    #VALUE! #VALUE! #VALUE!

    #VALUE! #VALUE! #VALUE!

    #VALUE!

    #VALUE!

    #VALUE! #VALUE! #VALUE! #VALUE!

    #VALUE! #VALUE!

    #VALUE! #VALUE!

    #VALUE! #VALUE!

    #VALUE! #VALUE!

    #VALUE!

    0.6 #VALUE! #VALUE!

    0.49 #VALUE! #VALUE!

    0.7 #VALUE! #VALUE!

    C A L C U L A T I O N

    Part

    MD - HE - 100

    of

    0.74

    #VALUE!

    ###### ###### #VALUE! #VALUE! #VALUE!

    ###### ######

    #VALUE!

    #VALUE! #VALUE!

    #VALUE!

    ###### 0.6 #VALUE! #VALUE!

    ###### ######

    ###### - N/A - #VALUE! - N/A - - N/A -

    ###### ###### #VALUE! #VALUE!

    #VALUE! #VALUE!

    #VALUE!

    #VALUE!

    Shell Side Nozzle > N1

    M E C H A N I C A L D E S I G N

  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    28/30

    H E A T E X C H A N G E R : Doc. No.

    Revision 0

    Sheet No. 0 x

    ASME Sec. VIII, Div. 1

    UG - 45 Nozzle Neck Thickness

    UW - 16 Minimum Requirements for Attachment Welds at Openings

    Material Code JIS JIS

    Material specification SB 410 STPG 370 E / 150 A / Sch.80

    Internal design pressure P kg/cm2.g kg/cm2.g

    Design temperature

    Inside diameter Uncorroded mm mm

    Inside diameter Corroded D mm Dn mm

    Inside radius Corroded R mm Rn mm

    Maximum allowable stress value S kg/cm2 Sn kg/cm2

    Joint efficiency E En

    Corrosion allowance mm n mm

    Nominal wall thickness Uncorroded mm mm

    Wall thickness Corroded t mm tn mm

    Minimum Nozzle Wall Thickness * UG - 45

    UG - 45 ( a ) & UG - 27 ( c ) ( 1 )

    Checks : tr1 = ## R = -> ##

    P = ## 0.385 S E = -> ##

    0.6 P - 0.6

    UG - 45 ( b )

    ( 1 ) Shell or head thickness ( E = 1 ) tr2 = mm

    UG - 16 ( b ) Minimum thickness tr3 = mm

    ( 4 ) Minimum thickness of standard wall pipe tr4 = mmarger o r or r tr5 = mm

    tr6 = ma er o r or r = mm

    -> arger o r or r = mm ## mm used. -> ##

    ##

    Size of Weld Required * UW - 16 ( c )

    Inner Fillet Weld tmin = ## =

    tc min = Smaller of 6 mm or 0.7 tmin =tc act = 0.7 Leg41 = -> ##

    Outer Fillet Weld tmin = Smaller of 19 mm or te or t =

    tw min = 0.5 tmin =

    tw act = 0.7 Leg42 = -> ##

    -> ##

    ##

    ## ## ##

    ## ##

    NTES Narai Thermal Engineering Services

    100100

    400

    406

    ######

    ######

    ######

    ######

    ######5.0

    ######

    #VALUE!

    #VALUE!

    #VALUE!

    #VALUE!

    1

    1.5

    mm

    N O Z Z L EC H A N N E L

    D E S I G N D A T A

    Tube SideNozzle > N3

    ######

    ######

    5 #VALUE!

    =1

    n =

    MD - HE - 100

    of

    Part

    Code

    M E C H A N I C A L D E S I G N

    55

    tr1 =P Rn

    +Sn En - #######

    #VALUE!

    6

    + 1.55.0

    C A L C U L A T I O N

    ###### 0.5 #VALUE!

    #VALUE!

    203

    9

    #VALUE!

    #VALUE!

    0.85

    3

    ######

    ######

    ######

    ############

    ######

  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    29/30

    H E A T E X C H A N G E R : Doc. No.

    Revision 0

    Sheet No. 1 x

    Code UG - 37 Reinforcements required for Openings in Shells and Formed Heads

    Nozzle Placemenent Inserted

    Finished diameter of circular opening = Dn d mm

    Corrction factor F

    Required thickness of a seamless shell or head tr mm

    Required thickness of a seamless nozzle wall trn mm

    Allowable stress value in tension, Nozzle Sn kg/cm2

    Allowable stress value in tension, Vessel Sv kg/cm2Strength reduction factor, 1.0 = Sn/Sv fr1

    reng re uc on ac or, 1.0 = Sn/Sv fr2

    E1

    Pad material code ##

    Pad material specification ##

    Pad O.D. mm

    Pad thickness te mm

    Allowable stress value in reinforcing element Sp kg/cm2Strength reduction factor, 1.0 =( lesser of Sn or Sp )/ Sv fr3 kg/cm2

    reng re uc on ac or, 1.0 = Sp/Sv fr4

    Size of Weld Required * UW - 16 ( c )

    Leg41 mm * Min.

    Leg42 mm * Min.

    Leg43 mm * Min.

    Limit of reinforcement * UG - 40 mm * Larger of d or Rn + tn + t

    Outside diameter of reinforcing element Dp mm

    = A, Area required = d tr F + 2 tn tr F ( 1 - fr1 )

    = mm2

    = A1, Area available in shell

    = Larger of d ( E1 t - F tr ) - 2 tn ( E1 t - F tr ) ( 1 - fr1 ) or 2 ( t + tn ) ( E1 t - F tr ) - 2 tn ( E1 t - F tr ) ( 1 - fr1 )

    = mm2

    = A2, Area available in nozzle projecting outward = Smaller of ##

    = mm2

    = A3, Aea available in inward nozzle = Smallest of 5 t ti fr2, 5 ti ti fr2 or 2 h ti fr2

    = mm2

    = A41, Area available in outward weld = outward nozzle weld = ##

    = mm2

    = A42, Area available in outer weld = outer element weld = (leg)^2 fr4

    = mm2

    = A43, Area available in inward weld = inward nozzle weld = (leg)^2 fr2

    = mm2

    = A5, Area available in element = ( Dp - d - 2 tn ) te fr4

    = mm2

    ## A = ## ##

    NTES Narai Thermal Engineering Serv

    Part

    #VALUE!

    - N/A -

    ######

    - N/A -

    #VALUE!

    ######

    1

    - N/A -

    #VALUE!

    D E S I G N D A T A

    C A L C U L A T I O N

    MD - HE - 100

    of

    ######

    ######

    ######

    #######

    ######

    ######

    ######

    #VALUE!

    #VALUE!

    #VALUE!

    #######

    ######

    ######

    ######

    1

    ######

    ######

    M E C H A N I C A L D E S I G N

    Tube Side Nozzle > N3

    ######

    ######

    #######

    #VALUE! #VALUE!######

    t R

    Dp

    trn

    tr

    c

    hti

    d

    t

    * 1 : Smaller of 2.5 t or 2.5 tn + te

    * 2 : Smallest of h, 2.5 t, or 2.5 ti

    Larger of

    d or Rn + tn +

    For nozzle wall inserted

    Larger of

    d or Rn + tn + t

    For nozzle wall abu

    the vessel wallthrough the vessel wall

    * 1

    * 2

  • 5/28/2018 MD HE TEMA ASME v0.1 (1)

    30/30

    H E A T E X C H A N G E R : Doc. No.

    Revision 0

    Sheet No. 2 x

    Code UG - 41 Strength of Reinforcement

    Allowable Unit Stresses * UG - 45 ( c ) & UW - 15 ( c )

    Fillet Weld Shear Sfs = x = kg/cm2

    Nozzle Wall Shear Sns = x = kg/cm2

    Groove Weld Tension Sgt = x = kg/cm2

    Groove Weld Shear Sgs = x = kg/cm2

    Strength of Connection Elements * Dimensions are in cm.

    Inner Fillet Weld Shear

    (a) = / 2 x Nozzle OD x Weld Leg x Sfs

    = / 2 x x x = kgf = N

    Nozzle Wall Shear

    (b) = / 2 x Mean Nozzle Dia. x tn x Sns

    = / 2 x x x = kgf = N

    Groove Weld Tension

    (c) = / 2 x Nozzle OD x t x Sgt

    = 2 x x x = kgf = N

    Outer Fillet Weld Shear

    (d) = / 2 x Pad OD x Weld Leg x Sfs

    = / 2 x x x = kgf = N

    Upper Groove Weld Tension

    (e) = / 2 x Nozzle OD x te x Sgt

    = 2 x x x = kgf = N

    Lower Fillet Weld Shear

    (f) = / 2 x Nozzle OD x Weld Leg x Sfs

    = / 2 x x x = kgf = N

    Load to be carried by Welds * UG - 41 ( b ) ( 1 ) & ( 2 )

    Weld Load for Strength Path 1 - 1

    W1-1 = ( A2 + A5 + A41 + A42 ) Sv = kgf = N

    Weld Load for Strength Path 2 - 2

    W2-2 = ( A2 + A3 + A41 + A43 + 2 tn t fr1 ) Sv = kgf = N

    Weld Load for Strength Path 3 - 3

    W3-3 = ( A2 + A3 + A5 + A41 + A42 + A43 + 2 tn t fr1 ) Sv = kgf = N

    Total Weld Load

    W = [ A - A1 + 2 tn fr1 ( E1 t - F tr ) ] Sv = kgf = N

    Check Strength Paths * UG - 41 ( b ) ( 1 ) & ( 2 )

    Path 1-1 (d) + (b) = + = N -> ##

    Load for Path 1-1 = Smaller of W1-1 or W = N

    Path 2-2 (a) + (c) + (e) = + + = N -> ##

    Load for Path 2-2 = ma er o - or = N

    Path 3-3 (d) + (c) = + = N -> ##

    Load for Path 3-3 = Smaller of W3-3 or W = N

    -> ## ##

    NTES Narai Thermal Engineering Services

    #VALUE!

    ###### - N/A - #VALUE! - N/A - - N/A -

    ###### ###### #VALUE! #VALUE!

    #VALUE!

    ###### 0.6 #VALUE! #VALUE! #VALUE!

    ###### ######

    #VALUE!

    ###### ###### #VALUE! #VALUE! #VALUE!

    ###### ###### #VALUE! #VALUE!

    C A L C U L A T I O N

    Part

    MD - HE - 100

    of

    Tube Side Nozzle > N3

    0.74 #VALUE! #VALUE!

    0.6 #VALUE! #VALUE!

    #VALUE! #VALUE!

    #VALUE! #VALUE!

    0.49 #VALUE! #VALUE!

    0.7 #VALUE! #VALUE!

    #VALUE!

    #VALUE! #VALUE! #VALUE!

    #VALUE! #VALUE!

    #VALUE! #VALUE!

    #VALUE! #VALUE!

    #VALUE! #VALUE! #VALUE!

    #VALUE!

    #VALUE!

    #VALUE! #VALUE! #VALUE! #VALUE!

    M E C H A N I C A L D E S I G N