me330 lecture3

13

Click here to load reader

Upload: andy-norris

Post on 23-Jun-2015

611 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Me330 lecture3

ME 330 Control Systems

SP2011

Lecture 3

ScanYZTest(dsc,bl=0.1,rr=1.0,yscan=10,zscan=0):ScanYZTest(dsc,bl=0.1,rr=1.0,yscan=10,zscan=0):

Page 2: Me330 lecture3

Example Process Solving differential equations to get the time-domain

response of the dynamical system.

)(1

)(2

sFkcsms

sX

)()()()( tkxtxctxmtf f(t)

Step 2) Transform f(t) to F(s)

Step 1) Represent the system differential equation in Laplace domain “transfer function”

Step 3) Multiply “transfer function” with Laplace domain input F(s)

Step 4) Solve for time-domain response with inverse Laplace transform

Page 3: Me330 lecture3

Partial Fraction Expansion Typically, won’t directly find the Laplace transform for

solution to differential equations Example:

52

122)(

2

ss

ssX Nothing in tables for general

quadratic equation

)21)(21(522 jsjsss Sometime even less straightforward when complex roots are involved

Simplify the functions F(s) in order to easily find inverse Laplace transforms from the table. Convert original function F(s) into sum of simpler terms

)(...)()()( 21 sFsFsFsF n

)(...)()(

)(...)()()(

21

21

tftftf

sFsFsFsF

n

n

-1-1-1-1 LLLL

Page 4: Me330 lecture3

Requirement Original function F(s) must be strictly proper

)(

)()(

sD

sNsF order of N(s) < order of D(s)

Divide N(s) by D(s) until remainder is strictly proper

5

21

5

2)5)(1(

5

762)(

22

2

2

23

sss

ss

sss

ss

ssssF

Then perform partial fraction expansion on remaining function terms

Page 5: Me330 lecture3

Methods for Partial Fraction Expansion Three special cases for simplification Depends on the roots of the denominator polynomial.

Propose equivalent simplified form for Laplace domain representation and solve for coefficients.

For each of the special cases: simplification coefficients solved using its own

technique. general method for solving coefficients based on

powers of s.

Page 6: Me330 lecture3

Case 1: Real Roots If F(s) denominator has real and distinct roots

)()()()(

)()())((

)()(

2

2

1

1

21

n

n

m

m

nm

ps

K

ps

K

ps

K

ps

K

pspspsps

sNsF

)(

)(

)(

)(

)(

)(

)()())((

)()()()(

2

2

1

1

21

n

mnm

mm

nm

mm

ps

psKK

ps

psK

ps

psK

pspspsps

sNpssFps

Multiply F(s) by (s+pm) to find residue Km

Set s = -pm to evaluate residue Km 0 0 0

)())((

)(

21 mnmm

mm pppppp

pNK

Page 7: Me330 lecture3

Example Case 1 If F(s) denominator has

real and distinct roots )()()()(

)()())((

)()(

2

2

1

1

21

n

n

m

m

nm

ps

K

ps

K

ps

K

ps

K

pspspsps

sNsF

)23(

795)(

2

23

ss

ssssF

)23(

32

2

ss

ss polynomial long division

(shown on board)

21)2)(1(

3)( 21

s

K

s

K

ss

ssG

22

3

)2)(1(

3)1(

11

1

sss

s

ss

ssK

11

3

)2)(1(

3)2(

22

2

sss

s

ss

ssK

)2)(1( ss

Page 8: Me330 lecture3

Example Case 1 After polynomial division and partial fraction expansion

2

1

1

22)(

ss

ssF

2

1

1

2][]2[)( 1111

ssstf LLLL

)(2 t

1)]([ tL

dt

td )(

sdt

td

)(

L

as

e at

1

L

tt ee 22

Page 9: Me330 lecture3

Case 2: Real Repeated Roots If F(s) denominator has real and repeated roots

)()()()()(

)()()(

)()(

2

1

11

1

2

1

1

21

n

nrrrr

nr

ps

K

ps

K

ps

K

ps

K

ps

K

pspsps

sNsF

)(

)(

)(

)()()(

)()()(

)()()()(

1

2

1111211

21

11

n

rn

rr

rr

nr

rr

ps

psK

ps

psKKpsKpsK

pspsps

sNpssFps

Multiply F(s) by (s+p1)r to find residue K1

Differentiate (s+p1)rF(s) to find residues K2 through Kr

rids

sFpsd

iK

ps

i

ri

i ,,2,1)]()[(

)!1(

1

1

11

1

Set s=-p1 to find residues K1

1ps 0 000

Page 10: Me330 lecture3

Example Case 2 If F(s) denominator has

real and repeated roots

)()()()()(

)()()(

)()(

2

1

11

1

2

1

1

21

n

nrrrr

nr

ps

K

ps

K

ps

K

ps

K

ps

K

pspsps

sNsF

rids

sFpsd

iK

ps

i

ri

i ,,2,1)]()[(

)!1(

1

1

11

1

3

2

)1(

32)(

s

sssF 3

32

21

)1()1()1(

s

K

s

K

s

K

repeated root

1

3

23

3 )1(

32)1(

ss

sssK

322

13

23 )1()1(

)1(

32)1( KsKsK

s

sss

1

3

23

)1(

32)1(

!0

1

ss

sss

Page 11: Me330 lecture3

Example Case 2 Find K2 and K3 with by taking derivatives

213

23 )1(2

)1(

32)1( KsK

s

sss

ds

d

1

3

23

2 )1(

32)1(

ss

sss

ds

dK

13

23

2

2

2)1(

32)1( K

s

sss

ds

d

1

3

23

2

2

1 )1(

32)1(

2

1

ss

sss

ds

dK

Page 12: Me330 lecture3

Example Case 2 After polynomial division and partial fraction expansion

32 )1(

2

)1(

0

1

1)(

ssssF

31

211

)1(

2

)1(

0

1

1)(

ssstf LLL

te

ase at

1][L

natn

aset

n )(

1

)!1(

1 1

L

tet 2

Page 13: Me330 lecture3

Next Lecture

Derivation of dynamical system models