me330 lecture4

11
ME 330 Control Systems FA 2010 Lecture 4 ScanYZTest(dsc,bl=0.1,rr=1.0,yscan=10 ScanYZTest(dsc,bl=0.1,rr=1.0,yscan=10

Upload: andy-norris

Post on 26-Jun-2015

433 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Me330 lecture4

ME 330 Control Systems

FA 2010

Lecture 4

ScanYZTest(dsc,bl=0.1,rr=1.0,yscan=10,zscan=0):ScanYZTest(dsc,bl=0.1,rr=1.0,yscan=10,zscan=0):

Page 2: Me330 lecture4

Recall from last lecture Differential equations and forcing functions combine

algebraically in the Laplace domain. Time domain representation requires taking the

inverse Laplace transform.

Simplify the functions F(s) in order to easily find inverse Laplace transforms from the table. Convert original function F(s) into sum of simpler terms

)(...)()()( 21 sFsFsFsF n

)(...)()(

)(...)()()(

21

21

tftftf

sFsFsFsF

n

n

-1-1-1-1 LLLL

Page 3: Me330 lecture4

Case 1: Real Roots If F(s) denominator has real and distinct roots

)()()()(

)()())((

)()(

2

2

1

1

21

n

n

m

m

nm

ps

K

ps

K

ps

K

ps

K

pspspsps

sNsF

)(

)(

)(

)(

)(

)(

)()())((

)()()()(

2

2

1

1

21

n

mnm

mm

nm

mm

ps

psKK

ps

psK

ps

psK

pspspsps

sNpssFps

Multiply F(s) by (s+pm) to find residue Km

Set s = -pm to evaluate residue Km 0 0 0

)())((

)(

21 mnmm

mm pppppp

pNK

Page 4: Me330 lecture4

Case 2: Real Repeated Roots If F(s) denominator has real and repeated roots

)()()()()(

)()()(

)()(

2

1

11

1

2

1

1

21

n

nrrrr

nr

ps

K

ps

K

ps

K

ps

K

ps

K

pspsps

sNsF

)(

)(

)(

)()()(

)()()(

)()()()(

1

2

1111211

21

11

n

rn

rr

rr

nr

rr

ps

psK

ps

psKKpsKpsK

pspsps

sNpssFps

Multiply F(s) by (s+p1)r to find residue K1

Differentiate (s+p1)rF(s) to find residues K2 through Kr

rids

sFpsd

iK

ps

i

ri

i ,,2,1)]()[(

)!1(

1

1

11

1

Set s=-p1 to find residues K1

1ps 0 000

Page 5: Me330 lecture4

Case 3: Complex Roots If F(s) denominator has complex roots, can be

solved with complex Ki’s then recognizing that

cos2

jj ee

)()())((

)()(

232

1

12

1 bass

KsK

ps

K

bassps

sNsF

Or, F(s) denominator has complex roots and

sin2

j

ee jj

Solve K1 then multiply lowest common denominator

))(()()( 1322

1 psKsKbassKsN

2nd order 2nd order Combine like terms

Solve for Ki’s by balancing the 2 unknown coefficients

Page 6: Me330 lecture4

Case 3: Complex Roots Once K2, K3 are known,

complete the square on the quadratic

)1(

)1(

)1(

cHWproblemB

bHWproblemA

aHWproblem

g

hk

g

hxgkhxgx

42)(

22

2

221

1

232

1

1

)(

)(

)(

)()()(

as

BasA

ps

K

bass

KsK

ps

KsF

Page 7: Me330 lecture4

Example Assign m = 1, c = 2, k = 5, and

f(t)

0,1

0,0)(

t

ttf

),(52

1)(

2sF

sssX

1)( sF

2121522 jsjsss note:

22 2)1(

2

2

1)(

ssX

22

22

)()cos(

)()sin(

as

asteL

asteL

at

atrecognize:

)2sin(2

1)( tetx t

Page 8: Me330 lecture4

Matlab Rational function of polynomials in s

nn

nnn

asas

bsbsb

sA

sB

1

110

)(

)(

num = [b0 b1 … bn] den = [1 a1 … an]

Matlab representation

Partial fraction expansion

)()(

)(

)2(

)2(

)1(

)1(

)(

)(sk

nps

nr

ps

r

ps

r

sA

sB

Matlab command[r,p,k] = residue(num,den)

r,p,k are vectors whose coefficients define the partial fraction expansion

Page 9: Me330 lecture4

Example Case 3 If F(s) denominator has complex roots

)22(

1)(

2

ssssF

)22( 2321

ss

KsK

s

K

)1)(1( jsjs Multiply both sides by the greatest common denominator

)22( 2 sss

sKsKssK )()22(1 322

1

1312

21 2)2()(1 KsKKsKK

210 KK 3120 KK 121 K

1,2

1,2

1321 KKK

Page 10: Me330 lecture4

Example Case 3 After polynomial division and partial fraction expansion

)22(2

2

2

1)(

2

ss

s

ssF

2222 1)1(

1

2

1

1)1(

1

2

1

2

1)(

s

s

sssF

222 1)1()22( sss

Completing the square

1)1()2( ss

and factoring the numerator

)(2

1)( tutf

stu

1)]([ L

22)()]sin([

aste atL

)sin(2

1te t

22)()]cos([

as

aste atL

)cos(2

1te t

Page 11: Me330 lecture4

Next Lecture

Derivation of dynamical system models