measurement of the charge asymmetry in highly boosted top...

33
Title Measurement of the charge asymmetry in highly boosted top- quark pair production in √s=8 TeV pp collision data collected by the ATLAS experiment Kyoto University

Upload: others

Post on 20-Jan-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

TitleMeasurement of the charge asymmetry in highly boosted top-quark pair production in √s=8 TeV pp collision data collectedby the ATLAS experiment

Kyoto University

Page 2: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

Author(s)

Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.;Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.;Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk,L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.;Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.;Akerstedt, H.; Åkesson, T. P A; Akimov, A. V.; Alberghi, G.L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.;Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.;Alhroob, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke,B. M M; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.;Alonso, F.; Alpigiani, C.; Alvarez Gonzalez, B.; ÁlvarezPiqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.;Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor DosSantos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.;Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.;Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.;Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.;Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.;Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.;Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.;Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T H; Arduh, F.A.; Arguin, J. F.; Argyropoulos, S.; Arik, M.; Armbruster, A.J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan,O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.;Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.;Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio,G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas,A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.;Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J.T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli,F.; Balunas, W. K.; Banas, E.; Banerjee, Sw; Bannoura, A. AE; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.;Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes,S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.;Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.;Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.;Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.;Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce,M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.;Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck,H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.;Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.;Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr,J. K.; Belanger-Champagne, C.; Bell, A. S.; Bell, W. H.; Bella,G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.;Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.;Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; BenharNoccioli, E.; Benitez, J.; Benitez Garcia, J. A.; Benjamin, D.P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.;Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.;Beringer, J.; Berlendis, S.; Bernard, C.; Bernard, N. R.;Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella,C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.;Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner,M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.;Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel,O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.;Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.;Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C.W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.;

Kyoto University

Page 3: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

Blanchard, J. B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker,C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.;Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.;Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.;Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.;Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.;Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.;Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.;Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.;Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.;Bousson, N.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.;Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.;Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.;Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.;Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu,F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.;Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.;Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.;Bruni, A.; Bruni, G.; Brunt, B. H.; Bruschi, M.; Bruscino, N.;Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz,P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.;Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard,C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.;Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.;Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.;Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.;Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.;Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet,D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.;Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher,C.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.;Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.;Capeans Garrido, M. D M; Caprini, I.; Caprini, M.; Capua, M.;Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli,T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.;Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.;Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.;Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.;Ceradini, F.; Cerda Alberich, L.; Cerio, B. C.; Cerqueira, A. S.;Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin,S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, S.K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.;Chatterjee, A.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.;Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.;Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H.C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; CherkaouiEl Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.;Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.;Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.;Chouridou, S.; Chow, B. K B; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J.J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.;Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan,M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.;Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.;Coffey, L.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.;Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.;Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.;

Kyoto University

Page 4: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke,M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.;Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez,A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin,G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree,G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; CrispinOrtuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; CuhadarDonszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.;Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio,M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.;Dabrowski, W.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola,C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.;Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.;Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey,W.; David, C.; Davidek, T.; Davies, M.; Davison, P.;Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova,R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro,S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; DeLorenzi, F.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; DeSanto, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe,R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso,J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.;Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.;Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P.A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.;Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.;Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.;Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; DiCiaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Domenico,A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; DiMattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; DiSipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias,F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.;Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.;Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A B;Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.;Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.;Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.;Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.;Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.;Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.;Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K.M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Eifert, T.; Eigen,G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.;Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.;Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner,O. C.; Endo, M.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis,G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch,H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans,H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.;Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.;Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.;Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.;Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.;Favareto, A.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.;Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.;Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.;Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira deLima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; FerrettoParodi, A.; Fiedler, F.; Filipcic, A.; Filipuzzi, M.; Filthaut, F.;

Kyoto University

Page 5: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C N; Fiorini, L.;Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.;Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.;Fletcher, G.; Fletcher, R. R M; Flick, T.; Floderus, A.; FloresCastillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.;Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.;Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.;Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.;Fukunaga, C.; Fullana Torregrosa, E.; Fusayasu, T.; Fuster, J.;Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach,G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L.G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop,B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao,Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.;Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.;Gascon Bravo, A.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur,B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.;Gazis, E. N.; Gecse, Z.; Gee, C. N P; Geich-Gimbel, Ch;Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile,S.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.;Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard,B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P S;Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.;Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.;Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B.K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L.K.; Glasman, C.; Glatzer, J.; Glaysher, P. C F; Glazov, A.;Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.;Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves PintoFirmino Da Costa, J.; Gonella, L.; Gongadze, A.; González dela Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens,L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.;Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling,C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A.G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.;Gradin, P. O J; Grafström, P.; Gramling, J.; Gramstad, E.;Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.;Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.;Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm,K.; Grinstein, S.; Gris, Ph; Grivaz, J. F.; Groh, S.; Grohs, J. P.;Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan,L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.;Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.;Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.;Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.;Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.;Haddad, N.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.;Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.;Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.;Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.;Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.;Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.;Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.;Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.;Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.;Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.;Hawkings, R. J.; Hawkins, A. D.; Hayden, D.; Hays, C. P.;Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.;Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.;Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal,

Kyoto University

Page 6: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.;Henderson, R. C W; Heng, Y.; Henkelmann, S.; HenriquesCorreia, A. M.; Henrot-Versille, S.; Herbert, G. H.; HernándezJiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh,G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.;Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.;Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.;Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.;Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T.M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A.J.; Hostachy, J. Y.; Hou, S.; Hoummada, A.; Howard, J.;Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.;Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S. C.;Hu, D.; Hu, Q.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging,F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.;Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci,G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal,E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.;Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi,G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; IrlesQuiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.;Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce,J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.;Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.;Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.;Janus, M.; Jarlskog, G.; Javadov, N.; Javurek, T.; Jeanneau, F.;Jeanty, L.; Jejelava, J.; Jeng, G. Y.; Jennens, D.; Jenni, P.;Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.;Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.;Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W L; Jones, S.; Jones, T. J.;Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas,A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.;Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.;Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti,S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.;Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.;Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.;Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.;Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.;Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.;Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.;Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J.S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B.P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.;Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.;Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.;Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.;King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.;Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva,E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.;Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.;Klioutchnikova, T.; Kluge, E. E.; Kluit, P.; Kluth, S.; Knapik,J.; Kneringer, E.; Knoops, E. B F G; Knue, A.; Kobayashi, A.;Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys,P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohriki, T.; Koi,T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.;Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König,A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.;

Kyoto University

Page 7: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl,K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.;Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.;Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.;Koutsman, A.; Kowalewska, A. B.; Kowalewski, R.; Kowalski,T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.;Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.;Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kretz, M.;Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.;Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.;Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse,M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.;Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.;Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.;Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin,Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.;Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; LaRotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.;Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge,B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.;Landgraf, U.; Landon, M. P J; Lang, V. S.; Lange, J. C.;Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace,S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.;Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock,P.; Lazovich, T.; Lazzaroni, M.; Le Dortz, O.; Le Guirriec, E.;Le Menedeu, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte,T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.;Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.;Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.;Leister, A. G.; Leite, M. A L; Leitner, R.; Lellouch, D.;Lemmer, B.; Leney, K. J C; Lenz, T.; Lenzi, B.; Leone, R.;Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.;Lesage, A. A J; Lester, C. G.; Levchenko, M.; Levêque, J.;Levin, D.; Levinson, L. J.; Levy, M.; Leyko, A. M.; Leyton,M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.;Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.;Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin,S. C.; Lin, T. H.; Lindquist, B. E.; Lipeles, E.; Lipniacka, A.;Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.;Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.;Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres,A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.;Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.;Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse,T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.;Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; LopezMateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lopez Solis, A.;Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou,X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti,H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas,W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.;Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.;Macchiolo, A.; Macdonald, C. M.; Macek, B.; MachadoMiguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.;Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.;Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.;Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski,S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa;Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.;Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.;

Kyoto University

Page 8: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

Mancini, G.; Mandelli, B.; Mandelli, L.; Mandic, I.; Maneira,J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann,A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Manzoni, S.;Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.;Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim,F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.;Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.;Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A.C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo,T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.;Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi,T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.;Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Fadden, N. C.;Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.;McCarthy, T. G.; McClymont, L. I.; McFarlane, K. W.;Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson,R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.;Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.;Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K.M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.;Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer,C.; Meyer, C.; Meyer, J. P.; Meyer, J.; Meyer Zu Theenhausen,H.; Middleton, R. P.; Miglioranzi, S.; Mijovic, L.; Mikenberg,G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller,D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.;Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.;Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.;Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.;Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.;Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.;Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.;Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.;Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; MorenoLlácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.;Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.;Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.;Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha,E.; Mouraviev, S. V.; Moyse, E. J W; Muanza, S.; Mudd, R.D.; Mueller, F.; Mueller, J.; Mueller, R. S P; Mueller, T.;Muenstermann, D.; Mullen, P.; Mullier, G. A.; MunozSanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.;Musheghyan, H.; Myagkov, A. G.; Myska, M.; Nachman, B.P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.;Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.;Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.;Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan,R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro,G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu; Neep, T. J.; Nef,P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.;Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.;Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.;Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.;Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforov, A.;Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J.K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.;Nodulman, L.; Nomachi, M.; Nomidis, I.; Nooney, T.;Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.;Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.;O'grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.;Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi,A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren,

Kyoto University

Page 9: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.;Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; OleiroSeabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.;Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P.U E; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.;Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero yGarzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou,A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.;Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; PachecoPages, A.; Padilla Aranda, C.; Pagácová, M.; Pagan Griso, S.;Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.;Palka, M.; Pallin, D.; Palma, A.; St. Panagiotopoulou, E.;Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.;Pantea, D.; Paolozzi, L.; Papadopoulou, Th D.; Papageorgiou,K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.;Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.;Pascuzzi, V.; Pasqualucci, E.; Passaggio, S.; Pastore, F.;Pastore, Fr; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.;Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen,M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan,D.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.;Perepelitsa, D. V.; Perez Codina, E.; Perini, L.; Pernegger, H.;Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.;Peters, R. F Y; Petersen, B. A.; Petersen, T. C.; Petit, E.;Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.;Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips,P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.;Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.;Pilkington, A. D.; Pin, A. W J; Pina, J.; Pinamonti, M.; Pinfold,J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.;Pleier, M. A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth,D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley,A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.;Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.;Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.;Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.;Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M.E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.;Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.;Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.;Puddu, D.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.;Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu,V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.;Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.;Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.;Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.;Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch,L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno,M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.;Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.;Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.;Rimoldi, A.; Rinaldi, L.; Ristic, B.; Ritsch, E.; Riu, I.;Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E M; Robson, A.;Roda, C.; Rodina, Y.; Rodriguez Perez, A.; RodriguezRodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk,A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.;Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.;Rosbach, K.; Rose, P.; Rosenthal, O.; Rossetti, V.; Rossi, E.;Rossi, L. P.; Rosten, J. H N; Rosten, R.; Rotaru, M.; Roth, I.;

Kyoto University

Page 10: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen,Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, M.S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N.A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann,N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov,A.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. FW; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.;Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna,G.; Salamon, A.; Salazar Loyola, J. E.; Salek, D.; Sales DeBruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.;Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.;Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez,V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M.P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. PC; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.;Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.;Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.;Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.;Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.;Scannicchio, D. A.; Scarcella, M.; Scarfone, V.;Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.;Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer,A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky,V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.;Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.;Schmitt, S.; Schmitz, S.; Schneider, B.; Schnellbach, Y. J.;Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.;Schopf, E.; Schorlemmer, A. L S; Schott, M.; Schouten, D.;Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.;Schultens, M. J.; Schultz-Coulon, H. C.; Schulz, H.;Schumacher, M.; Schumm, B. A.; Schune, Ph;Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.;Schwegler, Ph; Schweiger, H.; Schwemling, Ph; Schwienhorst,R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti,F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.;Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.;Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.;Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.;Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L.Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw,K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood,P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.;Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M.J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.;Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.;Siegert, F.; Sijacki, Dj; Silva, J.; Silverstein, S. B.; Simak, V.;Simard, O.; Simic, Lj; Simion, S.; Simioni, E.; Simmons, B.;Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.;Siragusa, G.; Sivoklokov, S. Yu; Sjölin, J.; Sjursen, T. B.;Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.;Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B.H.; Smestad, L.; Smirnov, S. Yu; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, M. N K; Smith, R. W.; Smizanska,M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.;Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.;Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu; Soldevila,U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.;Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.;Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C.L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.;Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.;

Kyoto University

Page 11: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.;Spousta, M.; St. Denis, R. D.; Stabile, A.; Staerz, S.; Stahlman,J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.;Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.;Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.;Starovoitov, P.; Staszewski, R.; Steinberg, P.; Stelzer, B.;Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.;Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte,P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M.E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.;Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.;Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su,J.; Subramaniam, R.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin,V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.;Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.;Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.;Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.;Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda,H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.;Tam, J. Y C; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.;Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.;Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.;Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.;Taylor, P. T E; Taylor, W.; Teischinger, F. A.; Teixeira-Dias,P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.;Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo,S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas,J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.;Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson,E.; Thomson, M.; Tibbetts, M. J.; Ticse Torres, R. E.;Tikhomirov, V. O.; Tikhonov, Yu A.; Timoshenko, S.; Tipton,P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.;Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.;Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.;Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D.R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.;Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.;Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli,M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C L;Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze,S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.;Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.;Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.;Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey,A. J.; Tuts, P. M.; Tylmad, M.; Tyndel, M.; Ucchielli, G.;Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.;Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben,C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.;Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; ValdesSanturio, E.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery,L.; Valkar, S.; Vallecorsa, S.; Valls Ferrer, J. A.; Van DenWollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; vander Graaf, H.; van Eldik, N.; van Gemmeren, P.; VanNieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia,M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.;Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas,D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; VazquezSchroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.;Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.;Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.;Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou,

Kyoto University

Page 12: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H A; Viel,S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.;Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vlachos, S.;Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; vonder Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.;Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; VranjesMilosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.;Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg,H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.;Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang,F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang,R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj,C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook,A.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M.S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.;Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.;Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.;Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White,A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens,F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.;Wiglesworth, C.; Wiik-Fuchs, L. A M; Wildauer, A.; Wilkens,H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.;Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O.J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.;Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.;Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.;Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu,D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamaguchi,D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka,T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.;Yang, Y.; Yang, Z.; Yao, W. M.; Yap, Y. C.; Yasu, Y.;Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.;Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara,K.; Young, C.; Young, C. J S; Youssef, S.; Yu, D. R.; Yu, J.;Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P Y; Yusuff, I.; Zabinski,B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.;Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.;Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.;Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang,G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.;Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.;Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.;Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.;Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.;Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.;Zinser, M.; Ziolkowski, M.; Živkovic, L.; Zobernig, G.;Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.

Citation Physics Letters, Section B: Nuclear, Elementary Particle andHigh-Energy Physics (2016), 756: 52-71

Issue Date 2016-05-10

URL http://hdl.handle.net/2433/210265

Kyoto University

Page 13: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

Right

©2016 CERN for the benefit of the ATLAS Collaboration.Published by Elsevier B.V. This is an open access article underthe CC BY license(http://creativecommons.org/licenses/by/4.0/). Funded bySCOAP3.

Type Journal Article

Textversion publisher

Kyoto University

Page 14: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

Physics Letters B 756 (2016) 52–71

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Measurement of the charge asymmetry in highly boosted top-quark

pair production in √

s = 8 TeV pp collision data collected by the ATLAS

experiment

.ATLAS Collaboration �

a r t i c l e i n f o a b s t r a c t

Article history:Received 21 December 2015Received in revised form 10 February 2016Accepted 24 February 2016Available online 2 March 2016Editor: W.-D. Schlatter

In the pp → tt process the angular distributions of top and anti-top quarks are expected to present a subtle difference, which could be enhanced by processes not included in the Standard Model. This Letter presents a measurement of the charge asymmetry in events where the top-quark pair is produced with a large invariant mass. The analysis is performed on 20.3 fb−1 of pp collision data at

√s = 8 TeV

collected by the ATLAS experiment at the LHC, using reconstruction techniques specifically designed for the decay topology of highly boosted top quarks. The charge asymmetry in a fiducial region with large invariant mass of the top-quark pair (mtt > 0.75 TeV) and an absolute rapidity difference of the top and anti-top quark candidates within −2 < |yt | − |yt | < 2 is measured to be 4.2 ± 3.2%, in agreement with the Standard Model prediction at next-to-leading order. A differential measurement in three tt mass bins is also presented.

© 2016 CERN for the benefit of the ATLAS Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The charge asymmetry [1,2] in top-quark pair production at hadron colliders constitutes one of the more interesting develop-ments in the last decade of top-quark physics. In the Standard Model (SM), a forward–backward asymmetry (AFB), of order αs , is expected at a proton–antiproton (pp) collider such as the Tevatron, with a much enhanced asymmetry in certain kinematical regions. Early measurements [3,4] found a larger AFB than predicted by the SM. Later determinations confirmed this deviation and mea-surements in intervals of the invariant mass, mtt , of the system formed by the top-quark pair [5–9] found a stronger dependence on mtt than anticipated. Recent calculations of electroweak effects [10] and the full next-to-next-to-leading-order (NNLO) corrections [11] to the asymmetry have brought the difference between the observed asymmetry at the Tevatron and the SM prediction down to the 1.5 σ level and reduced the tension with the differential measurements in mtt [12,13].

At the Large Hadron Collider (LHC), the forward–backward asymmetry is not present due to the symmetric initial state, but a related charge asymmetry, AC, is expected in the distribution of the difference of absolute rapidities of the top and anti-top quarks,

AC = N(�|y| > 0) − N(�|y| < 0)

N(�|y| > 0) + N(�|y| < 0), (1)

� E-mail address: [email protected].

where �|y| = |yt | − |yt | and y denotes the rapidity of the top and anti-top quarks.1 For quark–antiquark (qq) initial states, the difference in the average momentum carried by valence and sea quarks leads to a positive asymmetry. These quark-initiated pro-cesses are strongly diluted by the charge-symmetric gluon-initiated processes, yielding a SM expectation for the charge asymmetry of less than 1%. Many beyond-the-Standard-Model (BSM) scenarios predict an alteration to this asymmetry. Previous measurements at 7 TeV [14–17] and 8 TeV [18–20] by ATLAS and CMS are consistent with the SM prediction.

With a centre-of-mass energy of 8 TeV and a top-quark pair sample of millions of events, the LHC experiments can access the charge asymmetry in a kinematic regime not probed by previ-ous experiments. The development of new techniques involving Lorentz-boosted objects and jet substructure [21–24] and their use in the analysis of LHC data [25,26] have enabled an efficient se-

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis coinciding with the axis of the beam pipe. The x-axis points from the IP towards the centre of the LHC ring, and the y-axis points upward. Polar coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The rapidity y is given as y = − 1

2 ln[(E + pz)/(E − pz)], while the pseudorapidity is defined in terms of the polar angle θ as η = − ln[tan (θ/2)]. The distance in (η, φ) coordinates, �R = √

(�φ)2 + (�η)2, is used to define cone sizes and the distance between re-constructed objects. Transverse momentum and energy are defined as pT = p sin θ

and ET = E sin θ , respectively.

http://dx.doi.org/10.1016/j.physletb.2016.02.0550370-2693/© 2016 CERN for the benefit of the ATLAS Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Page 15: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

ATLAS Collaboration / Physics Letters B 756 (2016) 52–71 53

lection of highly boosted objects and an accurate reconstruction of their momentum.

This Letter presents a measurement of the rapidity-dependent charge asymmetry in top-quark pair production that is based on techniques specifically designed to deal with the collimated de-cay topology of boosted top quarks. Specifically, it is based on the techniques described in Refs. [27–30]. The analysis focuses on the lepton + jets ( + jets) final state, where the hadronic top-quark decay is reconstructed as a single large-radius (large-R) jet and tagged as such using jet substructure variables. The leptonic top-quark decay is reconstructed from a single small-radius (small-R) jet, a single charged lepton (muon or electron), and missing trans-verse momentum, corresponding to the neutrino from the W bo-son decay. The event selection and reconstruction follow the pre-scriptions of Ref. [27], where a detailed description and discussion of their performance can be found.

Compared to previous analyses [18,20] based on the classical, resolved top-quark selection criteria and reconstruction schemes, this approach offers a more precise reconstruction of the tt invari-ant mass and top-quark direction for highly boosted top quarks. It is therefore possible to perform accurate measurements of the charge asymmetry in events with a tt invariant mass in the TeV range. This kinematic regime has a higher sensitivity for the SM asymmetry due to a higher fraction of quark-initiated processes, as well as for BSM models that introduce massive new states.

This Letter is structured as follows. The data sample analysed is presented in Section 2, along with a description of the Monte Carlo (MC) simulation samples in Section 3. A brief overview of the reconstructed object definitions and of the event selection and reconstruction is given in Sections 4 and 5. The observed yields and several kinematic distributions are compared to the SM ex-pectations in Section 6. The unfolding technique used to correct the reconstructed �|y| spectrum to the parton level is discussed in Section 7. The estimates of the systematic uncertainties that af-fect the measurement are described and estimated in Section 8. The results are presented in Section 9, and their impact on several BSM theories is discussed in Section 10. Finally, the conclusions are presented in Section 11.

2. Data sample

The data for this analysis were collected by the ATLAS [31] ex-periment in the 8 TeV proton–proton (pp) collisions at the CERN LHC in 2012. Collision events are selected using isolated or non-isolated single-lepton triggers, where the isolated triggers have a threshold of 24 GeV on the transverse momentum (pT) of muons or on the transverse energy of electrons. The non-isolated trig-gers have higher thresholds: 60 GeV for electrons and 36 GeV for muons. The contribution from events with leptons passing only the non-isolated triggers but having pT below these higher thresholds is negligible. The collected data set is limited to periods with sta-ble beam conditions when all sub-systems were operational. The sample corresponds to an integrated luminosity of 20.3 ± 0.6 fb−1.

3. Monte Carlo simulation

Samples of MC simulated events are used to characterise the detector response and efficiency to reconstruct tt events, esti-mate systematic uncertainties, and predict the background contri-butions from various physics processes. The response of the de-tector and trigger is simulated [32] using a detailed model imple-mented in GEANT4 [33]. Simulated events are reconstructed with the same software as the data. Additional pp interactions, simul-taneously present in the detector (pile-up), are generated usingPythia 8.1 [34] with the MSTW2008 leading order PDF set [35]

and the AUET2 set of tune parameters (tune). The pile-up events are reweighted to the number of interactions per bunch crossing in data (on average 21 in 2012). For some samples used to evaluate systematic uncertainties, the detailed description of the calorime-ter response is parameterised using the ATLFAST-II simulation [32]. For all samples the top-quark mass is set to mtop = 172.5 GeV.

The nominal signal tt sample is produced using the Powheg-

Box (version 1, r2330) generator [36], which is based on next-to-leading-order (NLO) QCD matrix elements. The CT10 [37] set of parton distribution functions (PDF) is used. The hdamp pa-rameter, which controls the matrix element (ME) to parton shower (PS) matching in Powheg-Box and effectively regulates the high-pT radiation, is set to the top-quark mass. The parton shower, hadronisation, and the underlying event are simulated with Pythia 6.427 [38] using the CTEQ6L1 PDF set and the Pe-rugia 2011 [39] tune. Electroweak corrections are applied to this sample through a reweighting scheme; they are calculated with Hathor 2.1-alpha [40] implementing the theoretical calculations of Refs. [41–43]. Alternative samples are used to evaluate uncer-tainties in modelling the tt signal. These include samples pro-duced with MC@NLO 4.01 [44] interfaced with Herwig 6.520 [45] and Jimmy 4.31 [46], as well as samples generated withPowheg-Box + Herwig/Jimmy and Powheg-Box + Pythia, both with hdamp = infinity. Samples are also produced with differing initial- and final-state radiation (ISR/FSR), using the AcerMC gen-erator [47] interfaced with Pythia. All tt samples are normalised to cross-section at NNLO + next-to-next-to-leading logarithmic (NNLL) accuracy2 [49–54]: σtt = 253+13

−15 pb.Leptonic decays of vector bosons produced in association with

several high-pT jets, referred to as W + jets and Z + jets events, with up to five additional final-state partons in the leading-order (LO) matrix-elements, are produced with the Alpgen generator [55] interfaced with Pythia 6.426 for parton fragmentation using the MLM matching scheme [56]. Heavy-flavour quarks are included in the ME calculations to model the W bb, W cc, W c, Zbb and Zccprocesses. The W + jets samples are normalised to the inclusive Wboson NNLO cross-section [57,58].

Single top-quark production is simulated using Powheg-Box in-terfaced with Pythia 6.425 using the CTEQ6L1 PDF set and the Perugia 2011 tune. The cross-sections multiplied by the sum of the branching ratios for the leptonic W decay employed for these pro-cesses are 28 pb (t-channel) [59], 22 pb (W t production) [60], and 1.8 pb (s-channel) [61], obtained from NNLO + NNLL calculations.

Diboson production is modelled using Sherpa [62] with theCT10 PDF set, and the yields are normalised to the NLO cross-sections: 23 pb (W W → νqq), 0.7 pb (Z Z → qq), 6.0 pb (W Z → νqq) and 4.6 pb (Z W → qq).

4. Object definitions

Electron candidates are reconstructed using charged-particle tracks in the inner detector associated with energy deposits in the electromagnetic calorimeter. Muon candidates are identified by matching track segments in the muon spectrometer with tracks in the inner detector. Lepton candidates are required to be isolated using the “mini-isolation” criteria described in Ref. [63].

Jets are reconstructed using the anti-kt algorithm [64] imple-mented in the FastJet package [65] with radius parameter R = 0.4(small-R) or R = 1.0 (large-R), using as input calibrated topolog-ical clusters [66] of energy deposits in the calorimeters. The jet-trimming algorithm [67] is applied to the large-R jets to reduce

2 The top++2.0 [48] calculation includes the NNLO QCD corrections and resums NNLL soft gluon terms. The quoted cross-section corresponds to a top-quark mass of 172.5 GeV.

Page 16: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

54 ATLAS Collaboration / Physics Letters B 756 (2016) 52–71

the effect of soft and diffuse radiation, such as that from pile-up, multiple parton interactions and initial-state radiation. Large-R jets are trimmed by reclustering the constituents with the kt algorithm [68,69] with a radius parameter Rsub = 0.3 and retaining sub-jets that have a momentum exceeding 5% of that of the large-R jet ( fcut = 0.05). For small-R jets, a pile-up correction based on the jet area, the number of primary vertices, the bunch spacing, and jet η is applied. Both jet collections are calibrated to the stable-particle level as a function of pT and η (and mass for large-R jets) [25]. The stable-particle level refers to generator-level jets recon-structed from particles with a lifetime of at least 10 ps. Small-Rjets are b-tagged using an algorithm that exploits the relatively large decay time of b-hadrons and their large mass [70,71].

The missing transverse momentum (with magnitude EmissT ) is

computed as the negative vector sum of the energy of all calorime-ter cells, taking into account the calibration of reconstructed ob-jects, and the presence of muons.

5. Event selection and reconstruction

Each event must have a reconstructed primary vertex with five or more associated tracks of pT > 400 MeV. The events are required to contain exactly one reconstructed lepton candidate, which must then be geometrically matched to the trigger object. To reduce the multi-jet background, the magnitude of the miss-ing transverse momentum and the W -boson transverse mass mW

Tmust satisfy Emiss

T > 20 GeV and EmissT + mW

T > 60 GeV, where

mWT =

√2plepton

T EmissT (1 − cos�φ) (2)

and �φ is the azimuthal angle between the lepton and the miss-ing transverse momentum. At least one small-R jet (R = 0.4) must be found close to, but not coincident with, the lepton (�R(, jetR=0.4) < 1.5).

The leptonic top-quark candidate is reconstructed by adding the highest-pT jet among those satisfying the above criteria, the selected charged lepton and the reconstructed neutrino. The lon-gitudinal component of the neutrino momentum is calculated by constraining the lepton-plus-missing-momentum system to have the W boson mass and solving the resulting quadratic equation. If two real solutions are found, the one that yields the smallest longitudinal momentum for the neutrino is used. If no real solu-tion exists, the missing transverse momentum vector is varied by the minimal amount required to produce exactly one real solution.

The hadronically decaying top quark is reconstructed as a sin-gle trimmed jet with R = 1.0. The selected jet must have pT >

300 GeV, must be well separated from both the charged lepton (�φ(, jetR=1.0) > 2.3) and the small-R jet associated with the leptonic top-quark candidate (�R(jetR=1.0, jetR=0.4) > 1.5). A sub-structure analysis of the large-R jet is used to tag the boosted top-quark candidate: the invariant mass of the jet mtrim

jet after cali-bration to the particle level [26] must be larger than 100 GeV and the kt splitting scale3

√dtrim

12 must exceed 40 GeV.Finally, at least one of the highest-pT small-R jets associated

with the decay of a top-quark candidates (�R(, jetR=0.4) < 1.5or �R(jetR=1.0, jetR=0.4) < 1.0) must be b-tagged. Events with a

3 The kt splitting scale [72] is obtained by reclustering the large-R jet compo-nents with the kt algorithm with a radius parameter R = 0.3. The first splitting scale

√dtrim

12 corresponds to the scale at which the last two sub-jets are merged into one:

√dtrim

12 = min(pT,1, pT,2) × �R1,2, where 1 and 2 denote the two sub-jets merged in the last step of the kt algorithm.

Table 1Observed and expected number of events in the signal region. The two columns correspond to the e + jets and μ + jets selected data samples. The systematic un-certainties of the SM expectation include those from detector-related uncertainties, uncertainties in the normalisation, the luminosity uncertainty and the uncertainty in the cross-section predictions used to normalise the expected yields.

e + jets μ + jets

tt 4100 ±600 3600 ±500W + jets 263 ±32 264 ±32Single top 140 ±20 138 ±19Multi-jet 44 ±8 4±1Z + jets 40 ±27 16±11Dibosons 20 ±7 18±7ttV 37 ±19 33±17

Prediction 4600 ±600 4100 ±500

Data 4141 3600

reconstructed tt mass of less than 750 GeV are rejected, as the per-formance of the reconstruction of boosted top quarks is strongly degraded at low mass.

The selection and reconstruction schemes yield good efficiency and tt mass determination for high-mass pairs. Detailed MC stud-ies presented in Ref. [27] show that the mass resolution is approxi-mately 6% for a large range of tt mass, starting at mtt ∼ 1 TeV. The measurement of the top and anti-top-quark rapidities are nearly unambiguous. The quality of the top quark rapidity reconstruction can be expressed in terms of the dilution factor D = 2p − 1, where p is the probability of a correct assignment of the �|y| sign. A di-lution factor D = 1 indicates perfect charge assignment. The MC simulation predicts a value of approximately D = 0.75 for the se-lected sample. The remaining dilution is largely due to events with small values of the absolute rapidity difference; if events with |�|y|| < 0.5 are excluded, the MC simulation predicts a dilution factor greater than 0.9.

6. Comparison of data to the SM template

A template for the expected yield of most SM processes is based on Monte Carlo simulation, where the production rate is normalised using the prediction of the inclusive cross-section spec-ified in Section 3. Exceptions are the W + jets background and the multi-jet background. The W + jets background normalisation and heavy-flavour fractions are corrected with scale factors derived from data, as in Ref. [27], using the observed asymmetry in the yields of positively and negatively charged leptons. The multi-jet background estimate is fully data-driven, using the matrix method. This method uses the selection efficiencies of leptons from prompt and non-prompt sources to predict the number of events with non-prompt leptons in the signal region. These methods and their results are documented in detail in Ref. [27].

The event yields are compared to the SM expectation in Ta-ble 1. The distributions of two key observables, the invariant mass of the tt system and the difference of the absolute rapidities of the candidate top and anti-top quarks are shown in Fig. 1, for the com-bination of the e + jets and μ + jets channels. The observed event yield is approximately 10% less than the MC prediction, the result of the softer top-quark pT spectrum in data, which is also reported in Refs. [73–75].

Since AC is measured as a ratio, it is not sensitive to the ab-solute cross-section. The impact of the differences in the expected and observed shapes of the distributions in Fig. 1 on the mea-surement is estimated by reweighting the simulated �|y| and top quark pT distributions to match the data and found to be negligi-ble.

Page 17: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

ATLAS Collaboration / Physics Letters B 756 (2016) 52–71 55

Fig. 1. Detector-level distributions of (a) the invariant mass of the tt system and (b) the difference of the absolute rapidities �|y| of top and anti-top-quark candidates, for the combination of the e + jets and μ + jets channels. The observed distributions are compared to the SM expectation based on a mixture of data-driven techniques and Monte Carlo simulation. The ratio of data to the SM expectation is shown in the lower plots. Error bars on the data points indicate the statistical uncertainty. The hashed area shows the uncertainty of the SM prediction. This includes the statistical uncertainty, the theory uncertainties in the cross-sections, the effect of detector systematic uncertainties on the expected yield, the luminosity uncertainty, the uncertainty in the normalisations, and the signal modelling uncertainty.

7. Unfolding

An unfolding procedure transforms the observed charge asym-metry into a parton-level result in the phase space covered by the measurement:

mtt > 750 GeV, −2 < �|y| < 2. (3)

The corrected result can thus be compared directly to fixed-order calculations that implement these constraints.

The unfolding procedure is identical to the one used in a previ-ous ATLAS charge asymmetry measurement [20]. The e + jets and μ + jets channels are combined to form a single set of events. The data are corrected for migrations due to detector resolution using a matrix unfolding method based on the open source PyFBU im-plementation of the fully Bayesian unfolding (FBU) [76] algorithm. A bias in the charge asymmetry introduced by the selection crite-ria is corrected using a bin-by-bin acceptance correction.

The asymmetry in the full region of Eq. (3) is obtained by cor-recting the content of four �|y| bins with the following bound-aries: [−2, −0.7, 0, 0.7, 2]. For simulated events with a recon-structed �|y| that falls within −2 < �|y| < 2, but a true �|y|outside this boundary (0.1% of events), the true value is included in the outermost �|y| bin. A differential result in three mtt in-tervals (0.75 TeV < mtt < 0.9 TeV, 0.9 TeV < mtt < 1.3 TeV, and 1.3 TeV < mtt ) is obtained using a (1 + 12) × 12 matrix that cor-rects for mass and �|y| migrations. The extra underflow bin keeps track of migrations of selected events from outside of the fidu-cial volume, mtt < 0.75 TeV. The �|y| binning in each mass bin is optimised to yield minimal bias when non-SM asymmetries are injected.

Uncertainties due to limitations in the understanding of object reconstruction and in the calibration of the experiment described in Section 8 are included as nuisance parameters in the unfold-ing procedure, as well as the normalisation of the backgrounds. In this study, the data sample is too small for FBU to significantly constrain any of the nuisance parameters, and therefore the size of the detector-related and normalisation uncertainties are not re-duced by the unfolding process.

8. Systematic uncertainties

Systematic uncertainties are estimated as in Ref. [27] and propagated to the AC measurement following the procedure of Ref. [20]. The non-negligible uncertainties in the unfolded charge asymmetry measurement are presented in Table 2.

The most important uncertainties among the detector-related and background normalisation uncertainties are the scale and res-olution of the jet energy (17 nuisance parameters for large-R jets and 21 for small-R jets) and the b-tagging performance (10 nui-sance parameters) [66,77,78]. The impact of uncertainties in the reconstruction of electrons and muons and the missing transverse momentum is negligible. Detector-related uncertainties and back-ground normalisation uncertainties have a small impact on the analysis.

The uncertainty due to imperfections in the MC generator modelling is estimated using a number of alternative gener-ators. The most important effects are the choice of NLO ME and parton shower/hadronisation model. Each alternative sam-ple is unfolded using the nominal procedure. The ME mod-elling uncertainty is taken as the difference between the results for Powheg-Box + Herwig/Jimmy and MC@NLO + Herwig/Jimmy. The PS/hadronisation modelling uncertainty is evaluated as the difference between Powheg-Box + Pythia and Powheg-Box +Herwig/Jimmy. The results are corrected for the small differ-ences in the prediction of the true AC among the generators. The ISR/FSR uncertainty is estimated as half the difference be-tween two AcerMC samples with radiation settings varied within the range allowed by data. The uncertainty associated with the choice of PDF is evaluated using the MC@NLO + Herwig/Jimmy

sample, by comparing the differences when reweighting the sam-ple to CT10, MSTW 2008 [35], and NNPDF2.1 [79] PDF sets. The three contributions are assumed to be uncorrelated and are added in quadrature, forming the dominant systematic uncertainty in the measurement.

The unfolding uncertainty includes two components. The first component, the uncertainty due to the limited number of events in the Monte Carlo samples used to correct the data, is estimated by propagating the statistical uncertainty of the elements of the

Page 18: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

56 ATLAS Collaboration / Physics Letters B 756 (2016) 52–71

Table 2The effect on the corrected charge asymmetry, in each mtt interval, of systematic uncertainties on the signal and background modelling and the description of the detector response. The uncertainties are given in absolute percentages.

mtt interval >0.75 TeV 0.75–0.9 TeV 0.9–1.3 TeV >1.3 TeV

Breakdown of detector-related systematic uncertainties

Jet energy and resolution – R = 0.4 jets 0.1% 0.4% 0.3% 0.4%Jet energy and resolution – R = 1.0 jets 0.3% 1.6% 0.6% 1.0%b-tag/mis-tag efficiency 0.2% 0.2% 0.2% 0.7%Lepton reconstruction/identification/scale 0.1% 0.2% 0.1% 0.1%Missing transverse momentum (Emiss

T ) 0.1% <0.1% <0.1% 0.1%Background normalization 0.1% 0.2% 0.3% 0.4%

Combined detector-related uncertainties and others

Statistical + detector-related systematic 2.0% 6.0% 4.1% 11.6%Signal modelling – matrix element 1.5% 2.4% 0.6% 5.3%Signal modelling – parton shower 2.0% 3.2% 1.2% 6.2%Signal modelling – ISR/FSR 0.1% 0.3% 0.1% 3.0%Signal modelling – PDF 0.4% 0.4% 0.3% 3.3%Unfolding & MC statistics 0.5% 1.2% 0.8% 2.1%

Total 3.2% 7.3% 4.4% 15.0%

response matrix with pseudo-experiments. To evaluate the sec-ond component due to the non-linearity of the unfolding, different charge asymmetry values are injected by reweighting the tt Monte Carlo sample according to several functional forms. The uncertainty is taken as the bias estimated for the observed charge asymme-try values. A number of stress tests are performed, where the MC samples are reweighted to mimic the observed differences in the mtt and �|y| distributions. The impact on the results of the un-folding procedure is found to be small compared to the unfolding uncertainty and is not taken into account as a separate uncertainty. In addition, the measurement is performed in a more restricted |�|y|| region, excluding events with |�|y|| < 0.5, where the dilu-tion factor D is smaller. The result is found to be consistent with the nominal measurement, and no uncertainty is assigned.

9. Results

The results for the charge asymmetry in the four mtt inter-vals are presented in Fig. 2 and Table 3. The measurement for mtt > 0.75 TeV and |�|y|| < 2 yields AC = (4.2 ± 3.2)%, where the uncertainty is dominated by the modelling uncertainty, followed by the statistical uncertainty of the data. The result is within one standard deviation of the SM expectation. A differential measure-ment is also presented, in three mtt bins: 0.75–0.9 TeV, 0.9–1.3 TeV and mtt > 1.3 TeV (|�|y|| < 2 for all measurements). The largest difference with respect to the SM prediction is observed in the bin with mtt = 0.9–1.3 TeV, where it reaches 1.6σ .

10. Impact on BSM scenarios

Extensions of the SM with heavy particles can predict a sig-nificantly enhanced high-mass charge asymmetry at the LHC. In Fig. 3, BSM predictions of the charge asymmetry in 8 TeV pp colli-sions with mtt > 0.75 TeV and mtt > 1.3 TeV are compared with AFB integrated over mtt in pp collisions at

√s = 1.96 TeV. The

measurements presented in this Letter are indicated as horizontal bands. The measurements of AFB integrated over mtt in top-quark

Fig. 2. A summary of the charge asymmetry measurements. The error bars on the data indicate the modelling and unfolding systematic uncertainties, shown as the inner bar, and the total uncertainty, which includes the statistical uncertainty and the experimental systematic uncertainties. The SM prediction of the NLO calculation in Ref. [13] for the charge asymmetry of top-quark pairs with |�|y|| < 2 is indicated as a shaded horizontal bar in each mtt bin, where the width of the bar indicates the uncertainty.

pair production at 1.96 TeV in pp collisions by CDF [7] and D0 [8]are shown as vertical bands.

The clouds of points in Fig. 3 correspond to a number of mod-els in Refs. [80,81]: a heavy W ′ boson exchanged in the t-channel, a heavy axi-gluon Gμ exchanged in the s-channel, and doublet (φ), triplet (ω4) or sextet (�4) scalars. Each point corresponds to a choice of the new particle’s mass, in the range between 100 GeV and 10 TeV, and of the couplings to SM particles, where all values

Table 3The measured charge asymmetry after the unfolding to parton level in four intervals of the invariant mass of the tt system. The result is compared to the SM prediction using the NLO calculation in Ref. [13]. The phase space is limited to |(�|y|)| < 2. The uncertainties correspond to the sum in quadrature of statistical and systematic uncertainties (for the data) or to the theory uncertainty (for the SM prediction).

mtt interval >0.75 TeV 0.75–0.9 TeV 0.9–1.3 TeV >1.3 TeV

Measurement (4.2 ±3.2)% (2.2±7.3)% (8.6±4.4)% (−2.9±15.0)%SM prediction (1.60 ±0.04)% (1.42±0.04)% (1.75 ±0.05)% (2.55±0.18)%

Page 19: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

ATLAS Collaboration / Physics Letters B 756 (2016) 52–71 57

Fig. 3. Predictions from a number of extensions of the SM from Refs. [80,81], for the forward–backward asymmetry integrated over mtt at the Tevatron (on the x-axis in both plots) and two high-mass charge asymmetry measurements at the LHC. The y-axis in both figures represents the measurement for (a) mtt > 0.75 TeV and for (b) mtt > 1.3 TeV. The SM predictions of both the forward–backward asymmetry at the Tevatron and the charge asymmetry at the LHC are also shown [11,82].

allowed give a total cross-section for top-quark pair production at the Tevatron compatible with observations and a high-mass tt pro-duction cross-section (mtt > 1 TeV) at the LHC that is at most three times the SM prediction. The contribution from new physics to the Tevatron AFB is moreover required to be positive. The predictions of the Tevatron forward–backward asymmetry and the LHC high-mass charge asymmetry are calculated using PROTOS [83], which includes the tree-level SM amplitude plus the one(s) from the new particle(s), taking into account the interference between the two contributions. This measurement extends the reach of previous AT-

LAS and CMS measurements to beyond 1 TeV (adding a bin with mtt = 0.9–1.3 TeV). The BSM sensitivity of this measurement is also complementary to that of the most recently published ATLAS measurement [20] and can be seen to disfavour the t-channel W ′boson model in the highest mtt bin.

11. Conclusions

The charge asymmetry in the rapidity distribution of top-quark pairs produced at large tt invariant mass has been measured in a sample of

√s = 8 TeV pp collisions corresponding to an integrated

luminosity of 20.3 fb−1, collected with the ATLAS experiment at the LHC in 2012. The selection criteria and the reconstruction al-gorithm designed for + jets events with the decay topology of highly boosted top quarks are found to give good control over the sign of the absolute rapidity difference of top and anti-top quarks, with a dilution factor that reaches 0.75, significantly higher than more traditional methods.

The observed asymmetry is corrected to the fiducial space mtt > 0.75 TeV and −2 < �|y| < 2. The result, AC = (4.2 ±3.2)%, is less than one standard deviation from the SM prediction of 1.60 ±0.04%. The charge asymmetry is also determined in three tt mass intervals. The most significant deviation from the SM prediction, 1.6σ , is observed in the mass bin that ranges from 0.9 TeV to 1.3 TeV: AC = (8.6 ± 4.4)%. The other two mass bins yield values compatible with the SM prediction within 1σ . These measure-ments provide a constraint on extensions of the SM, some of which predict a very sizeable charge asymmetry at large tt mass.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azer-baijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Roma-nia; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is ac-knowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Swe-den), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy),

Page 20: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

58 ATLAS Collaboration / Physics Letters B 756 (2016) 52–71

NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

[1] J.H. Kühn, G. Rodrigo, Charge asymmetry of heavy quarks at hadron colliders, Phys. Rev. D 59 (1999) 054017, arXiv:hep-ph/9807420.

[2] J.H. Kühn, G. Rodrigo, Charge asymmetry in hadroproduction of heavy quarks, Phys. Rev. Lett. 81 (1998) 49–52, arXiv:hep-ph/9802268.

[3] V.M. Abazov, et al., D0 Collaboration, First measurement of the forward–backward charge asymmetry in top quark pair production, Phys. Rev. Lett. 100 (2008) 142002, arXiv:0712.0851 [hep-ex].

[4] T. Aaltonen, et al., CDF Collaboration, Forward–backward asymmetry in top quark production in pp collisions at √s = 1.96 TeV, Phys. Rev. Lett. 101 (2008) 202001, arXiv:0806.2472 [hep-ex].

[5] V.M. Abazov, et al., D0 Collaboration, Simultaneous measurement of forward–backward asymmetry and top polarization in dilepton final states from tt pro-duction at the Tevatron, Phys. Rev. D 92 (5) (2015) 052007, arXiv:1507.05666 [hep-ex].

[6] V.M. Abazov, et al., D0 Collaboration, Measurement of the forward–backward asymmetry in top quark–antiquark production in pp collisions using the lepton + jets channel, Phys. Rev. D 90 (2014) 072011, arXiv:1405.0421 [hep-ex].

[7] T. Aaltonen, et al., CDF Collaboration, Measurement of the top quark forward–backward production asymmetry and its dependence on event kinematic prop-erties, Phys. Rev. D 87 (2013) 092002, arXiv:1211.1003 [hep-ex].

[8] V.M. Abazov, et al., D0 Collaboration, Forward–backward asymmetry in top quark–antiquark production, Phys. Rev. D 84 (2011) 112005, arXiv:1107.4995 [hep-ex].

[9] T. Aaltonen, et al., CDF Collaboration, Evidence for a mass dependent forward–backward asymmetry in top quark pair production, Phys. Rev. D 83 (2011) 112003, arXiv:1101.0034 [hep-ex].

[10] W. Hollik, D. Pagani, The electroweak contribution to the top quark forward–backward asymmetry at the Tevatron, Phys. Rev. D 84 (2011) 093003, arXiv:1107.2606 [hep-ph].

[11] M. Czakon, P. Fiedler, A. Mitov, Resolving the Tevatron top quark forward–backward asymmetry puzzle: fully differential next-to-next-to-leading-order calculation, Phys. Rev. Lett. 115 (5) (2015) 052001, arXiv:1411.3007 [hep-ph].

[12] J.A. Aguilar-Saavedra, et al., Asymmetries in top quark pair production at hadron colliders, Rev. Mod. Phys. 87 (2015) 421–455, arXiv:1406.1798 [hep-ph].

[13] J.H. Kuhn, G. Rodrigo, Charge asymmetries of top quarks at hadron colliders revisited, J. High Energy Phys. 01 (2012) 063, arXiv:1109.6830 [hep-ph].

[14] CMS Collaboration, Measurements of the tt charge asymmetry using the dilep-ton decay channel in pp collisions at √

s = 7 TeV, J. High Energy Phys. 04 (2014) 191, arXiv:1402.3803 [hep-ex].

[15] ATLAS Collaboration, Measurement of the top quark pair production charge asymmetry in proton–proton collisions at √s = 7 TeV using the ATLAS detec-tor, J. High Energy Phys. 02 (2014) 107, arXiv:1311.6724 [hep-ex].

[16] CMS Collaboration, Inclusive and differential measurements of the tt charge asymmetry in proton–proton collisions at 7 TeV, Phys. Lett. B 717 (2012) 129–150, arXiv:1207.0065 [hep-ex].

[17] ATLAS Collaboration, Measurement of the charge asymmetry in top quark pair production in pp collisions at √s = 7 TeV using the ATLAS detector, Eur. Phys. J. C 72 (2012) 2039, arXiv:1203.4211 [hep-ex].

[18] CMS Collaboration, Inclusive and differential measurements of the tt charge asymmetry in pp collisions at √s = 8 TeV, arXiv:1507.03119 [hep-ex], 2015.

[19] V. Khachatryan, et al., Measurement of the charge asymmetry in top quark pair production in pp collisions at √

s = 8 TeV using a template method, arXiv:1508.03862 [hep-ex], 2015.

[20] ATLAS Collaboration, Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at √s = 8 TeVwith the ATLAS detector, arXiv:1509.02358 [hep-ex], 2015.

[21] D. Adams, et al., Towards an understanding of the correlations in jet substruc-ture, Eur. Phys. J. C 75 (9) (2015) 409, arXiv:1504.00679 [hep-ph].

[22] A. Altheimer, et al., Boosted objects and jet substructure at the LHC, Report of BOOST2012, held at IFIC Valencia, 23rd–27th of July 2012, Eur. Phys. J. C 74 (2014) 2792, arXiv:1311.2708 [hep-ex].

[23] A. Altheimer, et al., Jet substructure at the Tevatron and LHC: new results, new tools, new benchmarks, J. Phys. G 39 (2012) 063001, arXiv:1201.0008 [hep-ph].

[24] A. Abdesselam, et al., Boosted objects: a probe of beyond the Standard Model physics, Eur. Phys. J. C 71 (2011) 1661, arXiv:1012.5412 [hep-ph].

[25] ATLAS Collaboration, Performance of jet substructure techniques for large-Rjets in proton–proton collisions at √s = 7 TeV using the ATLAS detector, J. High Energy Phys. 09 (2013) 076, arXiv:1306.4945 [hep-ex].

[26] ATLAS Collaboration, Jet mass and substructure of inclusive jets in √s = 7 TeVpp collisions with the ATLAS experiment, J. High Energy Phys. 05 (2012) 128, arXiv:1203.4606 [hep-ex].

[27] ATLAS Collaboration, A search for tt resonances using lepton-plus-jets events in proton–proton collisions at √s = 8 TeV with the ATLAS detector, J. High Energy Phys. 08 (2015) 148, arXiv:1505.07018 [hep-ex].

[28] ATLAS Collaboration, Search for tt resonances in the lepton plus jets final state with ATLAS using 4.7 fb−1 of pp collisions at √s = 7 TeV, Phys. Rev. D 88 (1) (2013) 012004, arXiv:1305.2756 [hep-ex].

[29] ATLAS Collaboration, A search for tt resonances in lepton + jets events with highly boosted top quarks collected in pp collisions at √s = 7 TeV with the ATLAS detector, J. High Energy Phys. 09 (2012) 041, arXiv:1207.2409 [hep-ex].

[30] ATLAS Collaboration, Prospects for top anti-top resonance searches using early ATLAS data, ATLAS-PHYS-PUB-2010-008, https://cds.cern.ch/record/1278454, 2010.

[31] ATLAS Collaboration, The ATLAS experiment at the CERN large hadron collider, J. Instrum. 3 (2008) S08003.

[32] ATLAS Collaboration, The ATLAS simulation infrastructure, Eur. Phys. J. C 70 (2010) 823, arXiv:1005.4568 [physics.ins-det].

[33] S. Agostinelli, et al., GEANT4: a simulation toolkit, Nucl. Instrum. Methods, Sect. A 506 (2003) 250–303.

[34] T. Sjostrand, S. Mrenna, P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852–867, arXiv:0710.3820 [hep-ph].

[35] A. Martin, et al., Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 109–285, arXiv:0901.0002 [hep-ph].

[36] S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, J. High Energy Phys. 11 (2007) 070, arXiv:0709.2092 [hep-ph].

[37] H.-L. Lai, et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024, arXiv:1007.2241 [hep-ph].

[38] T. Sjostrand, S. Mrenna, P. Skands, PYTHIA generator version 6.418, J. High En-ergy Phys. 05 (2006) 026.

[39] P. Skands, Tuning Monte Carlo generators: the Perugia tunes, Phys. Rev. D 82 (2010) 074018.

[40] M. Aliev, et al., HATHOR: HAdronic Top and Heavy Quarks crOss section calcu-latoR, Comput. Phys. Commun. 182 (2011) 1034–1046, arXiv:1007.1327 [hep-ph].

[41] J.H. Kuhn, A. Scharf, P. Uwer, Electroweak corrections to top-quark pair pro-duction in quark–antiquark annihilation, Eur. Phys. J. C 45 (2006) 139–150, arXiv:hep-ph/0508092.

[42] J.H. Kuhn, A. Scharf, P. Uwer, Electroweak effects in top-quark pair production at hadron colliders, Eur. Phys. J. C 51 (2007) 37–53, arXiv:hep-ph/0610335.

[43] J.H. Kuhn, A. Scharf, P. Uwer, Weak interactions in top-quark pair produc-tion at hadron colliders: an update, Phys. Rev. D 91 (1) (2015) 014020, arXiv:1305.5773 [hep-ph].

[44] S. Frixione, P. Nason, B.R. Webber, Matching NLO QCD and parton showers in heavy flavor production, J. High Energy Phys. 08 (2003) 007, arXiv:hep-ph/0305252.

[45] G. Corcella, et al., HERWIG 6.5: an event generator for Hadron Emission Re-actions With Interfering Gluons (including supersymmetric processes), J. High Energy Phys. 01 (2001) 010, arXiv:hep-ph/0011363.

[46] J.M. Butterworth, J.R. Forshaw, M.H. Seymour, Multiparton interactions in pho-toproduction at HERA, Z. Phys. C 72 (1996) 637–646, arXiv:hep-ph/9601371.

[47] B.P. Kersevan, E. Richter-Was, The Monte Carlo event generator AcerMC ver-sions 2.0 to 3.8 with interfaces to PYTHIA 6.4, HERWIG 6.5 and ARIADNE 4.1, Comput. Phys. Commun. 184 (2013) 919, arXiv:hep-ph/0405247.

[48] M. Czakon, A. Mitov, Top++: a program for the calculation of the top-pair cross-section at hadron colliders, Comput. Phys. Commun. 185 (2014) 2930, arXiv:1112.5675 [hep-ph].

[49] M. Cacciari, et al., Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation, Phys. Lett. B 710 (2012) 612–622, arXiv:1111.5869 [hep-ph].

[50] M. Beneke, et al., Hadronic top-quark pair production with NNLL threshold re-summation, Nucl. Phys. B 855 (2012) 695–741, arXiv:1109.1536 [hep-ph].

[51] P. Baernreuther, M. Czakon, A. Mitov, Percent level precision physics at the Tevatron: first genuine NNLO QCD corrections to qq → tt + X , Phys. Rev. Lett. 109 (2012) 132001, arXiv:1204.5201 [hep-ph].

[52] M. Czakon, A. Mitov, NNLO corrections to top-pair production at hadron collid-ers: the all-fermionic scattering channels, J. High Energy Phys. 12 (2012) 054, arXiv:1207.0236 [hep-ph].

[53] M. Czakon, A. Mitov, NNLO corrections to top pair production at hadron colliders: the quark–gluon reaction, J. High Energy Phys. 01 (2013) 080, arXiv:1210.6832 [hep-ph].

[54] M. Czakon, P. Fiedler, A. Mitov, Total top-quark pair-production cross sec-tion at hadron colliders through O (α4

s ), Phys. Rev. Lett. 110 (2013) 252004, arXiv:1303.6254 [hep-ph].

[55] M.L. Mangano, et al., ALPGEN, a generator for hard multiparton processes in hadronic collisions, J. High Energy Phys. 07 (2003) 001, arXiv:hep-ph/0206293.

[56] M.L. Mangano, M. Moretti, R. Pittau, Multijet matrix elements and shower evo-lution in hadronic collisions: W bb + n jets as a case study, Nucl. Phys. B 632 (2002) 343–362, arXiv:hep-ph/0108069.

Page 21: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

ATLAS Collaboration / Physics Letters B 756 (2016) 52–71 59

[57] R. Hamberg, W. van Neerven, T. Matsuura, A complete calculation of the order α − s2 correction to the Drell–Yan K factor, Nucl. Phys. B 359 (1991) 343–405.

[58] R. Gavin, et al., W Physics at the LHC with FEWZ 2.1, Comput. Phys. Commun. 184 (2013) 208–214, arXiv:1201.5896 [hep-ph].

[59] N. Kidonakis, Next-to-next-to-leading-order collinear and soft gluon correc-tions for t-channel single top quark production, Phys. Rev. D 83 (2011) 091503, arXiv:1103.2792 [hep-ph].

[60] N. Kidonakis, Two-loop soft anomalous dimensions for single top quark asso-ciated production with a W- or H-, Phys. Rev. D 82 (2010) 054018, arXiv:1005.4451 [hep-ph].

[61] N. Kidonakis, NNLL resummation for s-channel single top quark production, Phys. Rev. D 81 (2010) 054028, arXiv:1001.5034 [hep-ph].

[62] T. Gleisberg, et al., Event generation with SHERPA 1.1, J. High Energy Phys. 02 (2009) 007, arXiv:0811.4622 [hep-ph].

[63] K. Rehermann, B. Tweedie, Efficient identification of boosted semileptonic top quarks at the LHC, J. High Energy Phys. 03 (2011) 059, arXiv:1007.2221 [hep-ph].

[64] M. Cacciari, G.P. Salam, G. Soyez, The anti-k(t) jet clustering algorithm, J. High Energy Phys. 04 (2008) 063, arXiv:0802.1189 [hep-ph].

[65] M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896, arXiv:1111.6097 [hep-ph].

[66] ATLAS Collaboration, Jet energy measurement with the ATLAS detector in proton–proton collisions at √s = 7 TeV, Eur. Phys. J. C 73 (3) (2013) 2304, arXiv:1112.6426 [hep-ex].

[67] D. Krohn, J. Thaler, L.-T. Wang, Jet trimming, J. High Energy Phys. 02 (2010) 084, arXiv:0912.1342 [hep-ph].

[68] S. Catani, et al., Longitudinally invariant Kt clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187–224.

[69] S.D. Ellis, D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160–3166, arXiv:hep-ph/9305266.

[70] ATLAS Collaboration, Calibration of b-tagging using dileptonic top pair events in a combinatorial likelihood approach with the ATLAS experiment, ATLAS-CONF-2014-004, https://cds.cern.ch/record/1664335, 2014.

[71] ATLAS Collaboration, Calibration of the performance of b-tagging for c and light-flavour jets in the 2012 ATLAS data, ATLAS-CONF-2014-046, https://cds.cern.ch/record/1741020, 2014.

[72] J. Butterworth, B. Cox, J.R. Forshaw, W W scattering at the CERN LHC, Phys. Rev. D 65 (2002) 096014, arXiv:hep-ph/0201098.

[73] ATLAS Collaboration, Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in √s = 8 TeVproton–proton collisions using the ATLAS detector, arXiv:1510.03818 [hep-ex], 2015.

[74] ATLAS Collaboration, Measurement of the normalized differential cross sections for tt production in pp collisions at √s = 7 TeV using the ATLAS detector, Phys. Rev. D 90 (2014), arXiv:1407.0371 [hep-ex].

[75] CMS Collaboration, Measurement of the differential cross section for top quark pair production in pp collisions at √s = 8 TeV, Eur. Phys. J. C 75 (11) (2015) 542, arXiv:1505.04480 [hep-ex].

[76] G. Choudalakis, Fully Bayesian unfolding, arXiv:1201.4612 [physics.data-an], 2012.

[77] ATLAS Collaboration, Jet energy measurement and its systematic uncertainty in proton–proton collisions at √s = 7 TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 17, arXiv:1406.0076 [hep-ex].

[78] ATLAS Collaboration, Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC, Eur. Phys. J. C 73 (2013) 2305, arXiv:1203.1302 [hep-ex].

[79] R. Ball, et al., Impact of heavy quark masses on parton distributions and LHC phenomenology, Nucl. Phys. B 849 (2011) 296–363, arXiv:1101.1300 [hep-ph].

[80] J. Aguilar-Saavedra, M. Perez-Victoria, Asymmetries in tt production: LHC ver-sus Tevatron, Phys. Rev. D 84 (2011) 115013, arXiv:1105.4606 [hep-ph].

[81] J. Aguilar-Saavedra, M. Perez-Victoria, Simple models for the top asymme-try: constraints and predictions, J. High Energy Phys. 09 (2011) 097, arXiv:1107.0841 [hep-ph].

[82] W. Bernreuther, Z.-G. Si, Top quark and leptonic charge asymmetries for the Tevatron and LHC, Phys. Rev. D 86 (2012) 034026, arXiv:1205.6580 [hep-ph].

[83] J. Aguilar-Saavedra, Single top quark production at LHC with anomalous Wtbcouplings, Nucl. Phys. B 804 (2008) 160–192, arXiv:0803.3810 [hep-ph].

ATLAS Collaboration

G. Aad 87, B. Abbott 114, J. Abdallah 152, O. Abdinov 11, B. Abeloos 118, R. Aben 108, M. Abolins 92, O.S. AbouZeid 138, H. Abramowicz 154, H. Abreu 153, R. Abreu 117, Y. Abulaiti 147a,147b, B.S. Acharya 163a,163b,a, L. Adamczyk 39a, D.L. Adams 26, J. Adelman 109, S. Adomeit 101, T. Adye 132, A.A. Affolder 76, T. Agatonovic-Jovin 13, J. Agricola 55, J.A. Aguilar-Saavedra 127a,127f, S.P. Ahlen 23, F. Ahmadov 67,b, G. Aielli 134a,134b, H. Akerstedt 147a,147b, T.P.A. Åkesson 83, A.V. Akimov 97, G.L. Alberghi 21a,21b, J. Albert 168, S. Albrand 56, M.J. Alconada Verzini 73, M. Aleksa 31, I.N. Aleksandrov 67, C. Alexa 27b, G. Alexander 154, T. Alexopoulos 10, M. Alhroob 114, G. Alimonti 93a, J. Alison 32, S.P. Alkire 36, B.M.M. Allbrooke 150, B.W. Allen 117, P.P. Allport 18, A. Aloisio 105a,105b, A. Alonso 37, F. Alonso 73, C. Alpigiani 139, B. Alvarez Gonzalez 31, D. Álvarez Piqueras 166, M.G. Alviggi 105a,105b, B.T. Amadio 15, K. Amako 68, Y. Amaral Coutinho 25a, C. Amelung 24, D. Amidei 91, S.P. Amor Dos Santos 127a,127c, A. Amorim 127a,127b, S. Amoroso 31, N. Amram 154, G. Amundsen 24, C. Anastopoulos 140, L.S. Ancu 50, N. Andari 109, T. Andeen 32, C.F. Anders 59b, G. Anders 31, J.K. Anders 76, K.J. Anderson 32, A. Andreazza 93a,93b, V. Andrei 59a, S. Angelidakis 9, I. Angelozzi 108, P. Anger 45, A. Angerami 36, F. Anghinolfi 31, A.V. Anisenkov 110,c, N. Anjos 12, A. Annovi 125a,125b, M. Antonelli 48, A. Antonov 99, J. Antos 145b, F. Anulli 133a, M. Aoki 68, L. Aperio Bella 18, G. Arabidze 92, Y. Arai 68, J.P. Araque 127a, A.T.H. Arce 46, F.A. Arduh 73, J-F. Arguin 96, S. Argyropoulos 64, M. Arik 19a, A.J. Armbruster 31, L.J. Armitage 78, O. Arnaez 31, H. Arnold 49, M. Arratia 29, O. Arslan 22, A. Artamonov 98, G. Artoni 121, S. Artz 85, S. Asai 156, N. Asbah 43, A. Ashkenazi 154, B. Åsman 147a,147b, L. Asquith 150, K. Assamagan 26, R. Astalos 145a, M. Atkinson 165, N.B. Atlay 142, K. Augsten 129, G. Avolio 31, B. Axen 15, M.K. Ayoub 118, G. Azuelos 96,d, M.A. Baak 31, A.E. Baas 59a, M.J. Baca 18, H. Bachacou 137, K. Bachas 75a,75b, M. Backes 31, M. Backhaus 31, P. Bagiacchi 133a,133b, P. Bagnaia 133a,133b, Y. Bai 34a, J.T. Baines 132, O.K. Baker 175, E.M. Baldin 110,c, P. Balek 130, T. Balestri 149, F. Balli 137, W.K. Balunas 123, E. Banas 40, Sw. Banerjee 172,e, A.A.E. Bannoura 174, L. Barak 31, E.L. Barberio 90, D. Barberis 51a,51b, M. Barbero 87, T. Barillari 102, M. Barisonzi 163a,163b, T. Barklow 144, N. Barlow 29, S.L. Barnes 86, B.M. Barnett 132, R.M. Barnett 15, Z. Barnovska 5, A. Baroncelli 135a, G. Barone 24, A.J. Barr 121, L. Barranco Navarro 166, F. Barreiro 84, J. Barreiro Guimarães da Costa 34a, R. Bartoldus 144, A.E. Barton 74, P. Bartos 145a, A. Basalaev 124, A. Bassalat 118, A. Basye 165, R.L. Bates 54, S.J. Batista 159, J.R. Batley 29, M. Battaglia 138, M. Bauce 133a,133b,

Page 22: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

60 ATLAS Collaboration / Physics Letters B 756 (2016) 52–71

F. Bauer 137, H.S. Bawa 144,f , J.B. Beacham 112, M.D. Beattie 74, T. Beau 82, P.H. Beauchemin 162, R. Beccherle 125a,125b, P. Bechtle 22, H.P. Beck 17,g , K. Becker 121, M. Becker 85, M. Beckingham 169, C. Becot 111, A.J. Beddall 19e, A. Beddall 19b, V.A. Bednyakov 67, M. Bedognetti 108, C.P. Bee 149, L.J. Beemster 108, T.A. Beermann 31, M. Begel 26, J.K. Behr 121, C. Belanger-Champagne 89, A.S. Bell 80, W.H. Bell 50, G. Bella 154, L. Bellagamba 21a, A. Bellerive 30, M. Bellomo 88, K. Belotskiy 99, O. Beltramello 31, N.L. Belyaev 99, O. Benary 154, D. Benchekroun 136a, M. Bender 101, K. Bendtz 147a,147b, N. Benekos 10, Y. Benhammou 154, E. Benhar Noccioli 175, J. Benitez 64, J.A. Benitez Garcia 160b, D.P. Benjamin 46, J.R. Bensinger 24, S. Bentvelsen 108, L. Beresford 121, M. Beretta 48, D. Berge 108, E. Bergeaas Kuutmann 164, N. Berger 5, F. Berghaus 168, J. Beringer 15, S. Berlendis 56, C. Bernard 23, N.R. Bernard 88, C. Bernius 111, F.U. Bernlochner 22, T. Berry 79, P. Berta 130, C. Bertella 85, G. Bertoli 147a,147b, F. Bertolucci 125a,125b, I.A. Bertram 74, C. Bertsche 114, D. Bertsche 114, G.J. Besjes 37, O. Bessidskaia Bylund 147a,147b, M. Bessner 43, N. Besson 137, C. Betancourt 49, S. Bethke 102, A.J. Bevan 78, W. Bhimji 15, R.M. Bianchi 126, L. Bianchini 24, M. Bianco 31, O. Biebel 101, D. Biedermann 16, R. Bielski 86, N.V. Biesuz 125a,125b, M. Biglietti 135a, J. Bilbao De Mendizabal 50, H. Bilokon 48, M. Bindi 55, S. Binet 118, A. Bingul 19b, C. Bini 133a,133b, S. Biondi 21a,21b, D.M. Bjergaard 46, C.W. Black 151, J.E. Black 144, K.M. Black 23, D. Blackburn 139, R.E. Blair 6, J.-B. Blanchard 137, J.E. Blanco 79, T. Blazek 145a, I. Bloch 43, C. Blocker 24, W. Blum 85,∗, U. Blumenschein 55, S. Blunier 33a, G.J. Bobbink 108, V.S. Bobrovnikov 110,c, S.S. Bocchetta 83, A. Bocci 46, C. Bock 101, M. Boehler 49, D. Boerner 174, J.A. Bogaerts 31, D. Bogavac 13, A.G. Bogdanchikov 110, C. Bohm 147a, V. Boisvert 79, T. Bold 39a, V. Boldea 27b, A.S. Boldyrev 163a,163c, M. Bomben 82, M. Bona 78, M. Boonekamp 137, A. Borisov 131, G. Borissov 74, J. Bortfeldt 101, D. Bortoletto 121, V. Bortolotto 61a,61b,61c, K. Bos 108, D. Boscherini 21a, M. Bosman 12, J.D. Bossio Sola 28, J. Boudreau 126, J. Bouffard 2, E.V. Bouhova-Thacker 74, D. Boumediene 35, C. Bourdarios 118, N. Bousson 115, S.K. Boutle 54, A. Boveia 31, J. Boyd 31, I.R. Boyko 67, J. Bracinik 18, A. Brandt 8, G. Brandt 55, O. Brandt 59a, U. Bratzler 157, B. Brau 88, J.E. Brau 117, H.M. Braun 174,∗, W.D. Breaden Madden 54, K. Brendlinger 123, A.J. Brennan 90, L. Brenner 108, R. Brenner 164, S. Bressler 171, T.M. Bristow 47, D. Britton 54, D. Britzger 43, F.M. Brochu 29, I. Brock 22, R. Brock 92, G. Brooijmans 36, T. Brooks 79, W.K. Brooks 33b, J. Brosamer 15, E. Brost 117, J.H Broughton 18, P.A. Bruckman de Renstrom 40, D. Bruncko 145b, R. Bruneliere 49, A. Bruni 21a, G. Bruni 21a, BH Brunt 29, M. Bruschi 21a, N. Bruscino 22, P. Bryant 32, L. Bryngemark 83, T. Buanes 14, Q. Buat 143, P. Buchholz 142, A.G. Buckley 54, I.A. Budagov 67, F. Buehrer 49, M.K. Bugge 120, O. Bulekov 99, D. Bullock 8, H. Burckhart 31, S. Burdin 76, C.D. Burgard 49, B. Burghgrave 109, K. Burka 40, S. Burke 132, I. Burmeister 44, E. Busato 35, D. Büscher 49, V. Büscher 85, P. Bussey 54, J.M. Butler 23, A.I. Butt 3, C.M. Buttar 54, J.M. Butterworth 80, P. Butti 108, W. Buttinger 26, A. Buzatu 54, A.R. Buzykaev 110,c, S. Cabrera Urbán 166, D. Caforio 129, V.M. Cairo 38a,38b, O. Cakir 4a, N. Calace 50, P. Calafiura 15, A. Calandri 87, G. Calderini 82, P. Calfayan 101, L.P. Caloba 25a, D. Calvet 35, S. Calvet 35, T.P. Calvet 87, R. Camacho Toro 32, S. Camarda 43, P. Camarri 134a,134b, D. Cameron 120, R. Caminal Armadans 165, C. Camincher 56, S. Campana 31, M. Campanelli 80, A. Campoverde 149, V. Canale 105a,105b, A. Canepa 160a, M. Cano Bret 34e, J. Cantero 84, R. Cantrill 127a, T. Cao 41, M.D.M. Capeans Garrido 31, I. Caprini 27b, M. Caprini 27b, M. Capua 38a,38b, R. Caputo 85, R.M. Carbone 36, R. Cardarelli 134a, F. Cardillo 49, T. Carli 31, G. Carlino 105a, L. Carminati 93a,93b, S. Caron 107, E. Carquin 33a, G.D. Carrillo-Montoya 31, J.R. Carter 29, J. Carvalho 127a,127c, D. Casadei 80, M.P. Casado 12,h, M. Casolino 12, D.W. Casper 66, E. Castaneda-Miranda 146a, A. Castelli 108, V. Castillo Gimenez 166, N.F. Castro 127a,i, A. Catinaccio 31, J.R. Catmore 120, A. Cattai 31, J. Caudron 85, V. Cavaliere 165, D. Cavalli 93a, M. Cavalli-Sforza 12, V. Cavasinni 125a,125b, F. Ceradini 135a,135b, L. Cerda Alberich 166, B.C. Cerio 46, A.S. Cerqueira 25b, A. Cerri 150, L. Cerrito 78, F. Cerutti 15, M. Cerv 31, A. Cervelli 17, S.A. Cetin 19d, A. Chafaq 136a, D. Chakraborty 109, I. Chalupkova 130, S.K. Chan 58, Y.L. Chan 61a, P. Chang 165, J.D. Chapman 29, D.G. Charlton 18, A. Chatterjee 50, C.C. Chau 159, C.A. Chavez Barajas 150, S. Che 112, S. Cheatham 74, A. Chegwidden 92, S. Chekanov 6, S.V. Chekulaev 160a, G.A. Chelkov 67,j, M.A. Chelstowska 91, C. Chen 65, H. Chen 26, K. Chen 149, S. Chen 34c, S. Chen 156, X. Chen 34f, Y. Chen 69, H.C. Cheng 91, Y. Cheng 32, A. Cheplakov 67, E. Cheremushkina 131, R. Cherkaoui El Moursli 136e, V. Chernyatin 26,∗, E. Cheu 7, L. Chevalier 137, V. Chiarella 48, G. Chiarelli 125a,125b, G. Chiodini 75a, A.S. Chisholm 18, A. Chitan 27b, M.V. Chizhov 67, K. Choi 62, A.R. Chomont 35, S. Chouridou 9, B.K.B. Chow 101, V. Christodoulou 80, D. Chromek-Burckhart 31, J. Chudoba 128, A.J. Chuinard 89,

Page 23: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

ATLAS Collaboration / Physics Letters B 756 (2016) 52–71 61

J.J. Chwastowski 40, L. Chytka 116, G. Ciapetti 133a,133b, A.K. Ciftci 4a, D. Cinca 54, V. Cindro 77, I.A. Cioara 22, A. Ciocio 15, F. Cirotto 105a,105b, Z.H. Citron 171, M. Ciubancan 27b, A. Clark 50, B.L. Clark 58, P.J. Clark 47, R.N. Clarke 15, C. Clement 147a,147b, Y. Coadou 87, M. Cobal 163a,163c, A. Coccaro 50, J. Cochran 65, L. Coffey 24, L. Colasurdo 107, B. Cole 36, S. Cole 109, A.P. Colijn 108, J. Collot 56, T. Colombo 31, G. Compostella 102, P. Conde Muiño 127a,127b, E. Coniavitis 49, S.H. Connell 146b, I.A. Connelly 79, V. Consorti 49, S. Constantinescu 27b, C. Conta 122a,122b, G. Conti 31, F. Conventi 105a,k, M. Cooke 15, B.D. Cooper 80, A.M. Cooper-Sarkar 121, T. Cornelissen 174, M. Corradi 133a,133b, F. Corriveau 89,l, A. Corso-Radu 66, A. Cortes-Gonzalez 12, G. Cortiana 102, G. Costa 93a, M.J. Costa 166, D. Costanzo 140, G. Cottin 29, G. Cowan 79, B.E. Cox 86, K. Cranmer 111, S.J. Crawley 54, G. Cree 30, S. Crépé-Renaudin 56, F. Crescioli 82, W.A. Cribbs 147a,147b, M. Crispin Ortuzar 121, M. Cristinziani 22, V. Croft 107, G. Crosetti 38a,38b, T. Cuhadar Donszelmann 140, J. Cummings 175, M. Curatolo 48, J. Cúth 85, C. Cuthbert 151, H. Czirr 142, P. Czodrowski 3, S. D’Auria 54, M. D’Onofrio 76, M.J. Da Cunha Sargedas De Sousa 127a,127b, C. Da Via 86, W. Dabrowski 39a, T. Dai 91, O. Dale 14, F. Dallaire 96, C. Dallapiccola 88, M. Dam 37, J.R. Dandoy 32, N.P. Dang 49, A.C. Daniells 18, N.S. Dann 86, M. Danninger 167, M. Dano Hoffmann 137, V. Dao 49, G. Darbo 51a, S. Darmora 8, J. Dassoulas 3, A. Dattagupta 62, W. Davey 22, C. David 168, T. Davidek 130, M. Davies 154, P. Davison 80, Y. Davygora 59a, E. Dawe 90, I. Dawson 140, R.K. Daya-Ishmukhametova 88, K. De 8, R. de Asmundis 105a, A. De Benedetti 114, S. De Castro 21a,21b, S. De Cecco 82, N. De Groot 107, P. de Jong 108, H. De la Torre 84, F. De Lorenzi 65, D. De Pedis 133a, A. De Salvo 133a, U. De Sanctis 150, A. De Santo 150, J.B. De Vivie De Regie 118, W.J. Dearnaley 74, R. Debbe 26, C. Debenedetti 138, D.V. Dedovich 67, I. Deigaard 108, J. Del Peso 84, T. Del Prete 125a,125b, D. Delgove 118, F. Deliot 137, C.M. Delitzsch 50, M. Deliyergiyev 77, A. Dell’Acqua 31, L. Dell’Asta 23, M. Dell’Orso 125a,125b, M. Della Pietra 105a,k, D. della Volpe 50, M. Delmastro 5, P.A. Delsart 56, C. Deluca 108, D.A. DeMarco 159, S. Demers 175, M. Demichev 67, A. Demilly 82, S.P. Denisov 131, D. Denysiuk 137, D. Derendarz 40, J.E. Derkaoui 136d, F. Derue 82, P. Dervan 76, K. Desch 22, C. Deterre 43, K. Dette 44, P.O. Deviveiros 31, A. Dewhurst 132, S. Dhaliwal 24, A. Di Ciaccio 134a,134b, L. Di Ciaccio 5, W.K. Di Clemente 123, A. Di Domenico 133a,133b, C. Di Donato 133a,133b, A. Di Girolamo 31, B. Di Girolamo 31, A. Di Mattia 153, B. Di Micco 135a,135b, R. Di Nardo 48, A. Di Simone 49, R. Di Sipio 159, D. Di Valentino 30, C. Diaconu 87, M. Diamond 159, F.A. Dias 47, M.A. Diaz 33a, E.B. Diehl 91, J. Dietrich 16, S. Diglio 87, A. Dimitrievska 13, J. Dingfelder 22, P. Dita 27b, S. Dita 27b, F. Dittus 31, F. Djama 87, T. Djobava 52b, J.I. Djuvsland 59a, M.A.B. do Vale 25c, D. Dobos 31, M. Dobre 27b, C. Doglioni 83, T. Dohmae 156, J. Dolejsi 130, Z. Dolezal 130, B.A. Dolgoshein 99,∗, M. Donadelli 25d, S. Donati 125a,125b, P. Dondero 122a,122b, J. Donini 35, J. Dopke 132, A. Doria 105a, M.T. Dova 73, A.T. Doyle 54, E. Drechsler 55, M. Dris 10, Y. Du 34d, J. Duarte-Campderros 154, E. Duchovni 171, G. Duckeck 101, O.A. Ducu 27b, D. Duda 108, A. Dudarev 31, L. Duflot 118, L. Duguid 79, M. Dührssen 31, M. Dunford 59a, H. Duran Yildiz 4a, M. Düren 53, A. Durglishvili 52b, D. Duschinger 45, B. Dutta 43, M. Dyndal 39a, C. Eckardt 43, K.M. Ecker 102, R.C. Edgar 91, W. Edson 2, N.C. Edwards 47, T. Eifert 31, G. Eigen 14, K. Einsweiler 15, T. Ekelof 164, M. El Kacimi 136c, V. Ellajosyula 87, M. Ellert 164, S. Elles 5, F. Ellinghaus 174, A.A. Elliot 168, N. Ellis 31, J. Elmsheuser 101, M. Elsing 31, D. Emeliyanov 132, Y. Enari 156, O.C. Endner 85, M. Endo 119, J.S. Ennis 169, J. Erdmann 44, A. Ereditato 17, G. Ernis 174, J. Ernst 2, M. Ernst 26, S. Errede 165, E. Ertel 85, M. Escalier 118, H. Esch 44, C. Escobar 126, B. Esposito 48, A.I. Etienvre 137, E. Etzion 154, H. Evans 62, A. Ezhilov 124, F. Fabbri 21a,21b, L. Fabbri 21a,21b, G. Facini 32, R.M. Fakhrutdinov 131, S. Falciano 133a, R.J. Falla 80, J. Faltova 130, Y. Fang 34a, M. Fanti 93a,93b, A. Farbin 8, A. Farilla 135a, C. Farina 126, T. Farooque 12, S. Farrell 15, S.M. Farrington 169, P. Farthouat 31, F. Fassi 136e, P. Fassnacht 31, D. Fassouliotis 9, M. Faucci Giannelli 79, A. Favareto 51a,51b, L. Fayard 118, O.L. Fedin 124,m, W. Fedorko 167, S. Feigl 120, L. Feligioni 87, C. Feng 34d, E.J. Feng 31, H. Feng 91, A.B. Fenyuk 131, L. Feremenga 8, P. Fernandez Martinez 166, S. Fernandez Perez 12, J. Ferrando 54, A. Ferrari 164, P. Ferrari 108, R. Ferrari 122a, D.E. Ferreira de Lima 54, A. Ferrer 166, D. Ferrere 50, C. Ferretti 91, A. Ferretto Parodi 51a,51b, F. Fiedler 85, A. Filipcic 77, M. Filipuzzi 43, F. Filthaut 107, M. Fincke-Keeler 168, K.D. Finelli 151, M.C.N. Fiolhais 127a,127c, L. Fiorini 166, A. Firan 41, A. Fischer 2, C. Fischer 12, J. Fischer 174, W.C. Fisher 92, N. Flaschel 43, I. Fleck 142, P. Fleischmann 91, G.T. Fletcher 140, G. Fletcher 78, R.R.M. Fletcher 123, T. Flick 174, A. Floderus 83, L.R. Flores Castillo 61a, M.J. Flowerdew 102, G.T. Forcolin 86, A. Formica 137, A. Forti 86, A.G. Foster 18, D. Fournier 118, H. Fox 74, S. Fracchia 12, P. Francavilla 82, M. Franchini 21a,21b, D. Francis 31, L. Franconi 120, M. Franklin 58,

Page 24: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

62 ATLAS Collaboration / Physics Letters B 756 (2016) 52–71

M. Frate 66, M. Fraternali 122a,122b, D. Freeborn 80, S.M. Fressard-Batraneanu 31, F. Friedrich 45, D. Froidevaux 31, J.A. Frost 121, C. Fukunaga 157, E. Fullana Torregrosa 85, T. Fusayasu 103, J. Fuster 166, C. Gabaldon 56, O. Gabizon 174, A. Gabrielli 21a,21b, A. Gabrielli 15, G.P. Gach 39a, S. Gadatsch 31, S. Gadomski 50, G. Gagliardi 51a,51b, L.G. Gagnon 96, P. Gagnon 62, C. Galea 107, B. Galhardo 127a,127c, E.J. Gallas 121, B.J. Gallop 132, P. Gallus 129, G. Galster 37, K.K. Gan 112, J. Gao 34b,87, Y. Gao 47, Y.S. Gao 144,f , F.M. Garay Walls 47, C. García 166, J.E. García Navarro 166, M. Garcia-Sciveres 15, R.W. Gardner 32, N. Garelli 144, V. Garonne 120, A. Gascon Bravo 43, C. Gatti 48, A. Gaudiello 51a,51b, G. Gaudio 122a, B. Gaur 142, L. Gauthier 96, I.L. Gavrilenko 97, C. Gay 167, G. Gaycken 22, E.N. Gazis 10, Z. Gecse 167, C.N.P. Gee 132, Ch. Geich-Gimbel 22, M.P. Geisler 59a, C. Gemme 51a, M.H. Genest 56, C. Geng 34b,n, S. Gentile 133a,133b, S. George 79, D. Gerbaudo 66, A. Gershon 154, S. Ghasemi 142, H. Ghazlane 136b, B. Giacobbe 21a, S. Giagu 133a,133b, P. Giannetti 125a,125b, B. Gibbard 26, S.M. Gibson 79, M. Gignac 167, M. Gilchriese 15, T.P.S. Gillam 29, D. Gillberg 30, G. Gilles 174, D.M. Gingrich 3,d, N. Giokaris 9, M.P. Giordani 163a,163c, F.M. Giorgi 21a, F.M. Giorgi 16, P.F. Giraud 137, P. Giromini 58, D. Giugni 93a, C. Giuliani 102, M. Giulini 59b, B.K. Gjelsten 120, S. Gkaitatzis 155, I. Gkialas 155, E.L. Gkougkousis 118, L.K. Gladilin 100, C. Glasman 84, J. Glatzer 31, P.C.F. Glaysher 47, A. Glazov 43, M. Goblirsch-Kolb 102, J. Godlewski 40, S. Goldfarb 91, T. Golling 50, D. Golubkov 131, A. Gomes 127a,127b,127d, R. Gonçalo 127a, J. Goncalves Pinto Firmino Da Costa 137, L. Gonella 18, A. Gongadze 67, S. González de la Hoz 166, G. Gonzalez Parra 12, S. Gonzalez-Sevilla 50, L. Goossens 31, P.A. Gorbounov 98, H.A. Gordon 26, I. Gorelov 106, B. Gorini 31, E. Gorini 75a,75b, A. Gorišek 77, E. Gornicki 40, A.T. Goshaw 46, C. Gössling 44, M.I. Gostkin 67, C.R. Goudet 118, D. Goujdami 136c, A.G. Goussiou 139, N. Govender 146b, E. Gozani 153, L. Graber 55, I. Grabowska-Bold 39a, P.O.J. Gradin 164, P. Grafström 21a,21b, J. Gramling 50, E. Gramstad 120, S. Grancagnolo 16, V. Gratchev 124, H.M. Gray 31, E. Graziani 135a, Z.D. Greenwood 81,o, C. Grefe 22, K. Gregersen 80, I.M. Gregor 43, P. Grenier 144, K. Grevtsov 5, J. Griffiths 8, A.A. Grillo 138, K. Grimm 74, S. Grinstein 12,p, Ph. Gris 35, J.-F. Grivaz 118, S. Groh 85, J.P. Grohs 45, E. Gross 171, J. Grosse-Knetter 55, G.C. Grossi 81, Z.J. Grout 150, L. Guan 91, W. Guan 172, J. Guenther 129, F. Guescini 50, D. Guest 66, O. Gueta 154, E. Guido 51a,51b, T. Guillemin 5, S. Guindon 2, U. Gul 54, C. Gumpert 31, J. Guo 34e, Y. Guo 34b,n, S. Gupta 121, G. Gustavino 133a,133b, P. Gutierrez 114, N.G. Gutierrez Ortiz 80, C. Gutschow 45, C. Guyot 137, C. Gwenlan 121, C.B. Gwilliam 76, A. Haas 111, C. Haber 15, H.K. Hadavand 8, N. Haddad 136e, A. Hadef 87, P. Haefner 22, S. Hageböck 22, Z. Hajduk 40, H. Hakobyan 176,∗, M. Haleem 43, J. Haley 115, D. Hall 121, G. Halladjian 92, G.D. Hallewell 87, K. Hamacher 174, P. Hamal 116, K. Hamano 168, A. Hamilton 146a, G.N. Hamity 140, P.G. Hamnett 43, L. Han 34b, K. Hanagaki 68,q, K. Hanawa 156, M. Hance 138, B. Haney 123, P. Hanke 59a, R. Hanna 137, J.B. Hansen 37, J.D. Hansen 37, M.C. Hansen 22, P.H. Hansen 37, K. Hara 161, A.S. Hard 172, T. Harenberg 174, F. Hariri 118, S. Harkusha 94, R.D. Harrington 47, P.F. Harrison 169, F. Hartjes 108, M. Hasegawa 69, Y. Hasegawa 141, A. Hasib 114, S. Hassani 137, S. Haug 17, R. Hauser 92, L. Hauswald 45, M. Havranek 128, C.M. Hawkes 18, R.J. Hawkings 31, A.D. Hawkins 83, D. Hayden 92, C.P. Hays 121, J.M. Hays 78, H.S. Hayward 76, S.J. Haywood 132, S.J. Head 18, T. Heck 85, V. Hedberg 83, L. Heelan 8, S. Heim 123, T. Heim 15, B. Heinemann 15, J.J. Heinrich 101, L. Heinrich 111, C. Heinz 53, J. Hejbal 128, L. Helary 23, S. Hellman 147a,147b, C. Helsens 31, J. Henderson 121, R.C.W. Henderson 74, Y. Heng 172, S. Henkelmann 167, A.M. Henriques Correia 31, S. Henrot-Versille 118, G.H. Herbert 16, Y. Hernández Jiménez 166, G. Herten 49, R. Hertenberger 101, L. Hervas 31, G.G. Hesketh 80, N.P. Hessey 108, J.W. Hetherly 41, R. Hickling 78, E. Higón-Rodriguez 166, E. Hill 168, J.C. Hill 29, K.H. Hiller 43, S.J. Hillier 18, I. Hinchliffe 15, E. Hines 123, R.R. Hinman 15, M. Hirose 158, D. Hirschbuehl 174, J. Hobbs 149, N. Hod 108, M.C. Hodgkinson 140, P. Hodgson 140, A. Hoecker 31, M.R. Hoeferkamp 106, F. Hoenig 101, M. Hohlfeld 85, D. Hohn 22, T.R. Holmes 15, M. Homann 44, T.M. Hong 126, B.H. Hooberman 165, W.H. Hopkins 117, Y. Horii 104, A.J. Horton 143, J-Y. Hostachy 56, S. Hou 152, A. Hoummada 136a, J. Howard 121, J. Howarth 43, M. Hrabovsky 116, I. Hristova 16, J. Hrivnac 118, T. Hryn’ova 5, A. Hrynevich 95, C. Hsu 146c, P.J. Hsu 152,r , S.-C. Hsu 139, D. Hu 36, Q. Hu 34b, Y. Huang 43, Z. Hubacek 129, F. Hubaut 87, F. Huegging 22, T.B. Huffman 121, E.W. Hughes 36, G. Hughes 74, M. Huhtinen 31, T.A. Hülsing 85, N. Huseynov 67,b, J. Huston 92, J. Huth 58, G. Iacobucci 50, G. Iakovidis 26, I. Ibragimov 142, L. Iconomidou-Fayard 118, E. Ideal 175, Z. Idrissi 136e, P. Iengo 31, O. Igonkina 108, T. Iizawa 170, Y. Ikegami 68, M. Ikeno 68, Y. Ilchenko 32,s, D. Iliadis 155, N. Ilic 144, T. Ince 102, G. Introzzi 122a,122b, P. Ioannou 9,∗, M. Iodice 135a, K. Iordanidou 36, V. Ippolito 58, A. Irles Quiles 166, C. Isaksson 164, M. Ishino 70, M. Ishitsuka 158,

Page 25: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

ATLAS Collaboration / Physics Letters B 756 (2016) 52–71 63

R. Ishmukhametov 112, C. Issever 121, S. Istin 19a, F. Ito 161, J.M. Iturbe Ponce 86, R. Iuppa 134a,134b, J. Ivarsson 83, W. Iwanski 40, H. Iwasaki 68, J.M. Izen 42, V. Izzo 105a, S. Jabbar 3, B. Jackson 123, M. Jackson 76, P. Jackson 1, V. Jain 2, K.B. Jakobi 85, K. Jakobs 49, S. Jakobsen 31, T. Jakoubek 128, D.O. Jamin 115, D.K. Jana 81, E. Jansen 80, R. Jansky 63, J. Janssen 22, M. Janus 55, G. Jarlskog 83, N. Javadov 67,b, T. Javurek 49, F. Jeanneau 137, L. Jeanty 15, J. Jejelava 52a,t , G.-Y. Jeng 151, D. Jennens 90, P. Jenni 49,u, J. Jentzsch 44, C. Jeske 169, S. Jézéquel 5, H. Ji 172, J. Jia 149, H. Jiang 65, Y. Jiang 34b, S. Jiggins 80, J. Jimenez Pena 166, S. Jin 34a, A. Jinaru 27b, O. Jinnouchi 158, P. Johansson 140, K.A. Johns 7, W.J. Johnson 139, K. Jon-And 147a,147b, G. Jones 169, R.W.L. Jones 74, S. Jones 7, T.J. Jones 76, J. Jongmanns 59a, P.M. Jorge 127a,127b, J. Jovicevic 160a, X. Ju 172, A. Juste Rozas 12,p, M.K. Köhler 171, A. Kaczmarska 40, M. Kado 118, H. Kagan 112, M. Kagan 144, S.J. Kahn 87, E. Kajomovitz 46, C.W. Kalderon 121, A. Kaluza 85, S. Kama 41, A. Kamenshchikov 131, N. Kanaya 156, S. Kaneti 29, V.A. Kantserov 99, J. Kanzaki 68, B. Kaplan 111, L.S. Kaplan 172, A. Kapliy 32, D. Kar 146c, K. Karakostas 10, A. Karamaoun 3, N. Karastathis 10,108, M.J. Kareem 55, E. Karentzos 10, M. Karnevskiy 85, S.N. Karpov 67, Z.M. Karpova 67, K. Karthik 111, V. Kartvelishvili 74, A.N. Karyukhin 131, K. Kasahara 161, L. Kashif 172, R.D. Kass 112, A. Kastanas 14, Y. Kataoka 156, C. Kato 156, A. Katre 50, J. Katzy 43, K. Kawade 104, K. Kawagoe 72, T. Kawamoto 156, G. Kawamura 55, S. Kazama 156, V.F. Kazanin 110,c, R. Keeler 168, R. Kehoe 41, J.S. Keller 43, J.J. Kempster 79, H. Keoshkerian 86, O. Kepka 128, B.P. Kerševan 77, S. Kersten 174, R.A. Keyes 89, F. Khalil-zada 11, H. Khandanyan 147a,147b, A. Khanov 115, A.G. Kharlamov 110,c, T.J. Khoo 29, V. Khovanskiy 98, E. Khramov 67, J. Khubua 52b,v, S. Kido 69, H.Y. Kim 8, S.H. Kim 161, Y.K. Kim 32, N. Kimura 155, O.M. Kind 16, B.T. King 76, M. King 166, S.B. King 167, J. Kirk 132, A.E. Kiryunin 102, T. Kishimoto 69, D. Kisielewska 39a, F. Kiss 49, K. Kiuchi 161, O. Kivernyk 137, E. Kladiva 145b, M.H. Klein 36, M. Klein 76, U. Klein 76, K. Kleinknecht 85, P. Klimek 147a,147b, A. Klimentov 26, R. Klingenberg 44, J.A. Klinger 140, T. Klioutchnikova 31, E.-E. Kluge 59a, P. Kluit 108, S. Kluth 102, J. Knapik 40, E. Kneringer 63, E.B.F.G. Knoops 87, A. Knue 54, A. Kobayashi 156, D. Kobayashi 158, T. Kobayashi 156, M. Kobel 45, M. Kocian 144, P. Kodys 130, T. Koffas 30, E. Koffeman 108, L.A. Kogan 121, T. Kohriki 68, T. Koi 144, H. Kolanoski 16, M. Kolb 59b, I. Koletsou 5, A.A. Komar 97,∗, Y. Komori 156, T. Kondo 68, N. Kondrashova 43, K. Köneke 49, A.C. König 107, T. Kono 68,w, R. Konoplich 111,x, N. Konstantinidis 80, R. Kopeliansky 62, S. Koperny 39a, L. Köpke 85, A.K. Kopp 49, K. Korcyl 40, K. Kordas 155, A. Korn 80, A.A. Korol 110,c, I. Korolkov 12, E.V. Korolkova 140, O. Kortner 102, S. Kortner 102, T. Kosek 130, V.V. Kostyukhin 22, V.M. Kotov 67, A. Kotwal 46, A. Kourkoumeli-Charalampidi 155, C. Kourkoumelis 9, V. Kouskoura 26, A. Koutsman 160a, A.B. Kowalewska 40, R. Kowalewski 168, T.Z. Kowalski 39a, W. Kozanecki 137, A.S. Kozhin 131, V.A. Kramarenko 100, G. Kramberger 77, D. Krasnopevtsev 99, M.W. Krasny 82, A. Krasznahorkay 31, J.K. Kraus 22, A. Kravchenko 26, M. Kretz 59c, J. Kretzschmar 76, K. Kreutzfeldt 53, P. Krieger 159, K. Krizka 32, K. Kroeninger 44, H. Kroha 102, J. Kroll 123, J. Kroseberg 22, J. Krstic 13, U. Kruchonak 67, H. Krüger 22, N. Krumnack 65, A. Kruse 172, M.C. Kruse 46, M. Kruskal 23, T. Kubota 90, H. Kucuk 80, S. Kuday 4b, J.T. Kuechler 174, S. Kuehn 49, A. Kugel 59c, F. Kuger 173, A. Kuhl 138, T. Kuhl 43, V. Kukhtin 67, R. Kukla 137, Y. Kulchitsky 94, S. Kuleshov 33b, M. Kuna 133a,133b, T. Kunigo 70, A. Kupco 128, H. Kurashige 69, Y.A. Kurochkin 94, V. Kus 128, E.S. Kuwertz 168, M. Kuze 158, J. Kvita 116, T. Kwan 168, D. Kyriazopoulos 140, A. La Rosa 102, J.L. La Rosa Navarro 25d, L. La Rotonda 38a,38b, C. Lacasta 166, F. Lacava 133a,133b, J. Lacey 30, H. Lacker 16, D. Lacour 82, V.R. Lacuesta 166, E. Ladygin 67, R. Lafaye 5, B. Laforge 82, T. Lagouri 175, S. Lai 55, S. Lammers 62, W. Lampl 7, E. Lançon 137, U. Landgraf 49, M.P.J. Landon 78, V.S. Lang 59a, J.C. Lange 12, A.J. Lankford 66, F. Lanni 26, K. Lantzsch 22, A. Lanza 122a, S. Laplace 82, C. Lapoire 31, J.F. Laporte 137, T. Lari 93a, F. Lasagni Manghi 21a,21b, M. Lassnig 31, P. Laurelli 48, W. Lavrijsen 15, A.T. Law 138, P. Laycock 76, T. Lazovich 58, M. Lazzaroni 93a,93b, O. Le Dortz 82, E. Le Guirriec 87, E. Le Menedeu 12, E.P. Le Quilleuc 137, M. LeBlanc 168, T. LeCompte 6, F. Ledroit-Guillon 56, C.A. Lee 26, S.C. Lee 152, L. Lee 1, G. Lefebvre 82, M. Lefebvre 168, F. Legger 101, C. Leggett 15, A. Lehan 76, G. Lehmann Miotto 31, X. Lei 7, W.A. Leight 30, A. Leisos 155,y, A.G. Leister 175, M.A.L. Leite 25d, R. Leitner 130, D. Lellouch 171, B. Lemmer 55, K.J.C. Leney 80, T. Lenz 22, B. Lenzi 31, R. Leone 7, S. Leone 125a,125b, C. Leonidopoulos 47, S. Leontsinis 10, C. Leroy 96, A.A.J. Lesage 137, C.G. Lester 29, M. Levchenko 124, J. Levêque 5, D. Levin 91, L.J. Levinson 171, M. Levy 18, A.M. Leyko 22, M. Leyton 42, B. Li 34b,z, H. Li 149, H.L. Li 32, L. Li 46, L. Li 34e, Q. Li 34a, S. Li 46, X. Li 86, Y. Li 142, Z. Liang 138, H. Liao 35, B. Liberti 134a, A. Liblong 159, P. Lichard 31, K. Lie 165, J. Liebal 22, W. Liebig 14, C. Limbach 22,

Page 26: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

64 ATLAS Collaboration / Physics Letters B 756 (2016) 52–71

A. Limosani 151, S.C. Lin 152,aa, T.H. Lin 85, B.E. Lindquist 149, E. Lipeles 123, A. Lipniacka 14, M. Lisovyi 59b, T.M. Liss 165, D. Lissauer 26, A. Lister 167, A.M. Litke 138, B. Liu 152,ab, D. Liu 152, H. Liu 91, H. Liu 26, J. Liu 87, J.B. Liu 34b, K. Liu 87, L. Liu 165, M. Liu 46, M. Liu 34b, Y.L. Liu 34b, Y. Liu 34b, M. Livan 122a,122b, A. Lleres 56, J. Llorente Merino 84, S.L. Lloyd 78, F. Lo Sterzo 152, E. Lobodzinska 43, P. Loch 7, W.S. Lockman 138, F.K. Loebinger 86, A.E. Loevschall-Jensen 37, K.M. Loew 24, A. Loginov 175, T. Lohse 16, K. Lohwasser 43, M. Lokajicek 128, B.A. Long 23, J.D. Long 165, R.E. Long 74, L. Longo 75a,75b, K.A. Looper 112, L. Lopes 127a, D. Lopez Mateos 58, B. Lopez Paredes 140, I. Lopez Paz 12, A. Lopez Solis 82, J. Lorenz 101, N. Lorenzo Martinez 62, M. Losada 20, P.J. Lösel 101, X. Lou 34a, A. Lounis 118, J. Love 6, P.A. Love 74, H. Lu 61a, N. Lu 91, H.J. Lubatti 139, C. Luci 133a,133b, A. Lucotte 56, C. Luedtke 49, F. Luehring 62, W. Lukas 63, L. Luminari 133a, O. Lundberg 147a,147b, B. Lund-Jensen 148, D. Lynn 26, R. Lysak 128, E. Lytken 83, H. Ma 26, L.L. Ma 34d, G. Maccarrone 48, A. Macchiolo 102, C.M. Macdonald 140, B. Macek 77, J. Machado Miguens 123,127b, D. Madaffari 87, R. Madar 35, H.J. Maddocks 164, W.F. Mader 45, A. Madsen 43, J. Maeda 69, S. Maeland 14, T. Maeno 26, A. Maevskiy 100, E. Magradze 55, J. Mahlstedt 108, C. Maiani 118, C. Maidantchik 25a, A.A. Maier 102, T. Maier 101, A. Maio 127a,127b,127d, S. Majewski 117, Y. Makida 68, N. Makovec 118, B. Malaescu 82, Pa. Malecki 40, V.P. Maleev 124, F. Malek 56, U. Mallik 64, D. Malon 6, C. Malone 144, S. Maltezos 10, V.M. Malyshev 110, S. Malyukov 31, J. Mamuzic 43, G. Mancini 48, B. Mandelli 31, L. Mandelli 93a, I. Mandic 77, J. Maneira 127a,127b, L. Manhaes de Andrade Filho 25b, J. Manjarres Ramos 160b, A. Mann 101, B. Mansoulie 137, R. Mantifel 89, M. Mantoani 55, S. Manzoni 93a,93b, L. Mapelli 31, G. Marceca 28, L. March 50, G. Marchiori 82, M. Marcisovsky 128, M. Marjanovic 13, D.E. Marley 91, F. Marroquim 25a, S.P. Marsden 86, Z. Marshall 15, L.F. Marti 17, S. Marti-Garcia 166, B. Martin 92, T.A. Martin 169, V.J. Martin 47, B. Martin dit Latour 14, M. Martinez 12,p, S. Martin-Haugh 132, V.S. Martoiu 27b, A.C. Martyniuk 80, M. Marx 139, F. Marzano 133a, A. Marzin 31, L. Masetti 85, T. Mashimo 156, R. Mashinistov 97, J. Masik 86, A.L. Maslennikov 110,c, I. Massa 21a,21b, L. Massa 21a,21b, P. Mastrandrea 5, A. Mastroberardino 38a,38b, T. Masubuchi 156, P. Mättig 174, J. Mattmann 85, J. Maurer 27b, S.J. Maxfield 76, D.A. Maximov 110,c, R. Mazini 152, S.M. Mazza 93a,93b, N.C. Mc Fadden 106, G. Mc Goldrick 159, S.P. Mc Kee 91, A. McCarn 91, R.L. McCarthy 149, T.G. McCarthy 30, L.I. McClymont 80, K.W. McFarlane 57,∗, J.A. Mcfayden 80, G. Mchedlidze 55, S.J. McMahon 132, R.A. McPherson 168,l, M. Medinnis 43, S. Meehan 139, S. Mehlhase 101, A. Mehta 76, K. Meier 59a, C. Meineck 101, B. Meirose 42, B.R. Mellado Garcia 146c, F. Meloni 17, A. Mengarelli 21a,21b, S. Menke 102, E. Meoni 162, K.M. Mercurio 58, S. Mergelmeyer 16, P. Mermod 50, L. Merola 105a,105b, C. Meroni 93a, F.S. Merritt 32, A. Messina 133a,133b, J. Metcalfe 6, A.S. Mete 66, C. Meyer 85, C. Meyer 123, J-P. Meyer 137, J. Meyer 108, H. Meyer Zu Theenhausen 59a, R.P. Middleton 132, S. Miglioranzi 163a,163c, L. Mijovic 22, G. Mikenberg 171, M. Mikestikova 128, M. Mikuž 77, M. Milesi 90, A. Milic 31, D.W. Miller 32, C. Mills 47, A. Milov 171, D.A. Milstead 147a,147b, A.A. Minaenko 131, Y. Minami 156, I.A. Minashvili 67, A.I. Mincer 111, B. Mindur 39a, M. Mineev 67, Y. Ming 172, L.M. Mir 12, K.P. Mistry 123, T. Mitani 170, J. Mitrevski 101, V.A. Mitsou 166, A. Miucci 50, P.S. Miyagawa 140, J.U. Mjörnmark 83, T. Moa 147a,147b, K. Mochizuki 87, S. Mohapatra 36, W. Mohr 49, S. Molander 147a,147b, R. Moles-Valls 22, R. Monden 70, M.C. Mondragon 92, K. Mönig 43, J. Monk 37, E. Monnier 87, A. Montalbano 149, J. Montejo Berlingen 31, F. Monticelli 73, S. Monzani 93a,93b, R.W. Moore 3, N. Morange 118, D. Moreno 20, M. Moreno Llácer 55, P. Morettini 51a, D. Mori 143, T. Mori 156, M. Morii 58, M. Morinaga 156, V. Morisbak 120, S. Moritz 85, A.K. Morley 151, G. Mornacchi 31, J.D. Morris 78, S.S. Mortensen 37, L. Morvaj 149, M. Mosidze 52b, J. Moss 144, K. Motohashi 158, R. Mount 144, E. Mountricha 26, S.V. Mouraviev 97,∗, E.J.W. Moyse 88, S. Muanza 87, R.D. Mudd 18, F. Mueller 102, J. Mueller 126, R.S.P. Mueller 101, T. Mueller 29, D. Muenstermann 74, P. Mullen 54, G.A. Mullier 17, F.J. Munoz Sanchez 86, J.A. Murillo Quijada 18, W.J. Murray 169,132, H. Musheghyan 55, A.G. Myagkov 131,ac, M. Myska 129, B.P. Nachman 144, O. Nackenhorst 50, J. Nadal 55, K. Nagai 121, R. Nagai 68,w, Y. Nagai 87, K. Nagano 68, Y. Nagasaka 60, K. Nagata 161, M. Nagel 102, E. Nagy 87, A.M. Nairz 31, Y. Nakahama 31, K. Nakamura 68, T. Nakamura 156, I. Nakano 113, H. Namasivayam 42, R.F. Naranjo Garcia 43, R. Narayan 32, D.I. Narrias Villar 59a, I. Naryshkin 124, T. Naumann 43, G. Navarro 20, R. Nayyar 7, H.A. Neal 91, P.Yu. Nechaeva 97, T.J. Neep 86, P.D. Nef 144, A. Negri 122a,122b, M. Negrini 21a, S. Nektarijevic 107, C. Nellist 118, A. Nelson 66, S. Nemecek 128, P. Nemethy 111, A.A. Nepomuceno 25a, M. Nessi 31,ad, M.S. Neubauer 165, M. Neumann 174, R.M. Neves 111, P. Nevski 26, P.R. Newman 18, D.H. Nguyen 6, R.B. Nickerson 121, R. Nicolaidou 137, B. Nicquevert 31, J. Nielsen 138, A. Nikiforov 16, V. Nikolaenko 131,ac,

Page 27: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

ATLAS Collaboration / Physics Letters B 756 (2016) 52–71 65

I. Nikolic-Audit 82, K. Nikolopoulos 18, J.K. Nilsen 120, P. Nilsson 26, Y. Ninomiya 156, A. Nisati 133a, R. Nisius 102, T. Nobe 156, L. Nodulman 6, M. Nomachi 119, I. Nomidis 30, T. Nooney 78, S. Norberg 114, M. Nordberg 31, O. Novgorodova 45, S. Nowak 102, M. Nozaki 68, L. Nozka 116, K. Ntekas 10, E. Nurse 80, F. Nuti 90, F. O’grady 7, D.C. O’Neil 143, A.A. O’Rourke 43, V. O’Shea 54, F.G. Oakham 30,d, H. Oberlack 102, T. Obermann 22, J. Ocariz 82, A. Ochi 69, I. Ochoa 36, J.P. Ochoa-Ricoux 33a, S. Oda 72, S. Odaka 68, H. Ogren 62, A. Oh 86, S.H. Oh 46, C.C. Ohm 15, H. Ohman 164, H. Oide 31, H. Okawa 161, Y. Okumura 32, T. Okuyama 68, A. Olariu 27b, L.F. Oleiro Seabra 127a, S.A. Olivares Pino 47, D. Oliveira Damazio 26, A. Olszewski 40, J. Olszowska 40, A. Onofre 127a,127e, K. Onogi 104, P.U.E. Onyisi 32,s, C.J. Oram 160a, M.J. Oreglia 32, Y. Oren 154, D. Orestano 135a,135b, N. Orlando 61b, R.S. Orr 159, B. Osculati 51a,51b, R. Ospanov 86, G. Otero y Garzon 28, H. Otono 72, M. Ouchrif 136d, F. Ould-Saada 120, A. Ouraou 137, K.P. Oussoren 108, Q. Ouyang 34a, A. Ovcharova 15, M. Owen 54, R.E. Owen 18, V.E. Ozcan 19a, N. Ozturk 8, K. Pachal 143, A. Pacheco Pages 12, C. Padilla Aranda 12, M. Pagácová 49, S. Pagan Griso 15, F. Paige 26, P. Pais 88, K. Pajchel 120, G. Palacino 160b, S. Palestini 31, M. Palka 39b, D. Pallin 35, A. Palma 127a,127b, E. St. Panagiotopoulou 10, C.E. Pandini 82, J.G. Panduro Vazquez 79, P. Pani 147a,147b, S. Panitkin 26, D. Pantea 27b, L. Paolozzi 50, Th.D. Papadopoulou 10, K. Papageorgiou 155, A. Paramonov 6, D. Paredes Hernandez 175, M.A. Parker 29, K.A. Parker 140, F. Parodi 51a,51b, J.A. Parsons 36, U. Parzefall 49, V. Pascuzzi 159, E. Pasqualucci 133a, S. Passaggio 51a, F. Pastore 135a,135b,∗, Fr. Pastore 79, G. Pásztor 30, S. Pataraia 174, N.D. Patel 151, J.R. Pater 86, T. Pauly 31, J. Pearce 168, B. Pearson 114, L.E. Pedersen 37, M. Pedersen 120, S. Pedraza Lopez 166, R. Pedro 127a,127b, S.V. Peleganchuk 110,c, D. Pelikan 164, O. Penc 128, C. Peng 34a, H. Peng 34b, J. Penwell 62, B.S. Peralva 25b, D.V. Perepelitsa 26, E. Perez Codina 160a, L. Perini 93a,93b, H. Pernegger 31, S. Perrella 105a,105b, R. Peschke 43, V.D. Peshekhonov 67, K. Peters 31, R.F.Y. Peters 86, B.A. Petersen 31, T.C. Petersen 37, E. Petit 56, A. Petridis 1, C. Petridou 155, P. Petroff 118, E. Petrolo 133a, M. Petrov 121, F. Petrucci 135a,135b, N.E. Pettersson 158, A. Peyaud 137, R. Pezoa 33b, P.W. Phillips 132, G. Piacquadio 144, E. Pianori 169, A. Picazio 88, E. Piccaro 78, M. Piccinini 21a,21b, M.A. Pickering 121, R. Piegaia 28, J.E. Pilcher 32, A.D. Pilkington 86, A.W.J. Pin 86, J. Pina 127a,127b,127d, M. Pinamonti 163a,163c,ae, J.L. Pinfold 3, A. Pingel 37, S. Pires 82, H. Pirumov 43, M. Pitt 171, L. Plazak 145a, M.-A. Pleier 26, V. Pleskot 85, E. Plotnikova 67, P. Plucinski 147a,147b, D. Pluth 65, R. Poettgen 147a,147b, L. Poggioli 118, D. Pohl 22, G. Polesello 122a, A. Poley 43, A. Policicchio 38a,38b, R. Polifka 159, A. Polini 21a, C.S. Pollard 54, V. Polychronakos 26, K. Pommès 31, L. Pontecorvo 133a, B.G. Pope 92, G.A. Popeneciu 27c, D.S. Popovic 13, A. Poppleton 31, S. Pospisil 129, K. Potamianos 15, I.N. Potrap 67, C.J. Potter 29, C.T. Potter 117, G. Poulard 31, J. Poveda 31, V. Pozdnyakov 67, M.E. Pozo Astigarraga 31, P. Pralavorio 87, A. Pranko 15, S. Prell 65, D. Price 86, L.E. Price 6, M. Primavera 75a, S. Prince 89, M. Proissl 47, K. Prokofiev 61c, F. Prokoshin 33b, S. Protopopescu 26, J. Proudfoot 6, M. Przybycien 39a, D. Puddu 135a,135b, D. Puldon 149, M. Purohit 26,af , P. Puzo 118, J. Qian 91, G. Qin 54, Y. Qin 86, A. Quadt 55, D.R. Quarrie 15, W.B. Quayle 163a,163b, M. Queitsch-Maitland 86, D. Quilty 54, S. Raddum 120, V. Radeka 26, V. Radescu 43, S.K. Radhakrishnan 149, P. Radloff 117, P. Rados 90, F. Ragusa 93a,93b, G. Rahal 177, S. Rajagopalan 26, M. Rammensee 31, C. Rangel-Smith 164, M.G. Ratti 93a,93b, F. Rauscher 101, S. Rave 85, T. Ravenscroft 54, M. Raymond 31, A.L. Read 120, N.P. Readioff 76, D.M. Rebuzzi 122a,122b, A. Redelbach 173, G. Redlinger 26, R. Reece 138, K. Reeves 42, L. Rehnisch 16, J. Reichert 123, H. Reisin 28, C. Rembser 31, H. Ren 34a, M. Rescigno 133a, S. Resconi 93a, O.L. Rezanova 110,c, P. Reznicek 130, R. Rezvani 96, R. Richter 102, S. Richter 80, E. Richter-Was 39b, O. Ricken 22, M. Ridel 82, P. Rieck 16, C.J. Riegel 174, J. Rieger 55, O. Rifki 114, M. Rijssenbeek 149, A. Rimoldi 122a,122b, L. Rinaldi 21a, B. Ristic 50, E. Ritsch 31, I. Riu 12, F. Rizatdinova 115, E. Rizvi 78, S.H. Robertson 89,l, A. Robichaud-Veronneau 89, D. Robinson 29, J.E.M. Robinson 43, A. Robson 54, C. Roda 125a,125b, Y. Rodina 87, A. Rodriguez Perez 12, D. Rodriguez Rodriguez 166, S. Roe 31, C.S. Rogan 58, O. Røhne 120, A. Romaniouk 99, M. Romano 21a,21b, S.M. Romano Saez 35, E. Romero Adam 166, N. Rompotis 139, M. Ronzani 49, L. Roos 82, E. Ros 166, S. Rosati 133a, K. Rosbach 49, P. Rose 138, O. Rosenthal 142, V. Rossetti 147a,147b, E. Rossi 105a,105b, L.P. Rossi 51a, J.H.N. Rosten 29, R. Rosten 139, M. Rotaru 27b, I. Roth 171, J. Rothberg 139, D. Rousseau 118, C.R. Royon 137, A. Rozanov 87, Y. Rozen 153, X. Ruan 146c, F. Rubbo 144, I. Rubinskiy 43, V.I. Rud 100, M.S. Rudolph 159, F. Rühr 49, A. Ruiz-Martinez 31, Z. Rurikova 49, N.A. Rusakovich 67, A. Ruschke 101, H.L. Russell 139, J.P. Rutherfoord 7, N. Ruthmann 31, Y.F. Ryabov 124, M. Rybar 165, G. Rybkin 118, S. Ryu 6, A. Ryzhov 131, A.F. Saavedra 151, G. Sabato 108, S. Sacerdoti 28, H.F-W. Sadrozinski 138, R. Sadykov 67, F. Safai Tehrani 133a, P. Saha 109,

Page 28: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

66 ATLAS Collaboration / Physics Letters B 756 (2016) 52–71

M. Sahinsoy 59a, M. Saimpert 137, T. Saito 156, H. Sakamoto 156, Y. Sakurai 170, G. Salamanna 135a,135b, A. Salamon 134a,134b, J.E. Salazar Loyola 33b, D. Salek 108, P.H. Sales De Bruin 139, D. Salihagic 102, A. Salnikov 144, J. Salt 166, D. Salvatore 38a,38b, F. Salvatore 150, A. Salvucci 61a, A. Salzburger 31, D. Sammel 49, D. Sampsonidis 155, A. Sanchez 105a,105b, J. Sánchez 166, V. Sanchez Martinez 166, H. Sandaker 120, R.L. Sandbach 78, H.G. Sander 85, M.P. Sanders 101, M. Sandhoff 174, C. Sandoval 20, R. Sandstroem 102, D.P.C. Sankey 132, M. Sannino 51a,51b, A. Sansoni 48, C. Santoni 35, R. Santonico 134a,134b, H. Santos 127a, I. Santoyo Castillo 150, K. Sapp 126, A. Sapronov 67, J.G. Saraiva 127a,127d, B. Sarrazin 22, O. Sasaki 68, Y. Sasaki 156, K. Sato 161, G. Sauvage 5,∗, E. Sauvan 5, G. Savage 79, P. Savard 159,d, C. Sawyer 132, L. Sawyer 81,o, J. Saxon 32, C. Sbarra 21a, A. Sbrizzi 21a,21b, T. Scanlon 80, D.A. Scannicchio 66, M. Scarcella 151, V. Scarfone 38a,38b, J. Schaarschmidt 171, P. Schacht 102, D. Schaefer 31, R. Schaefer 43, J. Schaeffer 85, S. Schaepe 22, S. Schaetzel 59b, U. Schäfer 85, A.C. Schaffer 118, D. Schaile 101, R.D. Schamberger 149, V. Scharf 59a, V.A. Schegelsky 124, D. Scheirich 130, M. Schernau 66, C. Schiavi 51a,51b, C. Schillo 49, M. Schioppa 38a,38b, S. Schlenker 31, K. Schmieden 31, C. Schmitt 85, S. Schmitt 43, S. Schmitz 85, B. Schneider 160a, Y.J. Schnellbach 76, U. Schnoor 49, L. Schoeffel 137, A. Schoening 59b, B.D. Schoenrock 92, E. Schopf 22, A.L.S. Schorlemmer 44, M. Schott 85, D. Schouten 160a, J. Schovancova 8, S. Schramm 50, M. Schreyer 173, N. Schuh 85, M.J. Schultens 22, H.-C. Schultz-Coulon 59a, H. Schulz 16, M. Schumacher 49, B.A. Schumm 138, Ph. Schune 137, C. Schwanenberger 86, A. Schwartzman 144, T.A. Schwarz 91, Ph. Schwegler 102, H. Schweiger 86, Ph. Schwemling 137, R. Schwienhorst 92, J. Schwindling 137, T. Schwindt 22, G. Sciolla 24, F. Scuri 125a,125b, F. Scutti 90, J. Searcy 91, P. Seema 22, S.C. Seidel 106, A. Seiden 138, F. Seifert 129, J.M. Seixas 25a, G. Sekhniaidze 105a, K. Sekhon 91, S.J. Sekula 41, D.M. Seliverstov 124,∗, N. Semprini-Cesari 21a,21b, C. Serfon 31, L. Serin 118, L. Serkin 163a,163b, M. Sessa 135a,135b, R. Seuster 160a, H. Severini 114, T. Sfiligoj 77, F. Sforza 31, A. Sfyrla 50, E. Shabalina 55, N.W. Shaikh 147a,147b, L.Y. Shan 34a, R. Shang 165, J.T. Shank 23, M. Shapiro 15, P.B. Shatalov 98, K. Shaw 163a,163b, S.M. Shaw 86, A. Shcherbakova 147a,147b, C.Y. Shehu 150, P. Sherwood 80, L. Shi 152,ag , S. Shimizu 69, C.O. Shimmin 66, M. Shimojima 103, M. Shiyakova 67,ah, A. Shmeleva 97, D. Shoaleh Saadi 96, M.J. Shochet 32, S. Shojaii 93a,93b, S. Shrestha 112, E. Shulga 99, M.A. Shupe 7, P. Sicho 128, P.E. Sidebo 148, O. Sidiropoulou 173, D. Sidorov 115, A. Sidoti 21a,21b, F. Siegert 45, Dj. Sijacki 13, J. Silva 127a,127d, S.B. Silverstein 147a, V. Simak 129, O. Simard 5, Lj. Simic 13, S. Simion 118, E. Simioni 85, B. Simmons 80, D. Simon 35, M. Simon 85, P. Sinervo 159, N.B. Sinev 117, M. Sioli 21a,21b, G. Siragusa 173, S.Yu. Sivoklokov 100, J. Sjölin 147a,147b, T.B. Sjursen 14, M.B. Skinner 74, H.P. Skottowe 58, P. Skubic 114, M. Slater 18, T. Slavicek 129, M. Slawinska 108, K. Sliwa 162, V. Smakhtin 171, B.H. Smart 5, L. Smestad 14, S.Yu. Smirnov 99, Y. Smirnov 99, L.N. Smirnova 100,ai, O. Smirnova 83, M.N.K. Smith 36, R.W. Smith 36, M. Smizanska 74, K. Smolek 129, A.A. Snesarev 97, G. Snidero 78, S. Snyder 26, R. Sobie 168,l, F. Socher 45, A. Soffer 154, D.A. Soh 152,ag , G. Sokhrannyi 77, C.A. Solans Sanchez 31, M. Solar 129, E.Yu. Soldatov 99, U. Soldevila 166, A.A. Solodkov 131, A. Soloshenko 67, O.V. Solovyanov 131, V. Solovyev 124, P. Sommer 49, H.Y. Song 34b,z, N. Soni 1, A. Sood 15, A. Sopczak 129, V. Sopko 129, V. Sorin 12, D. Sosa 59b, C.L. Sotiropoulou 125a,125b, R. Soualah 163a,163c, A.M. Soukharev 110,c, D. South 43, B.C. Sowden 79, S. Spagnolo 75a,75b, M. Spalla 125a,125b, M. Spangenberg 169, F. Spanò 79, D. Sperlich 16, F. Spettel 102, R. Spighi 21a, G. Spigo 31, L.A. Spiller 90, M. Spousta 130, R.D. St. Denis 54,∗, A. Stabile 93a, S. Staerz 31, J. Stahlman 123, R. Stamen 59a, S. Stamm 16, E. Stanecka 40, R.W. Stanek 6, C. Stanescu 135a, M. Stanescu-Bellu 43, M.M. Stanitzki 43, S. Stapnes 120, E.A. Starchenko 131, G.H. Stark 32, J. Stark 56, P. Staroba 128, P. Starovoitov 59a, R. Staszewski 40, P. Steinberg 26, B. Stelzer 143, H.J. Stelzer 31, O. Stelzer-Chilton 160a, H. Stenzel 53, G.A. Stewart 54, J.A. Stillings 22, M.C. Stockton 89, M. Stoebe 89, G. Stoicea 27b, P. Stolte 55, S. Stonjek 102, A.R. Stradling 8, A. Straessner 45, M.E. Stramaglia 17, J. Strandberg 148, S. Strandberg 147a,147b, A. Strandlie 120, M. Strauss 114, P. Strizenec 145b, R. Ströhmer 173, D.M. Strom 117, R. Stroynowski 41, A. Strubig 107, S.A. Stucci 17, B. Stugu 14, N.A. Styles 43, D. Su 144, J. Su 126, R. Subramaniam 81, S. Suchek 59a, Y. Sugaya 119, M. Suk 129, V.V. Sulin 97, S. Sultansoy 4c, T. Sumida 70, S. Sun 58, X. Sun 34a, J.E. Sundermann 49, K. Suruliz 150, G. Susinno 38a,38b, M.R. Sutton 150, S. Suzuki 68, M. Svatos 128, M. Swiatlowski 32, I. Sykora 145a, T. Sykora 130, D. Ta 49, C. Taccini 135a,135b, K. Tackmann 43, J. Taenzer 159, A. Taffard 66, R. Tafirout 160a, N. Taiblum 154, H. Takai 26, R. Takashima 71, H. Takeda 69, T. Takeshita 141, Y. Takubo 68, M. Talby 87, A.A. Talyshev 110,c, J.Y.C. Tam 173, K.G. Tan 90, J. Tanaka 156, R. Tanaka 118, S. Tanaka 68, B.B. Tannenwald 112, S. Tapia Araya 33b, S. Tapprogge 85,

Page 29: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

ATLAS Collaboration / Physics Letters B 756 (2016) 52–71 67

S. Tarem 153, G.F. Tartarelli 93a, P. Tas 130, M. Tasevsky 128, T. Tashiro 70, E. Tassi 38a,38b, A. Tavares Delgado 127a,127b, Y. Tayalati 136d, A.C. Taylor 106, G.N. Taylor 90, P.T.E. Taylor 90, W. Taylor 160b, F.A. Teischinger 31, P. Teixeira-Dias 79, K.K. Temming 49, D. Temple 143, H. Ten Kate 31, P.K. Teng 152, J.J. Teoh 119, F. Tepel 174, S. Terada 68, K. Terashi 156, J. Terron 84, S. Terzo 102, M. Testa 48, R.J. Teuscher 159,l, T. Theveneaux-Pelzer 87, J.P. Thomas 18, J. Thomas-Wilsker 79, E.N. Thompson 36, P.D. Thompson 18, R.J. Thompson 86, A.S. Thompson 54, L.A. Thomsen 175, E. Thomson 123, M. Thomson 29, M.J. Tibbetts 15, R.E. Ticse Torres 87, V.O. Tikhomirov 97,aj, Yu.A. Tikhonov 110,c, S. Timoshenko 99, P. Tipton 175, S. Tisserant 87, K. Todome 158, T. Todorov 5,∗, S. Todorova-Nova 130, J. Tojo 72, S. Tokár 145a, K. Tokushuku 68, E. Tolley 58, L. Tomlinson 86, M. Tomoto 104, L. Tompkins 144,ak, K. Toms 106, B. Tong 58, E. Torrence 117, H. Torres 143, E. Torró Pastor 139, J. Toth 87,al, F. Touchard 87, D.R. Tovey 140, T. Trefzger 173, L. Tremblet 31, A. Tricoli 31, I.M. Trigger 160a, S. Trincaz-Duvoid 82, M.F. Tripiana 12, W. Trischuk 159, B. Trocmé 56, A. Trofymov 43, C. Troncon 93a, M. Trottier-McDonald 15, M. Trovatelli 168, L. Truong 163a,163b, M. Trzebinski 40, A. Trzupek 40, J.C-L. Tseng 121, P.V. Tsiareshka 94, G. Tsipolitis 10, N. Tsirintanis 9, S. Tsiskaridze 12, V. Tsiskaridze 49, E.G. Tskhadadze 52a, K.M. Tsui 61a, I.I. Tsukerman 98, V. Tsulaia 15, S. Tsuno 68, D. Tsybychev 149, A. Tudorache 27b, V. Tudorache 27b, A.N. Tuna 58, S.A. Tupputi 21a,21b, S. Turchikhin 100,ai, D. Turecek 129, D. Turgeman 171, R. Turra 93a,93b, A.J. Turvey 41, P.M. Tuts 36, M. Tylmad 147a,147b, M. Tyndel 132, G. Ucchielli 21a,21b, I. Ueda 156, R. Ueno 30, M. Ughetto 147a,147b, F. Ukegawa 161, G. Unal 31, A. Undrus 26, G. Unel 66, F.C. Ungaro 90, Y. Unno 68, C. Unverdorben 101, J. Urban 145b, P. Urquijo 90, P. Urrejola 85, G. Usai 8, A. Usanova 63, L. Vacavant 87, V. Vacek 129, B. Vachon 89, C. Valderanis 85, E. Valdes Santurio 147a,147b, N. Valencic 108, S. Valentinetti 21a,21b, A. Valero 166, L. Valery 12, S. Valkar 130, S. Vallecorsa 50, J.A. Valls Ferrer 166, W. Van Den Wollenberg 108, P.C. Van Der Deijl 108, R. van der Geer 108, H. van der Graaf 108, N. van Eldik 153, P. van Gemmeren 6, J. Van Nieuwkoop 143, I. van Vulpen 108, M.C. van Woerden 31, M. Vanadia 133a,133b, W. Vandelli 31, R. Vanguri 123, A. Vaniachine 6, P. Vankov 108, G. Vardanyan 176, R. Vari 133a, E.W. Varnes 7, T. Varol 41, D. Varouchas 82, A. Vartapetian 8, K.E. Varvell 151, F. Vazeille 35, T. Vazquez Schroeder 89, J. Veatch 7, L.M. Veloce 159, F. Veloso 127a,127c, S. Veneziano 133a, A. Ventura 75a,75b, M. Venturi 168, N. Venturi 159, A. Venturini 24, V. Vercesi 122a, M. Verducci 133a,133b, W. Verkerke 108, J.C. Vermeulen 108, A. Vest 45,am, M.C. Vetterli 143,d, O. Viazlo 83, I. Vichou 165, T. Vickey 140, O.E. Vickey Boeriu 140, G.H.A. Viehhauser 121, S. Viel 15, R. Vigne 63, M. Villa 21a,21b, M. Villaplana Perez 93a,93b, E. Vilucchi 48, M.G. Vincter 30, V.B. Vinogradov 67, I. Vivarelli 150, S. Vlachos 10, M. Vlasak 129, M. Vogel 174, P. Vokac 129, G. Volpi 125a,125b, M. Volpi 90, H. von der Schmitt 102, E. von Toerne 22, V. Vorobel 130, K. Vorobev 99, M. Vos 166, R. Voss 31, J.H. Vossebeld 76, N. Vranjes 13, M. Vranjes Milosavljevic 13, V. Vrba 128, M. Vreeswijk 108, R. Vuillermet 31, I. Vukotic 32, Z. Vykydal 129, P. Wagner 22, W. Wagner 174, H. Wahlberg 73, S. Wahrmund 45, J. Wakabayashi 104, J. Walder 74, R. Walker 101, W. Walkowiak 142, V. Wallangen 147a,147b, C. Wang 152, C. Wang 34d,87, F. Wang 172, H. Wang 15, H. Wang 41, J. Wang 43, J. Wang 151, K. Wang 89, R. Wang 6, S.M. Wang 152, T. Wang 22, T. Wang 36, X. Wang 175, C. Wanotayaroj 117, A. Warburton 89, C.P. Ward 29, D.R. Wardrope 80, A. Washbrook 47, P.M. Watkins 18, A.T. Watson 18, I.J. Watson 151, M.F. Watson 18, G. Watts 139, S. Watts 86, B.M. Waugh 80, S. Webb 85, M.S. Weber 17, S.W. Weber 173, J.S. Webster 6, A.R. Weidberg 121, B. Weinert 62, J. Weingarten 55, C. Weiser 49, H. Weits 108, P.S. Wells 31, T. Wenaus 26, T. Wengler 31, S. Wenig 31, N. Wermes 22, M. Werner 49, P. Werner 31, M. Wessels 59a, J. Wetter 162, K. Whalen 117, A.M. Wharton 74, A. White 8, M.J. White 1, R. White 33b, S. White 125a,125b, D. Whiteson 66, F.J. Wickens 132, W. Wiedenmann 172, M. Wielers 132, P. Wienemann 22, C. Wiglesworth 37, L.A.M. Wiik-Fuchs 22, A. Wildauer 102, H.G. Wilkens 31, H.H. Williams 123, S. Williams 108, C. Willis 92, S. Willocq 88, J.A. Wilson 18, I. Wingerter-Seez 5, F. Winklmeier 117, O.J. Winston 150, B.T. Winter 22, M. Wittgen 144, J. Wittkowski 101, S.J. Wollstadt 85, M.W. Wolter 40, H. Wolters 127a,127c, B.K. Wosiek 40, J. Wotschack 31, M.J. Woudstra 86, K.W. Wozniak 40, M. Wu 56, M. Wu 32, S.L. Wu 172, X. Wu 50, Y. Wu 91, T.R. Wyatt 86, B.M. Wynne 47, S. Xella 37, D. Xu 34a, L. Xu 26, B. Yabsley 151, S. Yacoob 146a, R. Yakabe 69, D. Yamaguchi 158, Y. Yamaguchi 119, A. Yamamoto 68, S. Yamamoto 156, T. Yamanaka 156, K. Yamauchi 104, Y. Yamazaki 69, Z. Yan 23, H. Yang 34e, H. Yang 172, Y. Yang 152, Z. Yang 14, W-M. Yao 15, Y.C. Yap 82, Y. Yasu 68, E. Yatsenko 5, K.H. Yau Wong 22, J. Ye 41, S. Ye 26, I. Yeletskikh 67, A.L. Yen 58, E. Yildirim 43, K. Yorita 170, R. Yoshida 6, K. Yoshihara 123, C. Young 144, C.J.S. Young 31, S. Youssef 23, D.R. Yu 15, J. Yu 8, J.M. Yu 91, J. Yu 65, L. Yuan 69, S.P.Y. Yuen 22, I. Yusuff 29,an, B. Zabinski 40, R. Zaidan 34d, A.M. Zaitsev 131,ac,

Page 30: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

68 ATLAS Collaboration / Physics Letters B 756 (2016) 52–71

N. Zakharchuk 43, J. Zalieckas 14, A. Zaman 149, S. Zambito 58, L. Zanello 133a,133b, D. Zanzi 90, C. Zeitnitz 174, M. Zeman 129, A. Zemla 39a, J.C. Zeng 165, Q. Zeng 144, K. Zengel 24, O. Zenin 131, T. Ženiš 145a, D. Zerwas 118, D. Zhang 91, F. Zhang 172, G. Zhang 34b,z, H. Zhang 34c, J. Zhang 6, L. Zhang 49, R. Zhang 22, R. Zhang 34b,ao, X. Zhang 34d, Z. Zhang 118, X. Zhao 41, Y. Zhao 34d,118, Z. Zhao 34b, A. Zhemchugov 67, J. Zhong 121, B. Zhou 91, C. Zhou 46, L. Zhou 36, L. Zhou 41, M. Zhou 149, N. Zhou 34f, C.G. Zhu 34d, H. Zhu 34a, J. Zhu 91, Y. Zhu 34b, X. Zhuang 34a, K. Zhukov 97, A. Zibell 173, D. Zieminska 62, N.I. Zimine 67, C. Zimmermann 85, S. Zimmermann 49, Z. Zinonos 55, M. Zinser 85, M. Ziolkowski 142, L. Živkovic 13, G. Zobernig 172, A. Zoccoli 21a,21b, M. zur Nedden 16, G. Zurzolo 105a,105b, L. Zwalinski 31

1 Department of Physics, University of Adelaide, Adelaide, Australia2 Physics Department, SUNY Albany, Albany, NY, United States3 Department of Physics, University of Alberta, Edmonton, AB, Canada4 (a) Department of Physics, Ankara University, Ankara; (b) Istanbul Aydin University, Istanbul; (c) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey5 LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France6 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States7 Department of Physics, University of Arizona, Tucson, AZ, United States8 Department of Physics, The University of Texas at Arlington, Arlington, TX, United States9 Physics Department, University of Athens, Athens, Greece10 Physics Department, National Technical University of Athens, Zografou, Greece11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan12 Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain13 Institute of Physics, University of Belgrade, Belgrade, Serbia14 Department for Physics and Technology, University of Bergen, Bergen, Norway15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States16 Department of Physics, Humboldt University, Berlin, Germany17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom19 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey; (e) Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey20 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia21 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy22 Physikalisches Institut, University of Bonn, Bonn, Germany23 Department of Physics, Boston University, Boston, MA, United States24 Department of Physics, Brandeis University, Waltham, MA, United States25 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil26 Physics Department, Brookhaven National Laboratory, Upton, NY, United States27 (a) Transilvania University of Brasov, Brasov, Romania; (b) National Institute of Physics and Nuclear Engineering, Bucharest; (c) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (d) University Politehnica Bucharest, Bucharest; (e) West University in Timisoara, Timisoara, Romania28 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina29 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom30 Department of Physics, Carleton University, Ottawa, ON, Canada31 CERN, Geneva, Switzerland32 Enrico Fermi Institute, University of Chicago, Chicago, IL, United States33 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile34 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai ap; (f ) Physics Department, Tsinghua University, Beijing 100084, China35 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France36 Nevis Laboratory, Columbia University, Irvington, NY, United States37 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark38 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy39 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland40 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland41 Physics Department, Southern Methodist University, Dallas, TX, United States42 Physics Department, University of Texas at Dallas, Richardson, TX, United States43 DESY, Hamburg and Zeuthen, Germany44 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany45 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany46 Department of Physics, Duke University, Durham, NC, United States47 SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom48 INFN Laboratori Nazionali di Frascati, Frascati, Italy49 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany50 Section de Physique, Université de Genève, Geneva, Switzerland51 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy52 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia53 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany54 SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom55 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany56 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France57 Department of Physics, Hampton University, Hampton, VA, United States58 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States59 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

Page 31: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

ATLAS Collaboration / Physics Letters B 756 (2016) 52–71 69

60 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan61 (a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong; (c) Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China62 Department of Physics, Indiana University, Bloomington, IN, United States63 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria64 University of Iowa, Iowa City, IA, United States65 Department of Physics and Astronomy, Iowa State University, Ames, IA, United States66 Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States67 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia68 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan69 Graduate School of Science, Kobe University, Kobe, Japan70 Faculty of Science, Kyoto University, Kyoto, Japan71 Kyoto University of Education, Kyoto, Japan72 Department of Physics, Kyushu University, Fukuoka, Japan73 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina74 Physics Department, Lancaster University, Lancaster, United Kingdom75 (a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy76 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom77 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia78 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom79 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom80 Department of Physics and Astronomy, University College London, London, United Kingdom81 Louisiana Tech University, Ruston, LA, United States82 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France83 Fysiska institutionen, Lunds universitet, Lund, Sweden84 Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain85 Institut für Physik, Universität Mainz, Mainz, Germany86 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom87 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France88 Department of Physics, University of Massachusetts, Amherst, MA, United States89 Department of Physics, McGill University, Montreal, QC, Canada90 School of Physics, University of Melbourne, Victoria, Australia91 Department of Physics, The University of Michigan, Ann Arbor, MI, United States92 Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States93 (a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy94 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus95 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Belarus96 Group of Particle Physics, University of Montreal, Montreal, QC, Canada97 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia98 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia99 National Research Nuclear University MEPhI, Moscow, Russia100 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia101 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany102 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany103 Nagasaki Institute of Applied Science, Nagasaki, Japan104 Graduate School of Science and Kobayashi–Maskawa Institute, Nagoya University, Nagoya, Japan105 (a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Università di Napoli, Napoli, Italy106 Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States107 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands108 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands109 Department of Physics, Northern Illinois University, DeKalb, IL, United States110 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia111 Department of Physics, New York University, New York, NY, United States112 Ohio State University, Columbus, OH, United States113 Faculty of Science, Okayama University, Okayama, Japan114 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States115 Department of Physics, Oklahoma State University, Stillwater, OK, United States116 Palacký University, RCPTM, Olomouc, Czech Republic117 Center for High Energy Physics, University of Oregon, Eugene, OR, United States118 LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France119 Graduate School of Science, Osaka University, Osaka, Japan120 Department of Physics, University of Oslo, Oslo, Norway121 Department of Physics, Oxford University, Oxford, United Kingdom122 (a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy123 Department of Physics, University of Pennsylvania, Philadelphia, PA, United States124 National Research Centre “Kurchatov Institute”, B.P. Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia125 (a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy126 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States127 (a) Laboratório de Instrumentação e Física Experimental de Partículas – LIP, Lisboa; (b) Faculdade de Ciências, Universidade de Lisboa, Lisboa; (c) Department of Physics, University of Coimbra, Coimbra; (d) Centro de Física Nuclear da Universidade de Lisboa, Lisboa; (e) Departamento de Fisica, Universidade do Minho, Braga; (f ) Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada (Spain); (g) Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal128 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic129 Czech Technical University in Prague, Praha, Czech Republic130 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic131 State Research Center Institute for High Energy Physics (Protvino), NRC KI, Russia132 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom133 (a) INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy134 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy135 (a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy

Page 32: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

70 ATLAS Collaboration / Physics Letters B 756 (2016) 52–71

136 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies – Université Hassan II, Casablanca; (b) Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des sciences, Université Mohammed V, Rabat, Morocco137 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France138 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States139 Department of Physics, University of Washington, Seattle, WA, United States140 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom141 Department of Physics, Shinshu University, Nagano, Japan142 Fachbereich Physik, Universität Siegen, Siegen, Germany143 Department of Physics, Simon Fraser University, Burnaby, BC, Canada144 SLAC National Accelerator Laboratory, Stanford, CA, United States145 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic146 (a) Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa147 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden148 Physics Department, Royal Institute of Technology, Stockholm, Sweden149 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, United States150 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom151 School of Physics, University of Sydney, Sydney, Australia152 Institute of Physics, Academia Sinica, Taipei, Taiwan153 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel154 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel155 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece156 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan157 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan158 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan159 Department of Physics, University of Toronto, Toronto, ON, Canada160 (a) TRIUMF, Vancouver, BC; (b) Department of Physics and Astronomy, York University, Toronto, ON, Canada161 Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan162 Department of Physics and Astronomy, Tufts University, Medford, MA, United States163 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy164 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden165 Department of Physics, University of Illinois, Urbana, IL, United States166 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain167 Department of Physics, University of British Columbia, Vancouver, BC, Canada168 Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada169 Department of Physics, University of Warwick, Coventry, United Kingdom170 Waseda University, Tokyo, Japan171 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel172 Department of Physics, University of Wisconsin, Madison, WI, United States173 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany174 Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany175 Department of Physics, Yale University, New Haven, CT, United States176 Yerevan Physics Institute, Yerevan, Armenia177 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

a Also at Department of Physics, King’s College London, London, United Kingdom.b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.c Also at Novosibirsk State University, Novosibirsk, Russia.d Also at TRIUMF, Vancouver, BC, Canada.e Also at Department of Physics & Astronomy, University of Louisville, Louisville, KY, United States of America.f Also at Department of Physics, California State University, Fresno, CA, United States.g Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.h Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain.i Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal.j Also at Tomsk State University, Tomsk, Russia.k Also at Universita di Napoli Parthenope, Napoli, Italy.l Also at Institute of Particle Physics (IPP), Canada.

m Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.n Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.o Also at Louisiana Tech University, Ruston, LA, United States.p Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.q Also at Graduate School of Science, Osaka University, Osaka, Japan.r Also at Department of Physics, National Tsing Hua University, Taiwan.s Also at Department of Physics, The University of Texas at Austin, Austin, TX, United States.t Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.u Also at CERN, Geneva, Switzerland.v Also at Georgian Technical University (GTU), Tbilisi, Georgia.

w Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan.x Also at Manhattan College, New York, NY, United States.y Also at Hellenic Open University, Patras, Greece.z Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.

aa Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.ab Also at School of Physics, Shandong University, Shandong, China.ac Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.

Page 33: Measurement of the charge asymmetry in highly boosted top ...repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/...Title Measurement of the charge asymmetry in highly boosted top-quark

ATLAS Collaboration / Physics Letters B 756 (2016) 52–71 71

ad Also at Section de Physique, Université de Genève, Geneva, Switzerland.ae Also at International School for Advanced Studies (SISSA), Trieste, Italy.af Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.ag Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.ah Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.ai Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.aj Also at National Research Nuclear University MEPhI, Moscow, Russia.ak Also at Department of Physics, Stanford University, Stanford, CA, United States.al Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.

am Also at Flensburg University of Applied Sciences, Flensburg, Germany.an Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.ao Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.ap Also affiliated with PKU-CHEP.∗ Deceased.