mechanical reliability of aged lead free solders 6.1536918/fulltext01.pdf ·...

25
Report number: Mechanical Reliability of Aged LeadFree Solders Susanne Lewin 2012 Dept. of Material Science and Engineering Royal Institute of Technology Stockholm, Sweden

Upload: trinhnhan

Post on 29-May-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

 

 

 Report  number:                      

 

 

Mechanical  Reliability  of  Aged  

Lead-­‐Free  Solders  

 

 

 

Susanne  Lewin  

 

 

 

 

 

2012  

 

Dept.  of  Material  Science  and  Engineering  

Royal  Institute  of  Technology  

Stockholm,  Sweden  

 

 

 

Dept.  of  Material  Science  and  Engineering  

Div.  of    

 

 

 

 

 

                     

 

 

Project  title:    

Reliability  of  Aged  Lead-­‐Free  Solders  

Authors:  

Susanne  Lewin  

Report  nr:  

Course:  

MH100X  

Pages:  

25  

Drawings:  

Supervisor  at  KTH:  

Anders  Eliasson  

Date:  

2012-­‐06-­‐14  

Appendices:  

 

Abstract  The  usage  of  lead-­‐free  solder  joints  in  electronic  packaging  is  of  greatest  concern  to  the  electronic  industry  due  to  the  health  and  environmental  hazards  arising  with  the  use  of  lead.  As  a  consequence,  lead  is  legally  prohibited  in  the  European  Union  and  the  industry  is  aiming  to  produce  lead-­‐free  products.    

The  reliability  of  solder  joints  is  an  important  issue  as  the  failure  could  destroy  the  whole  function  of  a  product.  SnAgCu  is  a  commonly  used  alloy  for  lead-­‐free  solders.  Compared  to  solders  containing  lead,  tin-­‐rich  solders  react  more  rapidly  with  the  copper  substrate.  The  reaction  results  in  formation  of  brittle  intermetallic  compounds  and  in  poor  mechanical  reliability.  The  formation  can  be  slowed  down  by  the  addition  of  nickel  in  the  under  bump  metallization.    

In  this  project  the  objective  was  to  evaluate  the  mechanical  reliability  of  solder  joints  in  high  temperature  applications.  An  alloy  of  nickel  and  phosphorus  was  plated  on  copper  plates  by  electroless  plating.  The  plates  were  joined  together  using  SnAgCu  solder.  The  samples  were  then  thermally  aged  at  180°  C  for  different  durations  (100,  200,  300,  400  and  500  hours).  Tensile  tests  were  performed  on  the  samples.  The  result  from  the  tensile  test  showed  a  decrease  in  mechanical  strength  with  increasing  aging  duration.  The  fracture  path  shifted  from  being  in  the  bulk  solder  to  being  at  the  interfaced.    

 

 

 

 

 

 

 

Keywords:  

Solder  joint,  SnAgCu,  lead-­‐free,  electroless  NiP,  tensile  test,  thermal  aging  

   

 

 

 

 

Acknowledgement  The  author  of  the  following  report  would  like  to  acknowledge  the  guidance,  support  and  assistance  during  this  project.  

First  I  would  like  to  thank  my  supervisor  Professor  Chen  Zhong  at  the  School  of  Material  Science  and  Engineering  at  Nanyang  Technological  University  (NTU)  for  his  guidance  and  support  throughout  this  project.  I  would  also  like  to  thank  PhD  student  Ms  Yang  Ying  for  her  help  and  assistance  during  the  experiments  and  the  technical  staff  of  Ms  Yeow  Swee  Kuan  and  Mr  Patrick  Lee  for  assistance  and  advices  during  laboratory  experiments.  

Furthermore,  I  would  like  to  take  the  opportunity  to  thank  Professor  Anders  Eliasson,  Department  of  Material  Science  and  Engineering  at  the  Royal  Institute  of  Technology  (KTH)  for  guidance  and  support.  His  comments  and  guidance  have  been  very  helpful  and  appreciated.  I  would  also  like  to  thank  him  for  handling  the  logistics  during  the  project.  

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

Table  of  Contents  1.INTRODUCTION .............................................................................................................................................. 1  

1.1  BACKGROUND .................................................................................................................................................................1  1.2  OBJECTIVE .......................................................................................................................................................................3  

2.  BACKGROUND ............................................................................................................................................... 4  2.1  NIP  &  ELECTROLESS  PLATING........................................................................................................................................4  2.2  INTERMETALLIC  COMPOUNDS .......................................................................................................................................4  2.3  MECHANICAL  PROPERTIES .............................................................................................................................................6  2.4  FRACTURE  BEHAVIOR  OF  SN3.5AG/NIP  SOLDER  JOINTS  AFTER  TENSILE  TEST.........................................................7  

3.  EXPERIMENTAL  PROCEDURES .................................................................................................................... 8  3.1  PREPARATION  OF  SOLDER  JOINTS..................................................................................................................................8  3.2  JOINING ...........................................................................................................................................................................8  3.3  CUTTING ..........................................................................................................................................................................9  3.4  AGING..............................................................................................................................................................................9  3.5  TENSILE  TEST...................................................................................................................................................................9  3.6  FRACTURE  ANALYZE.....................................................................................................................................................10  

4.RESULT  &  DISCUSSION ................................................................................................................................11  4.1  RESULTS........................................................................................................................................................................11  

4.1.1  Tensile  Test...........................................................................................................................................................11  4.1.2  Fracture  behavior ..............................................................................................................................................12  

4.2  DISCUSSION..................................................................................................................................................................15  5.  CONCLUSION  &  FUTURE  WORK................................................................................................................17  

5.1  CONCLUSION ................................................................................................................................................................17  5.2  RECOMMENDATIONS  FOR  FUTURE  WORK.................................................................................................................17  

6.  REFERENCES .................................................................................................................................................18  

     

   

   

 

 

 

 

 

 

 Nomenclature    

UBM       Under  bump  metallization  

SnAgCu  solder   Solder  containing  an  alloy  of  95.5  wt%  tin,  4  wt%  silver  and  0.5  wt%  copper.    

SnAg  solder   Solder  containing  an  alloy  of  96.5  wt%  tin  and  3.5wt%  silver.  

NiP  UBM   An  alloy  of  nickel  and  phosphorus,  used  between  the  substrate  and  the  solder  to  slow  down  the  interfacial  reaction.    

Electroless  NiP   A  chemical  process  used  to  deposit  a  layer  of  NiP  on  the  surface  of  a  metal  

UTS   ultimate  tensile  strength    

 

  1  

1.Introduction  

1.1  Background  Electronic  packaging  provides  electrical  and  mechanical  connection  in  the  electronic  system.  It  also  protects  the  chip  from  the  environment,  for  example  from  moist  and  dusts  [1].    

The  solder  joints  of  the  components  in  electronic  systems  are  usually  the  cause  of  failure  in  devices  used  for  high  temperature  applications  [2][3].  This  makes  the  reliability  of  solder  joints  an  important  issue  to  the  electronic  industry.  The  most  commonly  used  techniques  to  join  the  chip  to  its  substrate  are  wire  bonding  and  solder  bumping.  Because  of  the  development  towards  smaller  size  and  higher  functionality  of  electronic  devices,  such  as  mobile  phones  and  digital  cameras,  the  demand  is  increasing  for  more  input/output  (I/O)  connections.  Wire  bonding  cannot  meet  the  requirements  but  solder  bumping  technology  make  it  possible  to  meet  the  demands.  In  solder  bumping  technology,  it  is  possible  to  place  a  large  number  of  solder  bumps  on  the  surface.  However,  since  the  number  of  solder  bump  connections  increases,  the  size  must  decrease  for  the  I/O  connections  to  fit  on  the  surface.  This  makes  the  reliability  of  the  solder  bumps  even  more  critical  for  the  product  to  function  

[1].  

The  structure  of  a  solder  joint  can  be  seen  in  figure  1.1.  The  under  bump  metallization  (UBM)  is  found  between  the  solder  and  the  metallic  substrate.  UBM  consists  of  one  or  more  layers  of  thin  films  on  the  I/O  substrate.  It  provides  a  good  wetting  surface  to  the  solder  and  slows  down  the  reaction  between  the  chip  metallization  and  the  solder  [4].  

 

The  Eutectic  alloy  of  tin  and  lead  has  long  been  commercially  used  as  material  in  solders.  Lead  has  been  used  because  of  its  suitable  properties  such  as  high  density,  high  deformability  and  low  melting  point.  It  provides  the  tin-­‐lead  solder  with  a  lower  melting  temperature,  suitable  for  soldering.  However,  lead  is  a  well-­‐known  toxic  metal  [6].  Electronic  devices  can  end  up  in  the  waste  site  and  the  lead  will  pollute  the  environment.  As  a  consequence,  the  use  of  lead  in  electronic  devices  has  been  prohibited  in  the  European  Union  due  to  the  Restrictions  of  Hazardous  Substances  Directive  (RoHs)  that  took  affect  2006  [7][8].  The  electronic  industries  now  aim  to  produce  lead-­‐free  products  and  research  on  suitable  alternative  alloys  is  ongoing.    

Figure  1.1  Structure  of  solder  joint  [5]  

 

 

  2  

One  of  the  problem  arising  when  lead  is  removed  from  the  solders  is  that  during  reflow  the  under  bump  metallization  layers  react  with  the  solder  and  form  intermetallic  compounds.  They  are  normally  brittle,  which  results  in  poor  mechanical  strength  and  the  risk  of  failure  increases.  The  mechanical  reliability  of  the  solder  joints  is  an  important  aspect  in  high  temperature  electronic  packaging  (150-­‐200°  C).  To  slow  down  the  formation  of  intermetallic  compounds  and  to  improve  the  wetting,  different  alloys  are  studied  as  both  for  solders  and  UBM  [4].  

SnAgCu  is  a  ternary  alloy  with  desirable  properties  and  commonly  used  for  lead-­‐free  solders.  However,  the  tin-­‐rich  solders  react  more  rapidly  with  the  copper  UBM  compared  to  lead-­‐containing  solders.  The  reactions  results  in  formation  of  brittle  intermetallic  compounds  and  in  poor  mechanical  reliability.  The  formation  can  be  slowed  down  by  the  addition  of  nickel  in  the  UBM  because  the  reaction  between  nickel  and  tin  is  slower  than  between  copper  and  tin  [9]  [10].  Electroless  nickel-­‐based  UBM  have  been  used  for  this  purpose  because  of  its  suitable  properties,  good  wettability  and  low  cost  [4].    

Another  commonly  used  alloy  for  lead-­‐free  solders  is  the  binary  eutectic  alloy  Sn-­‐3.5Ag.  This  alloy  and  its  mechanical  properties  have  been  widely  studied  combined  with  nickel  and  phosphorus  UBM.  The  research  has  been  made  using  tensile  test  to  study  the  mechanical  reliability  [4]  [9]  [12]  [11].  In  this  report  the  solder  is  SnAgCu  but  UBM  of  nickel  and  phosphorus  will  be  used.  The  report  concentrates  on  the  mechanical  properties  after  thermal  aging.  The  solder  in  the  samples  will  be  an  alloy  containing  95.5wt%  Sn,  4wt%  Ag  and  0.5wt%  Cu.  The  substrate  is  made  of  copper  and  plated  with  electroless  NiP.  In  order  to  evaluate  the  mechanical  reliability  of  the  NiP  UBM  a  tensile  test  will  be  conducted  on  the  samples  after  thermal  aging.    

 

  3  

1.2  Objective  The  objective  in  this  project  is  to  study  the  mechanical  reliability  of  lead-­‐free  solders  in  high  temperature  applications.  The  solder  of  the  samples  is  made  of  an  alloy  with  Sn  (95.5wt%),  Ag  (4  wt%)  and  Cu  (0.5wt%).  The  substrate  is  made  of  copper  and  plated  with  electroless  NiP.  The  samples  will  be  thermally  aged  on  a  fixed  temperature  (180°  C)  for  long  durations  (100,  200,  300,  400  and  500  hours).  After  aging,  a  tensile  test  will  be  conducted  on  the  samples.  The  tensile  test  will  show  the  mechanical  strength  and  the  fracture  behavior  of  the  samples.  Thus  it  will  be  possible  to  analyze  how  high  temperatures  affect  the  mechanical  properties  of  Cu/NiP/SnAgCu  solder  joints.    

The  method  has  previously  been  used  on  Cu/NiP/SnAg  solder  joints  and  the  results  from  this  report  will  be  compared  to  those  results.  

 

  4  

2.  Background  In  this  project  the  mechanical  properties  of  Cu/NiP/SnAgCu  solder  joints  will  be  examined.  This  part  of  the  report  covers  background  information  from  literature  and  previous  research  on  electroless  plating,  intermetallic  compounds  and  mechanical  properties  of  solder  joints.  The  experimental  method  used  in  this  project  has  previously  been  used  on  NiP/Sn3.5Ag  solder  joints.  This  research  will  also  be  covered  in  the  literature  review.    

2.1  NiP  &  Electroless  Plating  There  are  several  techniques  being  used  to  deposit  nickel-­‐based  UBM  on  metallic  substrate  such  as  electroless  plating,  sputtering  and  electrolytic  plating.  The  most  commonly  used  is  electroless  plating  due  to  its  low  cost  and  ease  of  control.  Electroless  NiP  is  an  alloy  of  nickel  and  phosphorus  and  has  good  corrosion,  wear  and  abrasion  resistance.  The  microstructure  of  the  alloy  changes  from  microcrystalline  to  amorphous  with  increasing  phosphorus  content.  Hence,  the  properties  of  the  plated  alloy  depend  on  the  phosphorus  content,  which  normally  is  in  the  range  of  6-­‐13  wt%  [13].  

Electroless  plating  is  a  chemical  reduction  process  used  to  deposit  a  layer  of  NiP  on  the  surface  of  a  metal.  The  plating  solution  includes  one  reducing  agent  such  as  hypophosphite.  The  hypophosphite  reacts  with  the  metal  ion  to  deposit  metal  by  a  catalytic  reduction  [9]  [4]  [13].  

2.2  Intermetallic  Compounds    The  mechanical  reliability  of  solder  joints  is  affected  by  the  intermetallic  compounds  formed  during  the  reactions  in  the  solder/substrate  interface.  The  forming  of  intermetallic  compounds  is  inevitable  during  soldering,  and  it  ensures  a  good  metallurgical  bond  to  the  substrate.  However,  they  are  often  brittle  and  cause  a  region  of  weakness  that  can  result  in  failure.  The  formation  can  be  enhanced  by  a  long  reflow  time  and  high  reflow  temperature,  but  also  by  thermal  aging  or  long-­‐time  storage.  It  can  also  be  affected  by  long-­‐term  usage  of  the  product  at  room  temperature.  The  thickness  increases  with  the  reaction  time,  and  the  intermetallic  compounds  continue  to  grow  during  solid-­‐state  aging  [4][14].  

Consequently,  thermal  aging  is  a  suitable  method  for  testing  the  mechanical  reliability  of  solder  joints.  During  the  process  of  thermal  aging  intermetallic  compounds  grow  continuously  due  to  element  diffusion.  Having  a  suitable  under  bump  metallization  is  important  for  the  development  of  reliable  packaging  technology  since  it  slows  down  the  reaction  between  the  solder  and  the  substrate.  Copper  based  UBM  works  well  with  lead-­‐tin  solders.  But  lead-­‐free  solders,  with  a  high  content  of  tin,  have  a  more  rapid  consumption  of  copper  that  result  in  formation  of  brittle  intermetallic  compounds.  Therefore,  nickel-­‐based  UBM  are  examined  to  slow  down  the  reaction  [4][9][14][15].  

 

  5  

The  driving  force  for  the  element  diffusion  is  the  nickel  concentration  gradient  between  the  electroless  NiP  layer  and  the  solder.  The  concentration  of  nickel  is  higher  in  the  NiP  layer  and  this  makes  the  nickel  atoms  diffuse  from  the  NiP  layer  towards  the  solder.  Tin  atoms  diffuse  from  the  solder  towards  the  metallization.  When  the  diffusing  elements  encounter,  the  elements  react  and  form  intermetallic  compounds.  Shohji  et  al.  [12]  made  impact  tests  on  SnAgCu  solder  joints  after  aging  at  150°  C  up  to  1000  hours.  The  results  shows  that  mainly  Cu3Sn  and  Cu6  Sn5  are  the  intermetallic  compounds  that  are  impacting  the  mechanical  strength.  [16]  [10].  In  figure  2.1  the  formation  between  Sn3.5Ag0.5Cu  solder  and  the  Cu  substrate  is  shown.  

 

Figure  2.1  Formations  of  intermetallic  compounds  in  the  solder  joint  interfaces  of  Sn3.5Ag0.5Cu  solder  joint.  [10]  

 

  6  

2.3  Mechanical  Properties    Solder  joints  work  as  interconnects  in  electronic  packages  and  provide  electrical  and  mechanical  stability.  In  the  evaluation  of  the  reliability  of  solder  joints  a  number  of  factors  should  be  considered  such  as  how  the  stress  is  distributed  and  the  strain  rate.  Also,  other  environmental  factors  should  be  considered  such  as  temperature.  Some  possible  reasons  for  mechanical  solder  failure  in  use  could  be  creep,  fatigue,  corrosion,  formation  of  intermetallic  compouds,  voids,  and  electron  migration  [14]  [1].  

To  examine  the  mechanical  behavior  and  to  characterize  the  failure  of  solder  joints,  several  methods  could  be  used  such  as;  fatigue  test,  tensile  and  shear  test,  and  three/four  point  bending  test.  Tensile  and  shear  test  investigate  the  load  bearing  capacity  of  solder  joints  [6].  In  previous  research,  mainly  shear  test  has  been  used  and  it  has  been  routinely  performed  of  the  electronic  industry  [16].  In  this  project  tensile  test  is  used  because  it  preserves  the  fractured  surfaces,  which  can  be  used  for  fracture  analysis.  Also,  the  distribution  in  all  interface  layers  is  the  same  so  the  test  can  be  used  to  reveal  the  weakest  layer  or  interface  [4].  The  method  used  in  this  project  for  tensile  testing  has  previously  been  used  by  the  research  group  of  Chen  et  al.  [4].    

 

 

 

 

 

 

 

  7  

2.4  Fracture  Behavior  of  Sn3.5Ag/NiP  Solder  Joints  After  Tensile  Test    The  method  of  tensile  testing  for  solder  joints  has  been  used  in  this  report  to  evaluate  the  mechanical  properties  of  solder  joints  and  has  previously  been  used  by  Chen  et  al.  [4]  [9]  at  Cu/Sn3.5Ag/NiP  solder  joints.      The  four  different  types  of  failures  are:    a)  Ductile  fracture  inside  the  bulk  solder.    b)  Dimpled  interface  failure  between  the  solder  and  the  intermetallic  compounds.  c)  Failure  trough  interfacial  layers.  d)  Failure  between  the  NiP  coating  and  the  substrate.      

 

Figure  2.2.  Examples  of  the  different  failures,  reprensented  by  a)-­‐d)  [1]  

The  general  trend  is  with  extended  aging  duration  and  an  increase  of  aging  temperature,  the  fracture  shifts  from  inside  the  bulk  solder  to  the  interface,  shown  in  figure  2.2.    

The  Mechanical  strength  decreased  in  research  by  Chen  et  al.  [9]  on  Cu/NiP/Sn3.5Ag  solder  joints,  and  is  shown  in  figure  2.3.  

 

 

 

 

 

 

 

 

 

 

 

Figure  2.3  Tensile  strength  solder  joint  as  a  function  of  aging  duration  at  various  temperatures  Cu/NiP/Sn3.5Ag  [9].    

METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 36A, JANUARY 2005—73

seconds,[3,7] and has not affected the fracture strength of sol-der joint at this stage.

It is noted that, when the Sn-3.5Ag/Ni-P solder joint failsinside bulk solder, the tensile strength is as high as 76 MPa.Normally, the tensile strength of the bulk Sn-3.5Ag solder isaround 30 MPa at room temperature when the strain rate is1 ! 10"3 s"1,[23] 38 MPa when the strain rate is 2 ! 10"3 s"1,and 44 MPa when the strain rate is 16.7 ! 10"3 s"1.[24] Inthe present study, the strain rate was 10.0 ! 10"3 s"1, sothe tensile strength of the bulk solder should be in the rangeof 38 to 44 MPa. Based on the prediction by Cheng andSiewert,[25] the strength of a free-standing Sn-3.5Ag solderat the current strain rate should be around 40 MPa. How-ever, the tensile strength of the Sn-3.5Ag solder joint is muchgreater than that of the bulk solder itself. Such an increasein the strength is due to the fact that the deformation of sol-der in the joint was constrained by the adjacent stronger mate-rial. (Note that the thickness of the solder was 0.8 mm on ajoint area of 1.5 ! 2.0 mm).

In mode II, the failure path is at the interface between thesolder and the IMC layer for thermally aged solder joints;examples are given in Figures 7, 11, and 13. The Ni3Sn4IMC thickness ranges from !3 to !4 #m. Dimples appearas a result of the Ni3Sn4 IMCs decohesion from the bulksolder. The overall ductility is very limited since deforma-tion is localized at the interface. The reason for the weak-ening of the Ni3Sn4/solder interface could be due to the stressgenerated between the IMC and the solder. The stress iscaused by the volume mismatch between neighboring lay-ers; the thicker the IMC layer, the larger the stress. Besides,the flattened solder/IMC layer interface in the thermally agedsolder joint may also be responsible for the failure path atthe interface between the solder and the IMC.[26] When theIMC thickness exceeds a critical value, the interface becomesweaker than the bulk solder.

In mode III, fracture occurs in one of, or through all of,the interfacial layers. Typical examples are shown in Fig-ures 9 and 16. The Ni3Sn4 IMC thickness ranges from !4to !5 #m. The weak interfacial layers may have severalcauses. The Ni3Sn4 IMC is brittle. Therefore, when its thick-ness grows too large, fracture of the layer itself may occur(Figure 9). A similar observation in other IMCs has beenmade by other researchers.[5,9] Stress may be generated dueto volume mismatch among the interfacial layers when theygrow. From Figure 21, the separation between the Ni3Sn4layer and the layer underneath is clearly revealed. Residualstress, generated by the lattice constant change during IMCformation,[5] at the interface of the solder and the IMC mightalso lead to fracture within the IMC.

Kirkendall voids have been cited previously to lead toweakening of the interface by other researchers. The for-mation mechanisms of Kirkendall voids have been discussedin detail in our previous work.[3] Jeon et al.[27] used sheartesting with a SnPb solder ball on a Ni-P UBM and foundKirkendall voids on the fracture surface after reflow at 250 °Cfor 16 minutes. So, they attributed the decrease of solderjoint strength to the existence of Kirkendall voids. In thecurrent study, however, Kirkendall voids do not appear tohave much effect on the fracture of the solder joint undertensile test. There were no Kirkendall voids observed on thefracture surfaces. From the cross-sectional graphs in Figures15 and 18, Kirkendall voids were clearly visible. However,

(b)

(a)

Fig. 19—SEM micrographs of the fracture surface through the interface bet-ween the Ni-P coating and the Ni substrate. Sn-3.5Ag/Ni-P solder joint agedat 190 °C for 625 h. (a) Ni substrate and (b) Ni-P coating layer in solder side.

Fig. 20—Schematic plot of the fracture surface in thermally agedSn-3.5Ag/Ni-P specimens. (a) Mode I: ductile failure inside bulk solder,(b) mode II: dimpled interface failure between solder and Ni3Sn4 IMC,(c) mode III: failure through interfacial layers (Ni3Sn4, Ni-Sn-P and Ni3P),and (d ) mode IV: failure between Ni-P coating and Ni substrate.

(c) (d )(b)(a)

through deformation and eventual ductile rupture of the bulksolder. The interfacial Ni3Sn4 intermetallic compound is rela-tively thin, only around 2 #m after reflow at 251 °C for 180

A. Kumar, Z. Chen / Materials Science and Engineering A 423 (2006) 175–179 177

Fig. 3. Line-scanned SEM images of Cu/electroless Ni–P/Sn–3.5Ag interfaces in different samples (a) as-prepared, (b) aged at 160 !C for 400 h, (c) aged at 200 !Cfor 48 h, and (d) aged at 200 !C for 400 h.

3.2. Tensile strength and fracture analysis

Tensile strength of Cu/electroless Ni–P/Sn–3.5Ag solderjoint as a function of aging duration at various aging temper-atures is shown in Fig. 4. It can be seen that for a fixed aging

Fig. 4. Tensile strength of Cu/electroless Ni–P/Sn–3.5Ag solder joint as a func-tion of aging duration at various temperatures.

duration, the strength decreased drastically with increase inaging temperature. The effect of increase in aging duration onthe strength, however, varied with aging temperature. In the caseof samples aged at 160 !C, the tensile strength increased slightlywith increase in aging duration, whereas, it decreased consider-ably in the case of samples aged at 180 and 200 !C. The decreasein tensile strength was very severe in the initial 48 h of aging andafter that the strength remained nearly constant.

In the as-prepared sample, as shown in Fig. 5, the failure modewas ductile and the fracture surfaces were inside the bulk solder.A large difference was observed in the failure mode and frac-ture surfaces of the samples aged at different temperatures. Allthe samples aged at 160 !C showed the same failure mode andlocation of fracture surfaces as the as-prepared samples showed.However in the samples aged at 180 !C, failure mode changed tobrittle and fracture surfaces were at the Ni3Sn4/Sn–3.5Ag inter-face (Fig. 6). The failure mode became very brittle and fracturesurfaces were mainly at the Cu/Ni3P or Cu/Ni–Sn–P interfacein the samples aged at 200 !C (Fig. 7).

4. Discussion

The mechanical strength and fracture behavior of electrolessNi–P/solder joint were investigated in many studies [2,3,16–18].

 

  8  

3.  Experimental  Procedures  This  part  of  the  report  handles  the  experimental  procedures  of  the  project  such  as  the  preparations  of  the  Cu/NiP/SnAgCu  solder  joints,  the  thermal  aging,  the  tensile  test  and  the  fracture  analysis  of  the  solder  joints.    

3.1  Preparation  of  Solder  Joints  To  prepare  the  solder  joints  the  first  step  was  electroless  plating  on  the  substrate.  The  surface  of  the  copper  plates  was  first  polished,  and  then  ultrasonically  cleaned  with  acetone  and  ethanol,  in  each  solution  for  10  minutes.  The  samples  were  then  etched  with  nitric  acid  (HNO3)  for  30  seconds,  and  then  cleaned  in  de-­‐ionized  water.    Electroless  NiP  was  plated  on  the  plate  by  first  activate  the  surface  by  commercial  pre-­‐initiator.  Then  electroless  NiP  was  plated  on  the  surface  using  commercial  electroless  NiP  solution.  A  thin  layer  of  non-­‐cyanide  immersion  gold  was  then  deposited  on  the  electroless  NiP  surface  to  protect  the  surface  from  oxidation.    

3.2  Joining  A  thin  layer  of  no-­‐clean  flux  was  applied  to  the  surface  of  the  NiP  coated  copper  plates.  Then  the  solder  wire  (SnAgCu)  was  cut  in  the  same  size  as  the  width  of  the  plates.  The  two  plates  were  fixed  in  a  holder  and  the  solder  wire  was  put  between  the  two  plates,  the  setup  design  can  be  seen  in  figure  3.1.  

 

Figure  3.1  The  specimen  setup  before  being  heated.  

To  join  the  samples,  the  specimen  setup  was  sent  into  the  reflow  oven  and  heated,  seen  in  figure  3.2.  After  being  in  the  oven  the  specimen  setup  was  cooled  in  air.    

 

Figure  3.2  Specimen  setup  in  the  oven.  

 

  9  

3.3  Cutting  Before  cutting  the  samples  were  molded  in  epoxy.  The  as-­‐joined  specimens  were  cut  into  thin  plates  with  rectangular  cross  section  of  the  dimension  of  12  x  20mm  and  with  a  thickness  of  0.65  mm,  using  a  precision  diamond  cutter.  The  cut  plates  are  shown  in  figure  3.3.      

 

Figure  3.3  Cross  section  of  the  specimen  setup  cut  into  plates.  

3.4  Aging  The  as-­‐joined  specimens  were  thermally  aged  at  180°  C  for  100,  200,  300,  400  and  500  hours.  After  the  thermal  aging  the  samples  were  cooled  in  air.      

3.5  Tensile  Test  The  thin  plates  where  then  molded  in  epoxy  and  cut  into  rods  with  the  cross-­‐section  of  0.65x0.65  mm,  using  a  precision  diamond  cutter.  The  design  can  be  seen  in  figure  3.4.  One  as-­‐joined  specimen  was  also  cut  in  to  rods  and  prepared  for  the  tensile  test.  The  rods  can  be  seen  in  figure  3.5.  

 

 

 

 

 

 

 

 

Figure  3.4  The  design  of  the  rods  

 

 

Cu  

 

Cu  

6  mm   650  µm   6  mm  

650  µm  SnAgCu  

NiP  

 

  10  

 

Figure  3.5  Samples  before  tensile  test.  

The  tensile  tests  were  performed  using  an  Instron  5567  tensile  tester  (Instron,  Boston,  MA)  at  room  temperature  with  a  constant  crosshead  speed  of  0.05mm/min.  Load  and  extension  were  recorded  during  the  tests.  The  maximum  load  divided  by  the  measured  cross-­‐sectional  area  of  the  solder  joint  gave  the  tensile  strength.  Three  samples  were  tested  from  all  aging  durations.  One  of  the  tensile  tests  is  seen  in  figure  3.6.  

 

Figure  3.6  Tensile  test  

3.6  Fracture  Analyze  The  fractured  samples  were  observed  by  an  optical  microscope  (Olympus  BX51)  to  find  out  the  fracture  path.  All  micrographs  are  in  magnification  5x/0.10  BD.    

 

  11  

4.Result  &  Discussion  In  this  report  an  alloy  of  nickel  and  phosphorus  were  plated  on  copper  plates  by  electroless  plating.  The  plates  were  joined  together  using  SnAgCu  solder.  Tensile  tests  were  made  to  evaluate  the  mechanical  properties  of  the  solder  joints.  To  evaluate  its  suitability  for  high  temperature  applications  the  samples  were  aged  on  a  constant  temperature  of  180°  C  and  at  long  durations  (100,  200,  300,  400  and  500  hours)  before  the  tensile  tests  were  made.    In  the  coming  part  of  the  report  the  results  from  the  tensile  tests  will  be  presented  and  discussed,  as  well  as  the  micrographs  showing  the  fracture  behavior.    

4.1  Results  

4.1.1  Tensile  Test  To  evaluate  the  mechanical  properties  the  ultimate  tensile  strength  (UTS)  from  the  tensile  test  can  be  studied.  It  gives  indication  of  the  mechanical  strength  of  the  solder  joints.    

Table  4.1  Mean  values  of  the  UTS  for  three  samples  from  each  aging  duration.  

Aging-­‐time   UTS  [MPa]  As-­‐joined   40  100  hours   39  200  hours   42  300  hours   36  400  hours   31  500  hours   28    

Table  4.1  shows  the  UTS  of  the  samples  for  the  different  aging  durations.  For  each  condition  three  samples  were  tested,  the  table  shows  the  mean  value  of  the  three  samples.  The  as-­‐joined  samples  have  a  mean  value  of  40  MPa.  A  gradual  decrease  in  the  UTS  is  seen  at  300  hours  of  aging  (36  MPa),  at  500  hours  the  UTS  has  decreased  to  28  MPa.  A  plot  over  the  decrease  in  mechanical  strength  is  shown  in  Figure  4.1.  

 

Figure  4.1  Mean  values  of  the  UTS  in  MPa  as  a  function  of  aging  duration.  

0  

5  

10  

15  

20  

25  

30  

35  

40  

45  

0   100   200   300   400   500   600  

Tensile  strenght  [MPa]  

Hours  

 

  12  

 

4.1.2  Fracture  behavior  The  fracture  paths  were  analyzed  by  micrographs  from  an  optical  microscope.  One  solder  joint  from  each  ageing  condition  is  shown  in  figure  4.2-­‐4.3.  The  as-­‐joined  solder  joint,  the  100  hours  and  the  200  hours  solder  joints  have  a  necking  and  ductile  fracture,  seen  in  figure  4.2  and  4.3  a).  The  fracture  is  inside  the  bulk  solder.  Sample  300  hours,  shown  in  figure  4.3  b),  have  some  plastic  deformation,  but  the  fracture  is  at  the  interface  between  the  solder  and  the  substrate.  The  solder  joints  aged  for  400  hours  and  500  hours,  seen  in  figure  4.4,  have  plastic  deformation  and  the  fracture  is  in  the  interface.    

 

     

 

 

 

 

   

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4.2  Micrograph  of  the  fracture  path  on  solder  joints  after  tensile  test.  a)  as-­joined    and  b)  100  hours    

b)  

 

  13  

 

 

 

 

 

 

 

 

mmm  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4.3  Micrograph  of  the  fracture  path  on  solder  joints  after  tensile  test.  a)  200  hours  aging  and  b)  300  hours  aging    

   

 a)  

 

b)  

 

  14  

 

 

Figure  4.4  Micrograph  of  the  fracture  path  on  solder  joints  after  tensile  test.  a)  400  hours  aging  and  b)  500  hours  aging    

 

 

  15  

4.2  Discussion  As  mentioned  previously  in  this  report  it  is  of  greatest  concern  to  use  lead-­‐free  solders  in  electronic  products  because  of  the  health  and  environmental  hazards  arising  with  the  use  of  lead.  Lead  has  been  used  in  solders  because  of  its  suitable  properties.  However,  lead  is  legally  prohibited  in  the  European  Union  and  as  a  consequence  the  electronic  industry  is  aiming  to  produce  lead  free  products.    

The  use  of  lead  free  solders  causes  some  problems  with  the  reliability.  The  reliability  of  solders  in  electronics  is  an  important  issue  for  the  industry;  the  failure  of  a  solder  joint  can  destroy  the  whole  function  of  a  product.  SnAgCu  is  a  commonly  used  ternary  alloy  for  solder  joints.  Compared  to  lead-­‐rich  solders,  tin-­‐rich  solders  react  more  rapidly  with  the  copper  substrate.  The  reaction  results  in  formation  of  brittle  intermetallic  compounds  and  in  poor  mechanical  reliability.  By  addition  of  nickel  in  the  UBM,  the  interfacial  reaction  can  be  slowed  down.  Electroless  nickel-­‐based  UBM  is  used  because  of  its  good  wettability  and  low  cost.    

In  this  project  the  objective  was  to  evaluate  the  mechanical  reliability  in  high  temperature  applications  of  SnAgCu  solder  joints  with  NiP  UBM.  Tensile  tests  were  made  on  the  solder  joints  after  thermal  aging.  From  the  results,  the  mechanical  reliability  in  high  temperature  applications  can  be  discussed  and  evaluated.  To  evaluate  the  mechanical  properties  one  can  look  at  the  ultimate  tensile  strength  (UTS).  The  UTS  gives  indication  of  the  mechanical  strength  of  the  solder  joint.  The  higher  the  UTS,  the  more  stress  the  solder  joint  can  stand  and  the  better  are  the  mechanical  reliability.    

As  seen  in  chapter  4.1.1,  in  Figure  6  the  tensile  strength  decreases  as  the  aging  duration  of  the  samples  increases.  The  as-­‐joined  samples  have  a  mean  value  of  the  tensile  strength  of  40  MPa,  the  100  hour  samples  has  a  mean  value  of  39  MPa  and  the  200  hours  sample  42  MPa.  The  tensile  strength  for  the  as-­‐joined  sample  seems  low,  the  samples  aged  at  100  hours  and  200  hours  had  almost  the  same  result.  The  mechanical  strength  should  decrease  after  thermal  aging.  The  reason  for  the  slow  decrease  in  the  beginning  could  be  due  to  slow  consumption  of  the  UMB.  The  decrease  continues,  at  300  hours  (36  MPa),  400  hours  (31  MPa)  and  at  500  hours  the  tensile  strength  has  dropped  to  28  MPa.    

From  micrographs  of  the  fractured  samples,  the  fracture  paths  and  the  fracture  behavior  can  be  discussed.    The  fracture  behavior  seen  in  the  micrographs  (figure  4.2-­‐4.4)  shows  a  result,  where  the  fracture  shifts  from  ductile  to  brittle  at  300  hours  aging  time.  The  fracture  path  also  changes  at  300  hours,  from  being  inside  the  bulk  solder  to  being  in  the  solder/substrate  interface.      

 

  16  

In  figure  4.2  and  4.3  a)  show  the  micrographs  of  the  fracture  path  for  the  as-­‐joined,  100  hours  and  200  hours  solder  joint.  If  the  fractures  presented  in  chapter  2.4  are  being  used  the  fractures  could  be  categorized  as  ductile  fracture  inside  the  bulk  solder.  The  fracture  path  is  inside  the  solder  indicating  that  the  adhesion  between  the  solder,  the  substrate  and  the  intermetallic  layer,  and  the  layer  itself  is  stronger  than  the  strength  of  the  bulk  solder  and  can  bear  up  the  applied  stress.  The  necking  confirms  the  ductile  behavior.  When  the  solder  is  deformed  necking  occurs  with  increasing  plastic  strain,  and  the  hardening  around  the  neck  results  in  increased  resistance  to  deformation.  As  seen  the  fractured  surface  is  inclined  at  about  45  deg  to  the  tensile-­‐stress  axis.    

Figure  4.3  b)  and  4.4  a),  the  solder  joints  aged  for  300  and  400  hours,  the  fractured  surface  is  uneven.  Also,  some  plastic  deformation  has  occurred,  but  the  ductility  is  limited.  The  fracture  path  is  at  the  interface  between  the  solder  and  the  intermetallic  layers.  A  complete  analysis  to  see  if  the  fracture  is  trough  one  or  all  of  the  interfacial  layers  is  not  possible  without  analyze  of  scanning  electron  microscope  (SEM)  and  energy-­‐dispersive  X-­‐ray  (EDX).  The  reason  for  the  weakening  could  be  due  to  the  stress  generated  between  the  intermetallic  compounds  and  the  solder,  the  stress  is  caused  by  volume  mismatch  between  neighboring  layers,  the  thicker  the  intermetalli  compounds,  the  larger  the  stress.    

Figure  4.4  b),  the  solder  joint  aged  for  500  hours,  do  not  have  necking  and  it  does  not  look  like  the  solder  has  been  deformed  at  all,  which  should  imply  a  very  low  ductility.  The  fracture  is  between  the  solder  and  the  intermetallic  layers.  Cracks  are  probably  due  to  the  stress  caused  by  the  volume  change  during  phase  transformation  in  the  NiP  layer.    

The  tensile  strength  decrease  when  the  aging  duration  increases.  The  aging  duration  is  equivalent  to  the  time  for  the  reaction  of  solid-­‐state  diffusion  and  formation  of  intermetallic  compounds.  The  solder  joints  aged  for  longer  times  has  thicker  intermetallic  compounds,  which  explains  the  decrease  in  mechanical  strength.  When  ductility  decreases,  the  reliability  decreases  as  brittle  failures  are  harder  to  predict  and  are  more  sensitive  for  cracks  because  there  is  no  deformation  before  failure  occurs.  

 Compared  to  previous  research,  presented  in  chapter  2.4,  where  the  same  testing  method  was  used  on  the  same  substrate  and  UBM  but  with  Sn3.5Ag  solders,  the  decrease  in  this  report  is  happening  more  gradually.    In  the  case  with  the  Sn3.5Ag  solder  the  mechanical  strength  decreases  to  low  values  already  at  50  hours  of  aging  duration,  and  after  the  UTS  is  almost  constant.  In  this  report  the  decrease  happens  gradually,  and  does  not  reach  a  low  value  until  500  hours  aging  duration.  This  could  be  because  of  the  copper  in  the  solder  is  leading  to  a  slower  consumption  of  the  UBM.  Also,  the  intermetallic  compounds  formed  is  probably  CuSn  instead  of  the  more  brittle  NiSn.  However,  this  results  could  just  be  a  trend  in  this  project  since  a  weakness  in  the  experiment  is  the  amount  of  samples  which,  to  make  the  results  believable,  should  be  higher.  Also,  analyze  with  SEM  and  EDX  should  be  performed  to  make  more  trustworthy  conclusions  regarding  the  intermetallic  compounds.    

 

 

  17  

5.  Conclusion  &  Future  Work  

5.1  Conclusion  The  first  conclusion  is  by  increasing  the  aging  duration,  decreases  in  mechanical  strength  occur.  Also,  in  the  ductility  a  decrease  is  seen.  The  fractured  samples  have  necking  for  the  shorter  aging  durations  whereas  at  longer  aging  duration  no  plastic  deformation  is  seen.  The  decrease  is  happening  gradually,  the  fracture  path  however  changes  from  being  inside  the  bulk  solder  (at  200  hours)  to  being  in  the  interface  (at  300  hours).  When  the  fracture  is  inside  the  bulk  solder  the  adhesion  for  the  solder  is  still  good.  This  makes  it  possible  to  conclude  that  the  NiP  UMB  is  not  consumed  at  these  ageing  durations.  

To  make  the  next  conclusion  the  results  from  the  solder  used  in  this  report  (SnAgCu)  are  compared  to  previous  research  on  Sn3.5Ag/NiP  solder  joints.  Both  of  the  solders  show  decrease  in  the  mechanical  properties  when  thermal  aging  duration  increases.  However,  the  addition  of  copper  makes  the  decrease  in  mechanical  strength  happen  more  gradually  because  of  a  slower  consumption  of  the  NiP  UMB.    

5.2  Recommendations  for  Future  Work  Based  on  the  understanding  of  the  literature  and  the  presented  work  some  recommendations  for  future  work  will  be  presented.  

One  recommendation  is  to  involve  a  higher  number  of  samples,  to  make  the  results  more  accurate.  Due  to  lack  of  time  there  was  not  possible  in  this  project  to  look  into  the  compositions  and  structure  of  the  intermetallic  compounds  by  SEM  and  EDX.  But  this  would  have  been  an  interesting  point  and  would  strengthen  the  theory  what  intermetallic  compounds  are  being  formed.    

As  both  shear  test  and  tensile  test  has  been  made  would  it  also  be  interesting  to  look  at  other  aspects  for  the  fracture  behavior  and  reliability,  such  as  cyclical  load,  to  get  another  fracture.    

 

 

 

  18  

6.  References  [1]  Ulrich  Richard  K  and  Brown  William  D.  Advanced  Electronic  Packaging.  Second  edition.  Wiley-­‐IEEE  Press.  2006.  Chapter  2.  ISBN:  978-­‐0471466093.    

[2]  Emeka  H.  Amalu,  Ndy  N.  Ekere.  High  temperature  reliability  of  lead-­‐free  solder  joints  in  a  flip  chip  assembly.  Journal  of  Materials  Processing  Technology.  Vol.  212,  pp  471–483.  2012  

 [3]  Ridout  Stephen,  Bailey  Christopher.  Review  of  methods  to  predict  solder  joint  reliability  under  thermo-­‐mechanical  cycling.  Fatigue  &  Fracture  of  Engineering  Materials  and  Structures.  Vol.30,  pp  400–412.  2007  

[4]  Z.  Chen,  M.  He,  A.  Kumar,  G.  J.  Qi.  Effect  of  Interfacial  Reaction  on  the  Tensile  Strength  of  Sn-­‐3.5Ag/Ni-­‐P  and  Sn-­‐37Pb/Ni-­‐P  Solder  Joints.  Journal  of  Electronic  Materials.  Vol.  36,  pp  17-­‐25,  2007      

[5]    http://www.chipscalereview.com/archives/0803/images/f2_01.jpg  

2012-­‐04-­‐16  

 [6]  James  F.  Shackelford.  Introduction  to  Material  Science  for  Engineers.  7th  ed.  Prentice  Hall.  2008.  ISNB:  0136012604  

[7]  http://www.bis.gov.uk/nmo/enforcement/rohs-­‐home/Legislation  

2012-­‐03-­‐09  

[8]    http://www.rohscompliancedefinition.com  

2012-­‐03-­‐09  

[9]  A.  Kumar,  Z.  Chen.  Influence  of  Solid-­‐State  Interfacial  Reactions  on  the  Tensile  Strength  of  Cu/Electroless  Ni-­‐P/Sn-­‐3.5Ag  Solder  Joint.  Materials  Science  and  Engineering  A.  Vol.  423,  pp  175-­‐179.  2006    

[10]  Ikuo  Shohji,  Hirohiko  Watanabe,  Takeshi  Okashita  and  Tsutomu  Osawa.  Impact  Properties  of  Lead-­‐Free  Sn-­‐Ag-­‐Cu-­‐Ni-­‐Ge  Solder  Joint  with  Cu  Electrode.  Materials  Transactions,  Vol.  49,  pp.  1513  -­‐  1517.  2008  

[11]  M.  He,  Z.  Chen,  G.  J.  Qi.  Mechanical  Strength  of  Thermal  Aged  Sn-­‐3.5Ag/Ni-­‐P  Solder  Joints.  Metallurgical  and  Materials  Transactions.  Vol.  36A,  pp.  65-­‐75.  2005  

[12]  K.N.  Tu,  A.M.  Gusak  and  M.  Li.  Physic  and  material  challenges  for  lead-­‐free  solders.  Journal  of  Applied  Physics.  Vol  93,  pp  1335-­‐1353.  2003  

[13]  Wei  Shaa,  Xiaomin  Wu,  Watriah  Sarililah.  Scanning  electron  microscopy  study  of  microstructural  evolution  of  electroless  nickel–phosphorus  deposits  with  heat  treatment.  Material  Science  and  Engineering  B.  Vol.  168,  pp  95–99.  2010    

[14]  Johan  Liu,  Olli  Salmela,  Jussi  Sarkka,  James  E.  Morris,  Per-­‐Erik  Tegehall  and  Cristina  Andersson.  Reliability  of  Microtechnology.  1st  edition.  Springer  New  York  Dordrecht  Heidelberg.  2011,  pp  3-­‐69.  ISBN  978-­‐1-­‐4419-­‐5759-­‐7.  

 

  19  

[15]  M.  He,  Z.  Chen,  G.  Qi.  Solid  state  interfacial  reaction  of  Sn–37Pb  and  Sn–3.5Ag  solders  with  Ni–P  under  bump  metallization.  Acta  Materialia.  Vol.  52,  pp.  2047-­‐2056.  2004    

[16]  A.  Kumar,  Z.  Chen.  Influence  of  Solid-­‐State  Interfacial  Reactions  on  the  Tensile  Strength  of  Cu/Electroless  Ni-­‐P/Sn-­‐3.5Ag  Solder  Joint.  Materials  Science  and  Engineering  A.  Vol.  423,  pp.  175-­‐179.  2006  

 [17]  Amalu,  E.H.,  Lau,  W.K.,  Ekere,  N.N.,  Bhatti,  R.S.,  Mallik,  S.,  Otiaba,  K.C.,  Takyi,  G.  A  study  of  SnAgCu  solder  paste  transfer  efficiency  and  effects  of  optimal  reflow  profile  on  solder  deposits.  Microelectronic  Engineering.  Vol.  88,  pp  1610–1617.  2011  

 [18]  I.E.  Anderson  and  J.L.  Harringa.  Elevated  Temperature  Aging  of  Solder  Joints  Based  on  Sn-­‐Ag-­‐Cu:  Effects  on  Joint  Microstructure  and  Shear  Strength.  Journal  of  Electronic  Materials,  Vol.  33,  pp.  1485-­‐1496.  2004