mechanical ventilation for robotic surgery · 2020-03-26 · • during robotic surgery elastance...

56
Mechanical ventilation for robotic surgery Dr. Nurdan Bedirli Gazi University Anesthesiology Department

Upload: others

Post on 28-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Mechanical ventilation for robotic surgery

Dr. Nurdan BedirliGazi University Anesthesiology Department

Page 2: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Agenda • Respiratory challenges• Pneumoperitoneum• Steep Trendelenburg position

• Optimizing mechanical ventilation setting

Page 3: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Minimal invasivesurgery

Maximum invasive respiratory physiology

Page 4: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Respiratory problems related to robotic surgery

Learning curve

Need for multiple breathing circuits

Positioning• Trendelenburg• Reverse Trendelenburg

Pneumoperitoneum

• ↑CO2

• ↑IAP

Page 5: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Reverse Trendelenburg position

• FRC↑• Respiratory work↓• Thromboembolism

Respiratory System

Page 6: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Steep‐Trendelenburg position

• Endobronchial intubation• Atelectasis• FRC ↓• TLC↓• Compliance↓• Breathing work increases• Hypoxia

Respiratory system

Page 7: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Compression

Airway Chest Wall Pleura LungsAirwayresistance↑

Pleural pressure > alveolar pressureCOMPRESSION ATELECTASIA

Vena Cava

IAP↑Steep Trendelenburg

Blood shift tothorax

Page 8: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

80 Patients 60 without COPD

20 with COPD

TV 6‐8 ml/IBW

PEEP 5‐7cmH2O

The day before the surgery, postoperative 40 min. 120 min, 24 h, 5 d 

VC

FEV1

MEF50/MIF50

What is the effect of intraoperative Trendelenburg position andpneumoperitoneum on postoperative lung function in healty lungs?

Page 9: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to
Page 10: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Prolonged use of steep Trendelenburg position combined with pneumoperitoneumduring surgery• Effects lung function in the postoperative period• In heathy lungs• Recovery may need 5 days• MV• low TV• constant PEEP (5‐7)• no RM

Page 11: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

General anesthesia +Pneumoperitonium + Position

Conventional MV

Prevent hipoxia‐Improve SpO2

Low TV / PEEP<5

Alveolar injury

Postoperative complication

Page 12: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Lung protective ventilation prevents PPC

Page 13: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

LPMV=Individualized mechanical ventilation

Page 14: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Individualizing mechanical ventilation‐key points• Preoperative risk assessment • Starts with induction of anesthesia• Optimal ventilatory setting• Low tidal volume• PEEP titration• Alveolar recruitment

• Intraoperative monitoring of lung mechanics• Crs• Pplat• Pdriving• Ptp

Page 15: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Preoperative evaluation

Anamnesis Airwayevaluation

Pulmonary risk

Cardiac risk

Glaucoma anamnesis

Central nervous system diseases

Tromboemboli anamnesis

Patient constent: orbital/facial edemaprolonged intubation

Page 16: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Induction of anesthesia• Patient positioning at the induction• Avoid supine position• 30 degree head up and reverse Trendelenburg position• NIPPV or CPAP

Page 17: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Intraoperative ventilatory settings

Page 18: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Tidal volume

Serpa Neto A, Schultz MJ, Gama de Abreu M. Intraoperative ventilation strategies toprevent postoperative pulmonary complications: Systematic review, meta‐analysis, and trial sequential analysis. Best Pract Res Clin Anaesthesiol. 2015 Sep;29(3):331‐40

Hemmes SN, Gama de Abreu M, Pelosi P, et al. on behalf oft he PROVE Network Investigators forthe Clinical Trial Network of the European Society of Anaesthesiology. High versus low positive end‐expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial. Lancet. 2014 Aug 9;384(9942):495‐50

Futier E, Constantin JM, Paugam‐Burtz C, et al; IMPROVE Study Group. A trial of intraoperative low‐tidal‐volume ventilation in abdominal surgery. N Engl J Med. 2013 Aug 1;369(5):428‐37. 

Page 19: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Tidal volume

Serpa Neto A, Schultz MJ, Gama de Abreu M. Intraoperative ventilation strategies toprevent postoperative pulmonary complications: Systematic review, meta‐analysis, and trial sequential analysis. Best Pract Res Clin Anaesthesiol. 2015 Sep;29(3):331‐40

Hemmes SN, Gama de Abreu M, Pelosi P, et al. on behalf oft he PROVE Network Investigators forthe Clinical Trial Network of the European Society of Anaesthesiology. High versus low positive end‐expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial. Lancet. 2014 Aug 9;384(9942):495‐50

Futier E, Constantin JM, Paugam‐Burtz C, et al; IMPROVE Study Group. A trial of intraoperative low‐tidal‐volume ventilation in abdominal surgery. N Engl J Med. 2013 Aug 1;369(5):428‐37. 

Page 20: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Don’t forget !

Low TV

IBW

• NIH/NHLBI ARDSNet• Women: 45.5 + 0.905 x ([boy‐cm] – 152.4)• Men: 50.0 + 0,905 x ([boy‐cm] – 152.4)

Page 21: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

29.343 patient / Postop 30 day mortality / Hospital stay lenght

Low TV (IBW) + PEEP < 5 

Low tidal volume alone may be insufficient or even harm  the lungs

Page 22: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Low TV is effective only combined with PEEP

PEEP does not open collapsed alveolusPrevents the alveolus from collapse 

Page 23: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Individualize PEEP‐How?

• Complians• Respiratory pressure• Plato pressure• Driving pressure• Transpulmonary pressure

• IAP Robotic Surgery

• Adjust PEEP that provides• maximum complians• within safe driving pressureslimits

Monitoring

Always with RM

Page 24: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Robotic surgery‐ Problems relating interpretation of the pressure• Elevation of intra‐abdominal pressure• Position‐related lung volume changes• Obesity

Page 25: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Crit Care Med. 2013 Aug;41(8):1870‐7. 

PigInfluence of IAP

FRCPlateau and driving pressuresCL and CCWEnd expiratory and end inspiratory transpulmonary pressures

GroupsPEEP 1 cm H2O PEEP 10 cm H2O + RM (PCV‐ PIP= 40 and PEEP =20) 

Page 26: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

• FRC reduce as IAP increase• Capacity of PEEP to preventreduce FRC is limited when IAP exceed PEEP

Page 27: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

• TV and PEEP is constant• increased IAP result in increased Pplat and Pdriving• changes in transpulmonary driving pressure withrespect to IAP increase is negligible

Page 28: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

• Conclusion• FRC reduced as IAP increases

• Capacity of PEEP 10 to prevent reduction of FRC is limited when IAP exceed the PEEP level

• In the presence of raised IAP• Ptp may be helpful for setting mechanical ventilator parameters

Page 29: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

What fraction of increased driving pressure icrease Ptp and risk for VILI during robotic surgery? 

Page 30: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

• 35 ASA II patients Robotic surgery pneumoperitoneum andtrendelenburg position• Surgery stages: Pneumoperitoneum/Pneumoperitoneum + Trendelenburg• Respiratory mechanics calculated• Esophageal baloon pressures• Respiratory flows

• Regional lung ventilation assessed• Electrical impedance tomography

Page 31: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

• Pn + Trendelenburg• 82% increse in driving pressure (A)• 38 % increse in Ptp (B)• 198% increase in chest Wall component of driving pressure (C)

Page 32: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Comparion baseline withPneumoperitoneum+Trendelenburg• Ecw increased 223%• EL incresed 48% 

Page 33: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

• During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to laparoscopy• Mechanism• Not clear• Diaphragm and abdominal wall stretch• Reduced area of lung apposed to the rib cage because of Trendelenburg position• Rigid framework that the robot arms docked to the ports

Page 34: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to
Page 35: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Moderate‐High PEEP needed to resist IAP for robotic surgery

Page 36: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to
Page 37: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Recruitment + PEEP

Robotic surgery ventilationdependent on RM + PEEP

Page 38: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Contradications RM

Emphysema

Hemodynamic instability

Right heart failure

Increased ICP

Page 39: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

During RM

• Arrhythmia• Newly emerged• Resistant

• SAP<90 mmHg• >3 minutes• Resistant fluid replasment and medication

Hemodynamic instabilty

• SpO2<92%• SpO2<92% before RM –5% decrease

Decreased in oxygen saturation

Page 40: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

strategy for ventilation

FiO2 0.4

VCV ‐ tidal volume  6 to 8 mL/kg IBW

PEEP 5‐7 cmH2O

Respiratuary rate ‐ETCO2 40‐45 mmHg 

I:E 1:2

Monitor P plato and P driving

Initial

Page 41: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

• Just after intubation• After Pneumoperitoneum

• Afterpneumoperitoneum+Trendelenburgposition• Before docking

RM‐automated

Page 42: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

strategy for ventilation problems

Driving pressure>15cm 

H2O

Hipoksia SpO2<92 

Rule out bronchospasm andendobronchial intubation

FiO2 ↑ (not more than 50)

I:E= 1:1 

Perform recruitment maneuvers

Reduce insuflation pressure

Page 43: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

strategy for ventilation problems

Hypercarbia

Hyperventilation

Subcutaneous emphysema

Page 44: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Hipoxia andhypercarbia

persistDiscuss conversion to open surgery

Page 45: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Summary

FiO2< 70% induction/extubation

Semi fowler‐intubation/extubation

NIMV‐induction/extubation

TV↓, Frequency↑

Minimal FiO2 

Recruitment +PEEP 

Reverse (sugammadeks)

Page 46: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to
Page 47: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to
Page 48: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Emergence from anaesthesiaand postoperative care

Page 49: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to
Page 50: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Avoide condition that negate theintraoperative efforts to recruit and

maintain an open lung

Page 51: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Emergence‐Optimize position

• Avoid supine position• 30 degree head up and reverse Trendelenburg position

Page 52: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Emergence‐Avoid ZEEP

• Avoid tracheal tube suctioning immediately before trachealextubation• NIPPV or CPAP• Don’t turn off the ventilator allowing carbon dioxide to accumulate tostimulate spontaneous ventilation• Other interventions likely beneficial• prevention of coughing and bucking on the tracheal tube

Page 53: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Emergence‐FiO2

• In the appropriate clinical conditions, the use of low FIO2 (<0.4)

Page 54: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

Postoperative

• When high FiO2 (>0.8) is used during emergence• use of low FiO2 (<0.3) CPAP immediately after tracheal extubation may reducethe risk of resorption atelectasis

• Administration of postoperative supplemental oxygen is recommended when room air SpO2 decreases below 94% • Avoid routine application of supplemental oxygen withoutinvestigating and treating the underlying cause

Page 55: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

CPAP/NIMW

• During the transition between mechanical ventilation andspontaneous breathing• Postoperative prophylactic CPAP/NIMW for patients who use thesebefore surgery• Think for patients with high risk • Obese• Robotic surgery

Page 56: Mechanical ventilation for robotic surgery · 2020-03-26 · • During robotic surgery elastance CW is the primary contributor to total respiratory system elastance in contrast to

CPAP administered after a major surgery may reduce atelectasis, thefrequency PPC• Postoperative• CPAP of 7.5 cm H2O vs 6 L min flow of 50% oxygen by the Venturi mask mayreduce reintubation rate, PPC• CPAP of 10 cmH2O