medi4ris of polymerizati..(u) meeeeeahee mohmomheeeoii … · 2014-09-28 · -a195 12i quantum...

170
-A195 12i QUANTUM CHEMICAL INVESTIGATIONS OF THE MEDi4RIS OF CATIONIC POLYMERIZATI..(U) JOHNS HOPKINS UNIV BALTIMORE MD J J KAUFMAN 15 NOV 87 TR-8 N88814-88-C-893 UNCLASSIFIED F/G 7/3 R mohmomhEEEoiI mEEEEEAhEE EEEEEEEEE I, IhEEEEEEmhEEEI

Upload: others

Post on 03-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

-A195 12i QUANTUM CHEMICAL INVESTIGATIONS OF THE MEDi4RIS OFCATIONIC POLYMERIZATI..(U) JOHNS HOPKINS UNIV BALTIMOREMD J J KAUFMAN 15 NOV 87 TR-8 N88814-88-C-893

UNCLASSIFIED F/G 7/3 RmohmomhEEEoiImEEEEEAhEEEEEEEEEEE

I, IhEEEEEEmhEEEI

Page 2: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* 111112

.111125 111111-4

*1-2 II V.VIIlV

Page 3: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

'A''UOCUMENTATION PAGEAD-A 195 127 .L Tlb RESTRICTIVE MARKINGS

a SECURITY CLASSIFICATION AUTMJ MAY 2 3 3 DISTRIBUTION/AVAILABILITY OF REPORT

oECLASSIFICATON, DOWNGRA NLE Unlimited distributions

4. PERFORMING ORGANIZATION R TNUM )S. MONITORING ORGANIZATION REPORT NUMBER(S)

ONR-NRO93964-TR8 .... Office of Naval Research

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

- The Johns Hopkins University (If applicable) Office of Naval Research

6c. NDDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)Charles and 34th Streets 800 N. Quincy StreetBaltimore, Maryland 21218 Arlington, Virginia 22217

8a. NAME OF FUNDING/SPONSORING Bb OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERORGANIZATION (If soiable)

Office of Aliaval Pparrh I rnria &71P Contract N00014-80-C-0003Sc ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

800 N. Quincy Street PROGRAM PROJECT TASK IWORK UNITArlington Virginia 22217 ELEMENT NO. NO. NO. IACCESSION NOA ' 2 4326-064

11. TITLE (Include Security Oeficat,on) Quantum Chemical Investigations of the Mechahism of CationicPolymerization and Theoretical Prediction of Crystal Densities and Decomposition-Pathwaysof Energetic Molecules12. PERSONAL AUTHOR(S) Kaufman, Joyce J.

,3a. TYPE OF REPORT I3b. TIME COVERED 14. DATE OF REPORT (Yai Month, Day) lS Pit, COUNTAnnual FROM S/fiLI TO"_lZ3Dn 87/11/15 6

- 16. SUPPLEMENTARY NOTATION

-7 COSATI CODES Is. SukoeC? TERMS (Cortine on revere if necenary and idantify by block number)FIELD GROUP SUB-GROUP Cationic Pblymerization Energetic Polymers/Oxetanes/Quantum

Chemical Calculations/Cbnfiguration Interaction (CI)/Multi-rCn iue Reference Double Excitation - Configuration Interactin

ll "ABSTRACT (Continue On reverse if ncesaty aid 41entify by block number)

.-' dI. Program Enhancements and New Program Developments on the CRAY Supercomputer"I1. MRD-CI Calculations for Cationic Polymerization of Energetic Oxetanes ,III. Ab-Cnitio MRD-CI Calculations for Breaking a Chemical Bond in a Molecule in a Crystal'or Other Solid EnvironmentV". IV. POLY-CRYST/

I. This past year we have made a significant breakthrough. We developed and implemented0 and used successfully the strategy for ab-initio MRD-CI (multireference double excitation -

configuration interaction) calculations for bceaking a chemical bond in a molecule in a crys-tal or other solid environment. ( y . ' , - . ...II. A. Ab-Initio MRD-CI Calculati os for the Propagation Step

Our major emphasis this past year has been to carry out in-depth detailed ab-initio MRD-CI

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION-UNCLASSIFIEDUNLIMITED 0 SAME AS RPT COTC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Incluae Area Code) 22c. OFFICE SYMBOLRichard S. Miller . (202) 696-4403 Code 473P

DO FORM 1473, 84 MAR 83 APR edition may 0* used unltil exausted. SECURITY CLASSIFICATION OF '-S DAGE

VW~ibrON1 STAEM T -A All other editions are otnoitlet.

I App~ovd for public r.Ioczm4... ,o ,, . . ,--. -4 - -= u . .m . I. ...

.-. **.-.Zl u l t U lmie

Page 4: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

p

18. (MRD-CI)/Energetic Compounds/MRD-CI for breakina Chemical Bond in Crystal/Crystal andPolymer Orbitals19. (multireference double excitation - configuration interaction) calculations on thepropagation step of cationic polymerization of oxetane (or an energetic substituted oxetane)reacting with protonated oxetane (or a protonated energetic substituted oxetane).

MRD-CI calculations (based on localized orbitals) along the potential energy surfaceshave been carried out for a very large number of geometry variations for the angles betweenthe rings, the inter-ring distance ;0 -C A ) (where the A ring is the protonated ring and theB ring is the non-protonated ring), tBi a gle of opening the C4A-OIA ring and the orientationof the H atoms on C.

These MRD-CI caculations have enabled us to map out the reaction coordinates of thepropagation step reaction of oxetane (or an energetic substituted oxetane) reacting withprotonated oxetane (or with a protonated energetic substituted oxetane), to identify thetransition state of the propagation step and to identify when the C A-O bond in theprotonated ring will start to open as a function of inter-ring dist nce lnd angle for eachdifferent pair of substituted reactants.

This year we first carried out MRD-CI calculations for the prototype systems OXET +OXETH , OXET + FNOXH , FNOX + OXETH , FNOX + FNOXH , to gain the understanding of the basicmechanism of the propagation step. We then cirried out MRD-CI calculations for the systemsAMMO + OXETH , OXET + AMMOH and AMMO + AMMOH-.

B. Ab-Initio MRD-CI Calculations of the Protonation of OxetaneOxetane + H is not the lowest energy state of separated fragments of protonated oxetane atthe dissociation asymptote. The lowest energy state is oxetane + H since the IP of oxetaneis lower than that of H. Thus, no single determinant SCF calculation forprotonation/deprot~nation can describe the system properly. Our MRD2CI results indicated thatthe lowest ground A1 state at Tquilibrjum dissociated to oxetane- ( A ) + H. The potentialsurface arising from oxetane (X A ) + H was repulsive. There were alio a wealth of otherstates arising at the dissociatioA asymptote from higher states.

III. This past year we derived and implemented an extension of our MRD-CI technique based onlocalized orbitals to ab-initio MRD-CI calculations for breaking a chemical bond in a moleculein a crystal or other solid environment. In this procedure the SCF is solved explicitly forthe molecules in a unit cell (or larger piece of crystal) in the multipole field of yet fur-ther out surrounding molecules. The SCF wave function is localized and the localized orbitals(occupied and virtual) in the region of the bond being broken are included explicitly in theMRD-CI calculations. This method is completely general and applicable to any molecule in anykind of a crystal or other solid environment. This development has led to an importantbreakthrough which will lead to crucial understanding of the initiation of detonation and thesubsequent processes leading to detonation. Results will presented on the CH - NOp decom-position of nitromethane in nitromethane crystal. This system is the prototype of ?C-NO 2dissociation.

IV. We devoted only minimal but still scientifically significant effort to further develop-ment and testing of the POLY-CRYST program. We derived and incorporated into the POLY-CRYSTincluding the multipole effects of farther out molecules to include long range effects also.We then meshed this multipole procedure back into the MRD-CI programs to enable us to includemultipole effects when breaking a chemical bond in a crystal. We also derived and implementeda procedure for calculating the charge imbalance caused by various integral thresholds to givea precise measure of the effect on the crystal orbital calculation of dropping integrals ofvarious sizes. The POLY-CRYST program has promise for yielding important fundamental resultson crystalline energetic materials.

We carried out ab-initio crystal orbital calculations on several unit cells ofnitromethane to verify that our SCF method in the field of multipoles described above in PartIII did correctly describe a crystal of nitromethane.

% Na . '.0' J. O'dw F1 'r I~ . J .t % . , V

Page 5: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

n

Report Number ONR-NRO93964-TR8

SUMMARY

ANNUAL REPORT

QUANTUM CHEMICAL INVESTIGATIONS OF THE MECHANISM OF CATIONICPOLYMERIZATION

and

THEORETICAL PREDICTION OF CRYSTAL DENSITIES

and

DECOMPOSITION PATHWAYS OF ENERGETIC MOLECULES

Joyce J. Kaufman, Principal InvestigatorThe Johns Hopkins UniversityBaltimore, Maryland 21218

Contract N00014-80-C-0003Office of Naval Research

Dr. Richard Miller, ONR Contract Monitor

Period Covered October 1, 1986 - September 30, 1987

November 15, 1987

Approved for public release; distribution limited

Reproduction in whole or in part is permitted for any purpose of theUnited States Government

0

88 o'I.~~~~ z% KM .&'~

Page 6: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

I

Quantum Chemical Investigations of the Mechanism of Cationic Polymerizationand Theoretical Prediction of Crystal Densities and Decomposition Pathways

of Energetic Molecules

Joyce J. Kaufman, Principal Investigator

TABLE OF CONTENTS

Concise Summary ..... ...................... 1I. Program Enhancements and New Program Developments

on the CRAY Supercomputer ..... ................. 6II. MRD-CI Calculations for Cationic Polymerization of

Energetic Oxetanes ........ ..................... 7* A. Ab-Initio MRD/CI Calculations for the Propa-

gation Step ........................... 7B. Ab-Initio MRD-CI Calculations of the Protona-

tion of Oxetane .... .................. ... 125III. Ab-Initio MRD-CI Calculations for Breaking a Chemical

Bond in a Molecule in a Crystal or Other Solid En-I vironment ....... .. ......................... 127

A. Methodology .... .................... 127B. Calculations Carried out on Nitromethanes..... 128C. Detailed Results of Calculations Carried Out For

Nitromethane: Various Choices of Size and Descrip-tion of System ..... .. ................. 135

IV. POLY-CRYST ....... ......................... 149V. Lectures Presented and Publications on This ONR Research * 150

VI. Project Personnel ...... ..................... ... 154Distribution List ...... ..................... . 155

DTIC TAB C

Justifloation

Distribution/

V Avail and/or.?Dist Special

'S

Page 7: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

QUANTUM CHEMICAL INVESTIGATIONS OF THE MECHANISM OF CATIONIC POLYMERIZATION

and

THEORETICAL PREDICTION OF CRYSTAL C7NSITIES

and

DECOMPOSITION PATHWAYS OF ENERGETIC MOLECULES

Joyce J. Kaufman, Principal InvestigatorDepartment of ChemistryThe Johns Hopkins University

CONCISE SUMMARY

* I. Program Enhancements and New Program Developments on the CRAYSupercomputer

This past year we have made a significant breakthrough. We developedand implemented and used successfully the strategy for ab-initio MRD-CI(multireference double excitation - configuration interaction) calculationsfor breaking a chemical bond in a molecule in a crystal or other solidenvironment. In this procedure the SCF is solved explicitly for themolecules in a unit cell (or larger piece of crystal) in the multipole fieldof yet further out surrounding molecules. The SCF wave function islocalized and the localized orbitals (occupied and virtual) in the region ofthe bond being broken are included explicitly in the MRD-CI calculations.This method will be detailed in section III. This method is completelygeneral and the results lead to an understanding of fractoemission and ofthe initiation of detonation and the subsequent processes leading todetonation.

We continue to serve on the NSF San Diego Supercomputer Center (SDSC)* computer time allocation committee on their CRAY XMP 4/8. We also receive

computer time grants from SDSC which we use for the bulk of our quantumchemical calculations on this ONR research.

1 II. MRD-CI Calculations for Cationic Polymerization of Energetic Oxetanes

* Our major emphasis this past year has been to carry out in-depthdetailed ab-initio MRD-CI (multireference double excitation - configurationinteraction) calculations on the propagation step of cationic polymerizationof prototype substituted energetic oxetanes.

Cationic polymerization consists essentially of two major steps:* initiation and then propagation. There is considerable Navy interest in

energetic polymers made by cationic polymerization of oxetanes substituted

Page 8: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

2

or disubstituted by exotic energetic substituents such as azido,azidomethyl, nitrato, nitraminomethyl, etc. as well as fluoro and nitrogroups. The initiation step (which is crucial for cationic polymerizationto take place) is governed by the propensity of the substituted oxetane toundergo protonation. Our previous ab-intio quantum chemical SCFcalculations on the energetic oxetane monomers and electrostatic molecularpotential contour (EMPC) maps we generated from these electronic wavefunctions, which predict the order of protonation and hence initiation, wereable to predict correctly the propensity of the energetic substitutedoxetane monomers to undergo polymerization even prior to the synthesis ofthe monomers.

A. Ab-Initio MRD/CI Calculations for the Propagation Step

1. Discussion

As was suggested to us by several different experimentalists incationic polymerization (primarily Gerry Manser) the mechanism seems to beattack of protonated oxetanes on oxetanes (or vice versa) with concomitantring opening of the protonated oxetane according to the following generalscheme

R,\ //R2

R i l '

R Cc 0

H

"B" ring "A" ring

We have carried out this past year and are continuing to carry out ab-initio MRD-CI calculations on the subsequent propagation step of oxetane (oran energetic substituted oxetane) reacting with protonated oxetane (or aprotonated energetic substituted oxetane).

MRD-CI calculations along the potential energy surfaces have beencarried out for a very large number of geometry variations for the anglesbetween the planes of the substituted oxetane and protonated substitutedoxetane rings (which can be different in each direction in the case ofsubstituted rings), the inter-ring distance (OB-C4A) (where the A ring is

the protonated ring and the B ring is the non-protonated ring), the angle ofopening the C4A-O1A ring and the orientation of the H atoms on C4A.

The preferred direction of attack appears to be the reaction of theoxygen of the unprotonated oxetane ring (which we call 0IB) with the a

0",". ' ... , .. : ."" . ' " ,"v ,"i ' '. . '-' ."> -. -" . "- ' ' --.- ".

Page 9: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

3

carbon (which we call C4A) of the protonated substituted oxetane ring along

the C4AO1A bond direction with concommitant pulling back (inversion of the

H atoms on C4A) and opening of the C4A-O1A bond in the protonated oxetane

ring and formation of an 01B- C4A bond.

The ab-initio MRD-CI calculations on the propagation step of theprotonated oxetane ring opening in the course of interaction with oxetanewere carried out based on localized orbitals on the pertinent regionsinvolved in the reaction.

These MRD-CI calculations have enabled us to map out the reactioncoordinates of the propagation step reaction of oxetane (or an energeticsubstituted oxetane) reacting with protonated oxetane (or with a protonatedenergetic substituted oxetane), to identify the transition state of thepropagation step and to identify when the C4A-OIA bond in the protonated

..-. ring will start to open as a function of inter-ring distance and angle foreach different pair of substituted reactants.

2. Detailed Results

This year we first carried out such detailed MRD-CI calculations

for the prototype systems OXET + OXETH , OXET + FNOXH + , FNOX + OXETH+, FNOX1+

+ FNOXH , to gain the understanding of the basic mechanism of thepropagation step involving energetic substituted oxetanes without theadditional complication of floppyside chain groups. We then carried outsuch detailed MRD-CI calculations for the systems AMMO + OXETH+ , OXET +

AMMOH and AMMO + AMMOH +. We are currently carrying out similar

calculations involving BAMO and BAMOH+ and will carry such calculations outfor other energetic substituted oxetanes. These results will enable us tounderstand and to predict copolymerization propensities.

B. Ab-Initio MRD-CI Calculations of the Protonation of Oxetane

Oxetane + H is not the lowest energy state of separated fragmentsof protonated oxetane at the dissociation asymptote. The lowest energy

state is oxetane4 + H since the IP of oxetane is lower than that of H.Thus, no single determinant SCF calculation for protonation/deprotonationcan describe the system properly. Our MRD-CI results indicated that the

lowest ground IA1 state at equilibrium dissociated to oxetane (2A,) + H.

The A, potential surface arising from oxetane (X + H+ was repulsive.

There were also a wealth of other states arising at the dissociationasymptote from higher states.

Page 10: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

-4

III. Ab-Initio MRD-CI Calculations for Breaking a Chemical Bond in aMolecule in a Crystal or Other Solid Environment

The challenge arose to extend our MRD-CI (multireference doubleexcitation - configuration interaction) technique based on localized/localorbitals to the breaking of a chemical bond in a molecule in a crystal (orother solid environment). This past year we have derived, implemented, andused successfully a procedure for doing this. We made the first

apresentation of results using this method, spring 1987, at the ONR Workshooon Dynamic Deformation, Fracture and Transient Combustion of EnergeticCompounds.

This development has led to an important breakthrough which will leadto crucial understanding of fractoemission and of the initiation ofdetonation and the subsequent processes leading to detonation. Our method

* is completely general and applicable to any molecule in any kind of acrystal or other solid environment. The crystal can have defects,deformations, dislocations, impurities, dopants, edges and surface

- boundaries, etc.

Results will presented on the CH3 - NO2 decomposition of nitromethane

in nitromethane crystal. This system is the prototype of >C-N0 2

- dissociation.

IV. POLY-CRYST

POLY-CRYST is the program we previously derived and wrote for ab-initiocalculations on crystals and polymers using the translational symmetry in acrystal and the translational-rotational symmetry in a polymer. Commensuratewith the ONR priorities expressed to us by our ONR Contract Monitor, wedevoted only minimal but still scientifically significant effort to furtherdevelopment and testing of the POLY-CRYST program. As options we had already

*. included in POLY-CRYST our own ab-initio MODPOT (ab-initio effective coremodel potentials) and VRDDO (charge conserving integral prescreeningevaluation) options. It is these features, particularly VRDDO, which willenable POLY-CRYST to handle molecular crystals of large molecules and withlarge numbers of large molecules per unit cell. This year we derived andincorporated into the POLY-CRYST including the multipole effects of farther

• out molecules to include long range effects also. We then meshed thisrmultipole procedure back into the MRD-CI programs to enable us to includemultipole effects when breaking a chemical bond in a crystal. We also ransome tests on POLY-CRYST on integral thresholds and numbers of unit cellsnecessary for convergence. These preliminary tests identified necessarycriteria.

Toward this convergence criteria goal, we also derived and implemented aprocedure for calculating the charge imbalance caused by various integralthresholds to give a precise measure of the effect on the crystal orbitalcalculation of dropping integrals of various sizes. The POLY-CRYST program

."Z

Page 11: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~- -. w-. Fl -% F. Wn .~r l ~7 ' ~~4"4. . . 2 MI V- W1 %n! -%r %. ' r,~J t PU' %,~ '

* 5

has promise for yielding important fundamental results on crystallineenergetic materials.

We carried out ab-initio crystal orbital calculations on several unitcells of nitromethane to verify that our SCF method in the field ofmultipoles described above in Part III did correctly describe a crystal ofnitromethane.

'e . . . . . .

.44.

- 444

Page 12: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* 6

QUANTUM CHEMICAL INVESTIGATIONS OF THE MECHANISM OF CATIONICPOLYMERIZATION

and

. THEORETICAL PREDICTION OF CRYSTAL DENSITIES

and

DECOMPOSITION PATHWAYS OF ENERGETIC MOLECULES

Joyce J. Kaufman, Principal InvestigatorXI Department of Chemistry

The Johns Hopkins University

I. Program Enhancements and New Program Developments on the CRAYSupercomputer.

This past year we have made a significant breakthrough. We developedand implemented and used successfully the strategy for ab-initio MRD-CI(multireference double excitation - configuration interaction) calculationsfor breaking a chemical bond in a molecule in a crystal or other solidenvironment. In this procedure the SCF is solved explicitly for themolecules in a unit cell (or larger piece of crystal) in the multipole fieldof yet further out surrounding molecules. The SCF wave function islocalized and the localized orbitals (occupied and virtual) in the region ofthe bond being broken are included explicitly in the MRD-CI.

This method will be detailed in Section III.

This method is completely general and the results lead to anunderstanding of fractoemission and the initiation of detonation and thesubsequent processes leading to detonation.

We continue to serve on the NSF San Diego Supercomputer Center (SDSC)computer time allocation committee on their CRAY XMP 4/8.

Dr. Kaufman served at the December 1986 Allocation committee meetings,Dr. Hariharan served at the March and June 1987 meetings and Dr. Koski atthe September 1987 meeting.

"I' We also receive computer time grants from SDSC which we use for thebulk of our quantum chemical calculations on this ONR research.

: p.,

Page 13: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* 7

II. MRD-CI Calculations for Cationic Polymerization of Energetic Oxetanes

Our major emphasis this past year has been to carry out in-depthdetailed ab-initio MRD-CI (multi-reference double excitation-configurationinteraction) calculations on the propagation step of cationic polymerizationof prototype substitued energetic oxetanes. Cationic polymerizationconsists essentially of two major steps: initiation and then propagation.There is considerable Navy interest in energetic polymers made by cationicpolymerization of oxetanes substituted or disubstituted by exotic energeticsubstituents such as azido, azidomethyl, nitrato, nitraminomethyl, etc. aswell as fluoro and nitro groups. The initiation step (which is crucial forcationic polymerization to take place) is governed by the propensity of thesubstituted oxetane to undergo protonation. Our previous ab-intio quantumchemical SCF calculations on the energetic oxetane monomers andelectrostatic molecular potential contour (EMPC) maps we generated fromthese electronic wave functions which predict the order of protonation andhence initiation, were able to predict correctly the propensity of theenergetic substituted oxetane monomers to undergo polymerization even priorto the synthesis of the monomers.

A. Ab-Initio MRD/CI Calculations for the Propagation Step

1. Discussion of Calculation Procedure and Pathways of Attack

As was suggested to us by several different experimentalistsin cationic polymerization (primarily Gerry Manser) the mechanism seems tobe attack of protonated oxetanes on oxetanes (or vice versa) withconcomitant ring opening of the protonated oxetane according to thefollowing general scheme

-\/ R,R7C RC /RC

C /

H

We have carried out this past year and are continuing to carry out ab-initio MRD-CI calculations on the subsequent propagation step of oxetane (or

an energetic substituted oxetane) reacting with protonated oxetane (or aprotonated energetic substituted oxetane).

In order to understand and to be able to predict copolymerization

propensities of various energetic substituted oxetanes it is necessary totrace the reaction pathways of the propagation step in cationicpolymerization.

Although geometries of reactants and products may generally be obtainedexperimentally using a wide varietyof spectroscopic methods these same

techniques provide little information about reaction pathways. Thus, theonly way that the pathways of reactions and geometries of reactiontransition structures may be obtained is from the quantum chemical

Page 14: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

... .-- L... - c W W V,

-;

IL, W.- WV WU W-M r U

dW W W V WVW W'UJW. W j

calculations theory. Such quantum chemical theory can be used to examineany arrangement of nuclei.

These energetic oxetanes are large molecules for MRD-CI calculationsand the systems of energetic oxetanes and protonated oxetanes are evenlarger and thus beyond the size in which MRD-CI calculations can be carriedout in the cpu memory and disc storage of current CRAY XMP supercomputers.Thus we had derived, implemented and tested a new computational strategy forMRD-Cl calculations for intermolecular reactions and for moleculardecompositions based on localized orbitals. (The strategy is described inmore detail later in this section).

MRD-CI calculations along the potential energy surfaces have beencarried out for a ve-y large number (at least 25 separate MRD-CI calculatedpoints at different ;eometries are necessary for each set of reactingpartners) of a angles between the planes of the substituted oxetane andprotonated substituted oxetane rings (which can be different in eachdirection in the case of substituted rings), the inter-ring distances (01-

C4A) (where the A ring is the protonated ring and the B ring is the non-

4 protonated ring), angles 6 of opening the C4A-O1A bond in ring A and the

orientation of the H atoms on C4A as a function of the inter-ring distance.

For the MRD-Cl calculations on oxetanes and protonated oxetanes

:EFIN[T:CN CF A DEFINITION OF 5 R1 /R 2

R ' C 11cI / ""' .C, 0 - - -- C 30

R 1 42c 2"B" ring "A" ring

0~

we considered the localized bonds in the C4A-OIA bond, the C3A-C4A bond, the

C2A-C4A bond, the 0A -H+ bond, the lone pairs on 0 A and the bonds

connecting hydrogens to C2A and C4A, the 01 B-C4 B bond, the 0 1B C2B bond, the

bonds connecting hydrogens to C2B and C4B and the inter-ring 0 1B C4A bond.

This choice of localized orbitals has the great advantage since energeticoxetanes are substituted in the 3 position that it preserves the similarityin the MRD-CI among all the energetic substituted oxetanes and protonatedoxetanes and provides a sound basis for comparison.

The preferred direction of attack appears to be the reaction of theoxygen (which we call 01B) of the unprotonated oxetane ring on the a carbon

% %

Page 15: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

9

. m

(which we call C4A) of the protonated substituted oxetane ring along the

S4A-0 A bond direction with concomitant pulling back (inversion of the H

5'R %' atoms on C4A) and opening of the C4A-OIA bond in the protonated oxetane

ring, similar to an SN2 reaction mechanism.iN

C C "B" ring5,r ,... /

"" " C

C 0) C "A" rinD '/ '0 "/

0

H

The angle a between the two rings is determined for R(OIB-C4A) - 2.6 -

2.9 - 3.4 bohrs and is used for all other geometries.

Two bonds are essential. C4A-O1A and 01B-C4A are essential to describe

the reaction pathway. The bond inside the protonated oxetane ring (C4A-O1A)

varies from R = 2.8 to R - 4.9 bohrs which correspond to the fully closedand fully open ring of the protonated oxetane. This bond is described by

0 0the parameter 6 which varies from 0 (fully closed ring) to 19 (fully openring) and corresponds to the degree of openness of the ring.

* The OB-C4A bond is changed from R(OIB-C4A) from R - 2.1 bohrs to R -

10.0 bohrs.".4.

Positions of the proton H and hydrogens connected to C4A atom are the

most affected by opening the ring and their positions were determined for

the prototype system OXET + FNOXH + . These proton and hydrogen positionswere then used for subsequent studies of propagations reactions involvingother protonated energetic oxetanes.

We had previously shown that ab-initio MODPOT/VRDDO MRD-CI calculations* for oxetanes and protonated oxetanes gave energy differences and MRD-CI..j coefficients very close to those from much larger basis set all-electron

MRD-CI calculations.

Ab-initio MODPOT/VRDDO MRD-CI calculations have been carried out foreach point of the potential surface of oxetanes reacting with protonated

%0

Page 16: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

10

oxetanes in the propagation step of cationic polymerization. Because of thesize of the intermolecular complex molecular orbitals selected fromlocalized space are used in the MRD-CI calculations. The geometries studiedinclude the most sensitive part of the complex in the the MRD-CI procedure.

. Ten of the most important main reference configurations have been used inMRD-CI treatment, and the same set of main reference configurations havebeen kept through whole potential surface. All single and doubleexcitations were allowed relative to these main configurations. Theenergies of each of the thousands of contributing configurations isestimated by a perturbation procedure; a threshold is set for whichcontributions wil be included explicitly in the MRD-CI, in the followingtables, this MRD-CI energy is designated CI. Then the energies of all ofthe other configurations generated but not included explicitly in the MRD-CIare extrapolated and added back in, this energy is designated EX. Finally aDavidson type correction (which has been shown to be a good correction) forsize extensivity is added in.

ref

E(full CI estimate) = E(EX) + (I - Z C 2 ) [E(EX) - E(Ref)]p

p

and the summation is over all reference species. The use ofmulticonfigurational scheme is to assure avoiding of possible artifacts.

Our MRD-CI results support the suggestions of Gerry Manser as to themechanism of the propagation step in cationic polymerization of oxetanes.We discussed this with Gerry and he was quite gratified that our theoretical

• results were in accord with his hypothesis.

These MRD-CI calculations have enabled us to map out the reactioncoordinates of the propagation step reaction of oxetane (or an energeticsubstituted oxetane) reacting with protonated oxetane (or with a protonatedenergetic substituted oxetane), to identify the transition state of thepropagation step and to identify when the C4A -0 A bond in the protonated

oxetane will start to open as a function of inter-ring distance and anglefor each different pair of substituted reactants.

By comparing these results for different pairs of reacting substitutedoxetanes and protonated substituted oxetanes we shall be able to gaininsight into preferred copolymer candidates and relative reactivity ratios.

As we mentioned above, the substituted oxetanes are large molecularsystems and their interactions with protonated substituted oxetanes lead toeven larger systems. These are larger molecular systems than have ever beencalculated with MRD-CI methods and also exceed the amount of data that can

be handled even in the current CRAY-XMP series with the available core and

disc space.

We had previously developed and validated a new MRD-CI approach basedon localized orbitals in the reaction/interaction region with the remainderof the non-participating localized occupied molecular orbitals being foldedinto an effective CI Hamiltonian. We had shown by test examples that the

Page 17: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

MRD-CI based on localized orbitals give a potential energy surface formolecular decomposition essentially parallel to that using the entirevalence space MRD-CI. These MRD-CI calculations for the reaction ofsubstituted protonated oxetanes with substituted oxetanes are acomputationally and labor intensive project. For each different inter- andintra-molecular geometry point, first the SCF calculation must be run, thenthe resulting SCF canonical delocalized molecular orbitals must belocalized. In addition to determining the centroids of the localized bondscompared to the bonds and atoms involved in the interaction/reaction, thispast year we supplemented this with additional procedures to ensure that allpertinent bonds, lone pairs, vacant orbitals etc. would be included in thelocalized orbital MRD-CI. After localization a small single reference CImust be carried out to determine the major reference configurations toinclude in the subsequent MRD-CI. A great advantage in our carrying out theab-initio MRD-CI calculations based on the important localized orbitals inthe interaction/reaction region is the reasonable similarity of types ofmajor reference configurations for the variously energetic substitutedoxetanes and energetic substituted protonated oxetanes.

By first carrying out detailed MRD-CI calculations on the partners(oxetanes and protonated oxetanes) of oxetane itself, with the prototypeenergetic oxetane, FNOX (3-fluoro-3-nitrooxetane) we have been able toidentify the most pertinent portions of the interaction surface and theirelectronic characteristics. This behavior was verified by our similarcalculations involving protonated with non-protonated partners of oxetaneand AMMO (3-azidomethyl-3-methyloxetane) We can now focus on these regionsfor our calculations involving other even larger energetic substitutedoxetanes and protonated substituted oxetanes to identify copolymerizatonpropensities and optimal copolymer candidates.

I

%.* %

S?

rS

S,

Page 18: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

12

2. Detailed Results for Prototype Examples are presented in thefollowing pages.

(1). OXET + OXETH +, OXET + FNOXH +, FNOX + OXETH +, FNOX +

FNOXH+

(a). Energies

1'. Oxetane (OXET) + protonated oxetane

(OXETH+)

%: a'. Determination of The Pathway

The addition of oxetane (OXET) to

protonated oxetane (OXET ) has the features of an SN2 reaction as we

reported preliminarily last year. The approach presented utilizes thesefeatures to the greatest extent. Geometry of the reacting system: The

reaction of OXET with OXETH + is assumed to be an SN2 reaction with molecule

B (OXET) attacking molecule A (OXETH ) along the OB-C4A-O1A line. It is

found that head on geometry for approaching oxetane is energeticallypreferred, thus the C3B is also kept on the OIB-C4A-O1A line.

The geometry for the oxetane-protonated oxetane complex is presentedin Figure II-I, "The Geometry for Oxetane - Protonated Oxetane Complex"

The optimal angle a between the rings has been found to be 900, butdifferences between different angles are not significant.

The opening (C4A-OIA) of the protonated oxetane ring starts at

* R(OB-C4A) 4.6 bohrs. Next both: OIB-C 4A and C4A-O1A change

A" simultaneously until the complex reaches the stabilization point atR(OIB-C4A) at 2.9 bohrs and 6 = 190 (fully open). The stabilization energy

at R = 2.9 bohrs and 6 - 190 is -.04378 a.u. - -27.97 kcal/mol. Theestimated activation energy is 6.27 kcal/mol.

.b' Method of calculation

The ab-initio MODPOT/VRDDOcalculations have been carried out for each point of the surface. Becauseof the size of the intermolecular complex of the two reacting speciesmolecular orbitals selected from the localized space were used in the MRD-CI

*! calculations. The geometries studied include the most sensitive part ofthe complex (Figure II-8) in the CI procedure. Ten of the most importantmain reference configurations have been used in MRD-CI treatment, and thesame set of main reference configurations has been kept through whole

0,

Page 19: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

13

potential surface. The use of multiconfigurational scheme is to assureavoiding of the possible artifacts.

The potential energy surfaces and reaction potential map of OXET -

OXETH+ complex are presented in Figures 11-2 to 11-5.

Figure 11-2: MRD-CI Extrapolated Energy for Oxetane-Protonated Complex forFixed Angle 6 and Different Intermolecular Distances R(OIB-C4A)

Figure 11-3: MRD-CI Extrapolated Energy for Oxetane-Protonated OxetaneComplex for Fixed Intermolecular Distances R(OIB-C4A) and Different 6Angle Values

Figure 11-4: OXET-OXETH , Extrapolated CI Energy Along the ReactionCoordinate for Oxetane plus Protonated Oxetane Addition Reaction.

Figure 11-5: The Potential Energy Surface for OXET Approaching ProtonatedOXET

The detailed tables of results follow.

Table II-1: "OXET + OXETH + [R(O1B-C4A) - 3.4 bohrs] (different avalues)

Table 11-2: OXET + OXETH+6 = 00 (fully closed), Energies (a.u.) as afunction of R(OIB-C4A)

Table 11-3: OXET + OXETH+6 50 Energies (a.u.) as a function ofR(O1B-C4A)

Table 11-4: OXET + OXETH+6 100 , Energies (a.u.) as a function ofR(OIB-C4A)

Table 11-5: OXET + OXETH+6 = 150 , Energies (a.u.) as a function ofR(O1B-C4A)

Table 11-6: OXET + OXETH 6 - 190 , Energies (a.u.) as a function ofR(OIB-C4A)

S%0v:

r'

0 ..

Page 20: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

*Figure 11-1 14

0 wx

w

z4) 0)

a 0 4c

%- w

V z x

x0 00

*LL<

w00

5%w

5%D

5-.t

5%D

5cc

.4 .1

06 o

=*%SqOL

Page 21: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

0Fioure 11-2 15

'0

z lol

x CO,

z* LL -

V W 00

0I.

oU -j

0w

z

* w wz mwLLL

0

z

a..< . . . ............

>- "0)ft

* z -

Page 22: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

0-~Fiogure 11-3 16

zwccLLILL

w a

w 0

wo V

w m

z cc

~t 0 wi

I < W

LIz w)

0 <0 i

'5 0 0~ <

>* 0 TO

5,. 0L .a

z i.

5- w

< 0-

x 5.

'A w

00

In,

w.

Lax Rot"

Page 23: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

aFigure 11-4 17

xS.. w

zE- 0

00

z zo 2 w

0 0

cc

ww0 0

w +-~ I0

ww

z 00 0

00

cc ww >x zZ 0 0

0 I

0A0 m

w Z

xj 0

LU C/)

- z0- 0

w cc4Z0

z

00

VC

N za N - N N1

Page 24: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

Figure 11-5 18

0L

__ _ _ __ _ _

0. 0Ic

ccw in in

cc' 0 z 0

C L 0 ) 0

0 Wz M-<

0 co

I-< W

0 cc W5'cc 0

0 0 ~"LL 0. cc

Co 0< ;- WU

w

* - <

zi W 4.

z W g S0-

o3 4

z wWL x a0 < w0. o rw

00

- 5' . , -. *5-.'* 5. .'S. . . -5.. . . . . .%.L)~

Page 25: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

19

,

TABLE II - I

OXET + OXETH [R(OIB-C4A) - 3.4 bohrs](DIFFERENT a VALUES)

ENERGIES (a.u.)

6 00 (FULLY CLOSED) 6 = 190 (FULLY OPEN)

-a SCF CI,EX SCF CI,EX

90 -71.165534 -71.359265 -71.120867 -71.306027135 -71.163113 -71.355541 -71.120512 -71.304423180 -71.160545 -71.352441 -71.119567 -71.301750

minimum for a- 900

a = angle between planes of rings

6 = angle of opening of protonated ring

.~

w,

S'°

* SS.!-S"

l. #,4*.I., #. 't"W ~ - 'f 1 * .~

Page 26: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

20

TABLE II - 2

A

OXET + OXETH+

6 = 00 (FULLY CLOSED)

ENERGIES (a.u.)

R(OIB-C4A)(bohrs) 2.1 2.5 2.9

SCF -70.560381 -70.935433 -71.133963CI -70.755971 -71.130522 -71.325511EX -70.764130 -71.138320 -71.332365DAV -70.767576 -71.141576 -71.335368c2 .963 .964 .964

gs .904 .905 .905

R(O1B-C4A)(bohrs) 3.6 4.1 4.6

SCF -71.282489 -71.3153506 -71.3248406CI -71.467731 -71.498166 -71.506188EX -71.474386 -71.503304 -71.511483DAV -71.476889 -71.505569 -71.513815

c .967 .968 .989gs .905 .905 .905

R(O1B-C4A)(bohrs) 10.0

SCF -71.315625CI -71.497548EX -71.501413DAV -71.503505

42

c .969gs .903

2c is the contribution of all of the reference configurations

gs is the contribution of the ground state SCF wave functions

'a.

Page 27: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

0 21

TABLE 11 - 3

B

OXET + OXETH+(= 50)

ENERGIES (a.u.)

R(OIB-C4A)(bohrs) 2.1 2.5 2.9

SCF -70.804448 -71.109877 -71.241954CI -70.991765 -71.298261 -71.429245EX -70.998971 -71.305820 -71.437324DAV -71.001469 -71.308416 -71.440114

c .968 .967 .965gs .905 .905 .904

P(O1B-C4A),bohrs) 3.6 4.1 4.6

SCF -71.315482 -71.324034 -71.322182CI -71.498182 -71.505390 -71.502834EX -71.503904 -71.510932 -71.507776DAV -71.506605 -71.513540 -71.510269

c2 .964 .964 .965gs .904 .902 .901

R(OlB-C4A)(bohrs) 10.0

SCF -71.303100

CI -71.485062EX -71.488757DAV -71.4911732c .965gs .898

-9

0",",".". ", • . ",". ". -,' , , , . .. w.i. #J ,,m,,,m 'W , .

Page 28: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

22

TABLE II - 4

N c

U,-. OXET + OXETH

+

.k. (6 = 100). ,..

ENERGIES (a.u.)

R(OlB-C4A)(bohrs) 2.1 2.5 2.9

SCF -70.9586 2s -71.217923 -71.308731CI -71.138404 -71.399798 -71.491715

* EX -71.144042 -71.405662 -71.497156DAV -71.146096 -71.407782 -71.4994572c .971 .970 .968gs .908 .907 .905

* .R(OIB-C4A). (bohrs) 3.6 4.1 4.6

SCF -71.330412 -71.318510 -71.305275CI -71.509340 -71.494130 -71.478736EX -71.514915 -71.499211 -71.483719DAV -71.517429 -71.501685 -71.486078

,, 2 .965 .964 .965

gs .903 .904 .903

R(O1B-C4A)'(bohrs) 10.0

-. SCF -71.273589CI -71.446907EX -71.450690DAV -71.452995

-, 2 .964gs .901

L°.-6

0.,'

Page 29: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

23

4

TABLEI - 5

D

OXET + OXETH+

(6 = 15°0)

ENERGIES (a.u.)

'-,4, R(01B-C4A)(bohrs) 2.1 2.5 2.9

SCF -71.052683 -71.281971 -71.347995CI -71.227256 -71.459679 -71.527670EX -71.232863 -71.464859 -71.532460

.. DAV -71.234740 -71.466807 -71.535503

"c .973 .971 .962gs .912 .909 .906

R(OIB-C4A)(bohrs) 3.6 4.1 4.6

SCF -71.338394 -71.312645 -71.290592CI -71.516580 -71.486829 -71.460933EX -71.521608 -71.491883 -71.465153DAV -71.523932 -71.494220 -71.467242

c .966 .965 .967gs .902 .902 .904

R(OIB-C4A)(bohrs) 10.0

SCF -71.246902CI -71.414410

,' EX -71.417747

DAV -71.419465c .970gs .903

0.f%

0,-w.?..

"..

Page 30: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

24

TABLE I- 6

OXET + OXETH +

6 190 (FULLY OPEN)

ENERGIES (a.u.)

R(O1B-C4A)(bohrs) 2.1 2.5 2.9

SCF -71.101569 -71.310287 -71.360621CI -71.274272 -71.486679 -71.540063EX -71.279263 -71.491058 -71.545193DAV -71.281108 -71.492874 -71.547200

c .973 .972 .970gs .913 .910 .906

R(01B-C4A)(bohrs) 3.6 4.1 4.6

SCF -71.332170 -71.297912 -71.269955CI -71.512029 -71.474238 -71.441685EX -71.516097 -71.478066 -71.445050DAV -71.518387 -71.480429 -71.447196c2 .966 .964 .966

gs .901 .900 .902

R(O1B-C4A)(bohrs) 10.0

SCF -71.217258CI -71.383225EX -71.385572DAV -71.3870042

c .973gs .905

N O

Page 31: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

-' -25

2'. Oxetane (OXET) + Protonated 3-fluoro-3-

nitrooxetane (FNOXH )

a'. Determination of the pathway for

oxetane (OXET) and protonated 3-fluoro-3-nitrooxetane (FNOXH +) additionreaction.

The addition of oxetane (OXET) to

protonated 3-fluoro-3-nitrooxetane (FNOXH + ) has the features of the SN2

reaction, and the approach presented utilizes these to the greatest extent.

The geometry of reacting system.

The reaction of oxetane withprotonated FNOX is assumed to be the SN2 type reaction, with molecule B

attacking molecule A (Figure II - 6) along the O1B-C4A-O1A line.Figure 11-6: "The Geometry For Oxetane - Protonated FNOX Complex" Since it

was found for oxetane reacting with protonated oxetane that head on geometryfor approaching oxetane is energetically preferred the C3B atom is also kept

on OlB-C4A-O1A line. Because essential structural changes are expected to

*.'., ~ appear relative to the plane of FNOX ring the angle alpha between the tworings was determined for R(OIB-C4A) = 2.6 bohrs and was used for all other

geometries. The optimal alpha angle has been found to be 55 degrees.Figure 11-7, Table 11-7 "OXET + FNOXH + , SCF And CI Energy For DifferentValues of Angle Between Two Rings (Alpha) (Fully Closed Geometry)"

Two bonds: C4A-OIA and OIB-C4A are essential to describe the reactionpathway. The bond inside the FNOX ring (C4A-O1A) changes only from R - 2.8bohrs to R - 4.9 bohrs, which corresponds to the fully closed and fully open

ring of FNOXH +. This bond is later described by the more natural parameter6 which varies from 0 (fully closed) to 190 (fully open), and correspondsto degree of openess of the ring. The OIB-C4A bond is changed from R - 2.1bohrs to R - 10.0 bohrs.

Positions of proton H+ and hydrogens connected to C4A atom are the most

affected by opening the ring and these positions have been determined

optimally for each different FNOXH -ring geometry.

* b'. Method of Calculation

The ab-initio MODPOT/VRDDOcalculations have been carried out for each point of the surface. Because

LA

Page 32: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

V.-, 26

of the size of the intermolecular complex of the two reacting speciesmolecular orbitals selected from the localized space were used in the MRD-CIcalculations. The geometries studied include the most sensitive part of the

complex (Figure II - 8: "The Geometrical State of Oxetane-FNOXH+ Selectedfor MRD-CI Calculations") in the CI procedure. Ten of the most importantmain reference configurations have been used in MRD-CI treatment, and thesame set of main reference configurations has been kept through wholepotential surface. The use of multiconfigurational scheme is to assureavoiding of possible artifacts.

c'. Results for oxetane and FNOXH

The ring opening starts when

oxetane approaches FNOXH + for R(OIB-C4A) = 4.6 bohrs. Next, both: O1B-C4A

and C4A-OI change simultaneously until the complex reaches the

stabilization point at R(OIB-C4A) - 2.9 bohrs. and 6 = 190 (fully open).

The stabilization energy for the complex is -0.0603 a.u. - -39.7 kcal/mol.The reaction goes through transition state with activation energyapproximately .005 a.u. = 3.13 kcal/mol.

The potential energy surfaces and reaction potential map for oxetane-

FNOXH+ complex are presented in Figures 11-9 to II-Ii.

Figure 11-9: "MRD-CI Extrapolated Energy for Oxetane Approaching ProtonatedFNOX for Fixed Angle 6 and Different Intermolecular DistancesR(OIB-C4A)

Figure II-10: "MRD-CI Extrapolated Energy for Oxetane-Protonated FNOXComplex For Fixed Intermolecular Distances R(O1B-C4A) and Different 6Angle Values

Figure II-II: "OXET + FNOXH , Extrapolated CI Energy Along The ReactionCoordinate For Oxetane-Protonated FNOX Addition Reaction

Figure 11-12: "The Potential Energy for Oxetane Approaching FNOX"

, The detailed tables of results follow.

Table 11-8: "OXET + FNOXH 6 0 D° (fully closed), Energies (a.u.) as afunction of R(O1B-C4A)"

Table 11-9: "OXET + FNOXH+ 6 50, Energies (a.u.) as a function ofR(D1B-C4A)"

Table I-I0: "OXET + FNOXH+ 6 = 100, Energies (a.u.) as a function ofR(OIB-C4A)"

Table II-11: "OXET + FNOXH+ 6 - 150, Energies (a.u.) as a function ofR(O1B-C4A)"

N0 N

Page 33: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

27

4'

W°..

Page 34: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

Figure 11-6 28

00

w

0

zC..

9-.0

0 .

* o 00.I TwUz

0_

U.

-EI~L

w

0

CII-l

co

% -

01-IV

% N., N I

Page 35: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

Figure 11-7A

00

z

wU.L.

0 w-. LL

.4 w

< 0 '0

- 4C

cc w-. w

w0o wz co<. wLL -J

* LL

00

.4.-, C~l O

CY -

0zLL.+w

4-., w

Page 36: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

Figure 11-3 30

/

-A -

/ /// r'" I

m0

///m

C) >

> m

0 0,)

/ -n

> 0--I

N - m/>>. CA z

m

-Im z

40

0 ,lI°-

m

pC)

m

0

4m

Page 37: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

'C31* Figure 11-9 3

S. 0)

0~ 1

z *

ww

0w w

z z cc

W w 1

(~w

LL z0

0

x 0

Lu w zS~U. z

w~

Page 38: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

*Figure 11-10 32

LU

< LUIz C,o zI-- (0 ~cc C6)

(* LU

<I >

I-I

0 -1M 0 Z

0 ZZ-L cc U

Z LU LU

'pLUJ 0 0I.- z 'N

< <

o w

00

0 0

m U.

Page 39: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

Figure 11-11 33

0w

zB xcc w0 -j

4. 00

S0 x... w 0

~ 0 zIL

W w Icc w

I- zz

0

cr 00w zz u-

w 0w 0

w z z00

-j 0 C.)

ww

X ( <

w

0< 0-p., z

LL 0*+ z* w* z

< wz

0 w

SL 4 w

LZ I.4c

Page 40: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

Figure 11-12 34

0x

0zLiL

0

0w

z D 0

0 0

CL

< 0

z a ci< cr w~m

x 0 L0 0 .0

cc 0 1

LLI-

0 z 0

U- 0 0

0~ 0

c.) (1) 0-z w

LLI w I-J

00

z Co

0 Z )4.. cc~

Ui w 0

w Co0

0 0 Co* wn

Page 41: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

35

",•TABLE 11 7

'.OXET + FNOXH +

S,.

SCF AND CI ENERGY (a.u.) FOR DIFFERENT VALUESOF ANGLE BETWEEN TWO RINGS (ALPHA)

(FULLY CLOSED GEOMETRY)

P -0 -45 -55

SCF -134.40904 -134.56213 -134.56319CI -134.59884 -134.75371 -134.75493EX -134.60698 -134.76151 -134.76290DAV -134.61009 -134.76467 -134.76608

c,(0 -65 90 (-90) -135SCF -134.55734 -134.43763 -134.25124CI -134.74906 -134.62844 -134.43975

EX -134.75688 -134.63601 -134.44762DAV -134.76006 -134.63916 -134.45070

9% %

::.5

0

Page 42: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* 36

TABLE 1I 8

A

-4 OXET + FNOXH +

6 00 (FULLY CLOSED)

.5 ENERGIES (a.u.)

R(O1B-C4A)(bohrs) 2,1 2.6 3.1

SCF -134.110905 -134.563192 -134.762800CI -134.302148 -134.754932 -134.950999EX -34.310289 -134.762896 -134.958205DAV -134.313487 -134.766081 -134.961110

"'- 2

c .965 .964 .965GS .907 .907 .907

R(OIB-C4A)_(bohrs) 3.6 4.1 4.6

SCF -134.847935 -134.878792 -134.887225E. -135.031883 -135.060623 -135.067424

EX -135.038693 -135.065956 -135.0727171 DAV -135.041224 -135.068729 -135.074857

2, .967 .962 .969gs .907 .902 .906

R(OIB-C4A)(bohrs) 7.1 10.0

SCF -134.882235 -134.877230CI -135.062520 -135.058033EX -135.066463 -135.061843DAV -135.068503 -135.063898

" c .970 .970

gs .905 .904

0 .

Page 43: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

e 37

..

TABLE II - 9

B

OXET + FNOXH

6 50

ENERGIES (a.u.)

R(OIB-C4A)(bohrs) 2.1 2.6 3.1

SCF -134.370920 -134.727815 -134.847435Ci -134.553873 -134.914168 -135.033105EX -134.560230 -134.921401 -135.040733DAV -134.563793 -134.932963 -135.043589c 2 .961 .967 .964

gs .908 .906 .905

R(OIB-C4A)(bohrs) 3.6 4.1 4.6

SCF -134.882307 -134.887248 -134.883394CI -135.065067 -135.068662 -135.063898EX -135.070494 -135.074395 -135.068526DAV -135.074265 -135.077118 -135.071054

c2 .957 .964 .965gs .904 .903 .901

R(OIB-C4A)(bohrs) 7.1 10.0

SCF -134.868181 -134.862798CI -135.049391 -135.044737EX -135.052791 -135.048036DAV -135.055166 -135.050435

c2 .965 .965gs .899 .898

Page 44: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

38

TABLE II - 10

Sc

OXET + FNOXH +

6 - 10 °0

ENERGIES (a.u.)

R(OIB-C4A)(bohrs) 2.1 2.6 3.1

SCF -134.535644 -134.830287 -134.899875

CI -134711865 -135.010989 -135.082938

EX -134.717174 -135.016806 -135.088818

DAV -134.719132 -135.018927 -135.091260

2c .971 .970 .967

gs .910 .907 .904

i R(OIB-CmA).(bohrs) 3.6 4.1 4.6

SCF -134.899562 -134.882823 -134866316CI -135.080986 -135.060244 -135.040898

.-. EX -135.086011 -135.065866 -135.045438

• "DAV -135.088703 -135.068135 -135.048004

c 2.964 .968 .963

gs .901 .906 .903

R(OIB-C4A)(bohrs) 7.1 0.0

SCF -134.837119 -134.831005

Cl -135010516 -135.005397

EX -135.014918 -135.009072

DAV -135.017270 -135.011458

2c .964 .967

ai

gs ,900 .900

"4

Page 45: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

039

TABLE II - 11

D

OXET + FNOXH+

i,,',,w6 -5 , 15 0

ENERGIES (a.u.)M5

R(O1B-C4A)(bohrs) 2.1 2.6 3.1

SCF -134.635098 -134.889992 -134.930457* CI -134.806808 -135.066946 -135.111510

EX -134.811851 -135.072539 -135.117082DAV -134.813663 -135.074458 -135.119276

.2 .973 .972 .968gs .913 .909 .904

R(OIB-C4A)(bohrs) 3.6 4.1 4.6

SCF -134.909566 -134.878881 -134.853019CI -135.091031 -135.057257 -134.026524EX -135.096412 -135.062585 -134.030965DAV -135.098936 -135.065315 -134.033521

c 2 .965 .962 .962GS .899 .898 .900

R(O1B-C4A)(bohrs) 7.1 7.1

SCF -134.810279 -134.810279CI -135.977164 -134.977164EX -135.980338 -134.980388DAV -135.982137 -134.9821372 2 .969 .969

gs .904 .904

r 1%-N0' ..

p.

Page 46: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

40

TABLE I - 12

EOXET + FNOXH +

6 =19 0 (FULLY OPEN)

ENERGIES (a.u.)

R(O1B-C4A)(bohrs) 2.1 2.6 2.9

SCF -134.685867 -134.914697 -134.940369

* Ci -134.856194 -135.090774 -135.119754

EX -134.861224 -135.095386 -135. 125109

DAV -134.863028 -135.097236 -135.127119

, .973 .972 .970

gs .915 .910 .907

R(OIB-C4A) 3.1 3.6 4.6

SCF -134.937775 -134.905172 -134.866571

CI -135.118956 -135.088558 -135.048086EX -135. 123972 -135.092678 -135.052252DAV -135.126087 -135.095123 -135.055025

c .969 .965 .961

gs .904 .897 .894

R(OIB-C4A)

* (bohrs) 4.6 7.1 10.0

SCF -134.835066 -134.782966 -134.775784

CI -135.011475 -134.948137 -135.942239EX -135.014585 -134.951378 -135.945234

DAV -135.017295 -134.952855 -135.946753

c .960 .973 .972

"" .i. gs .895 .905 .904

% % %

0'w

Page 47: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* 41

TABLE I - 13

FNOX + OXETH +

6 00 (FULLY CLOSED)

SCF ENERGY (a.u.) FOR DIFFERENT VALUES OF ANGLE BETWEEN TWO RINGS (a)

S(- 0 SCF

-90 -134. 573887-45 -134.5663540 -134.556369

45 -134.566333

90 -134. 573804

o.-.l

"S

'....

,-

-. ,

-4.-,

51':

Page 48: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

42

3'. 3-Fluoro-3-nitrooxetane (FNOX) + protonated

oxetane (OXETH+).

a'. Determination of the pathway for 3-fluoro-3-nitrooxetane (F;!OX) and

protonated oxetane (OXETH+) addition.

The addition of 3-fluoro-3-

nitrooxetane (FNOX) to protonated oxetane (OXETH+) also has the features ofan SN2 reaction and the approach prescibed utilizes these to the greatest

C,.N

extent.

The geometry of the reacting system.

The reaction of FNOX with OXETH+ is assumed to be SN2 type reaction

with molecule B attacking molecule A (Figure 11-13) along the OB-C4A-OIA

line. Because essential structural changes are expected to appear relativeto the plane of FNOX ring the angle alpha between the two rings wasdetermined for R(OIB-C4A) - 2.6 bohrs and was used for all other geometries.

.b' Method of calculation

There is little difference inenergy with changes in a, the angle between the rings, Table 11-13, "FNOX +

OXETH , 6 = 00 (fully closed), SCF Energy for Different Values of AngleBetween Two Rings (a)". The method of calculation is the same as described

C-. +

for OXET + FNOXH in the previous section.

c'. Results for FNOX + XETH +.

The ring opening starts when FNOX

approaches to oxetane H+ for R(OIB-C4A) = 4.6 bohrs. Next, both: O1BC4A

and C4A-OIA change simultaneously until the complex reaches the

stabilization point at R(OIB-C4A) - 2.9 bohrs and 6 = 190 (fully open). The

stabilization energy for the complex is -.00915 a.u. = -5.74 kcal/mol. Theestimated activation energy is 6.27 kcal/mol.

The energies for angle a between rings do not vary significantly.

The potential energy surfaces and reaction potential map are presentedin Figures 11-14 to Figure 11-17.

..

Page 49: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

0 43

Figure 11-14: "MRD-CI Extrapolated Energy For FNOX Approaching ProtonatedOxetane For Fixed Angle 6 And Different Intermolecular DistancesR(O1B-C4A)"

Figure 11-15: "MRD-CI Extrapolated Energy For FNOX-Protonated OxetaneComplex For Fixed Intermolecular Distances R(OIB-C4A) and Different 6Angle Values"

Figure 11-16: "FNOX-OXETH+ Extrapolated CI Energy Along the ReactionCoordinate For FNOX-protonated Oxetane Addition Reaction"

Figure 11-17: "The Potential Energy Surface For FNOX Approaching ProtonatedOxetane"

The detailed Tables of results follow:

Table 11-14: "FNOX + OXETH', 6 = 0 (fully closed) Energies (a.u.) as afunction of R(O1B-C4A)"

0 Table 11-15: "FNOX + OXETH+ , 6 = 50 Energies (a.u.) as afunction of R(O1B-C4A)"

Table 11-16: "FNOX + OXETH+ , 6 = 100 Energies (a.u.) as afunction of R(O1B-C4A)"

Table 11-17: "FNOX + OXETH+ , 6 = 150 Energies (a.u.) as afunction of R(OIB-C4A)"

Table 11-18: "FNOX + OXETH , 6 = 19° (fully open) Energies (a.u.) as afunction of R(O1B-C4A)"

0-1

..>

Page 50: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

Figure 11-13 440

CL

0 II,

"r

0

-~ z

co

.3 A0 41K

.,,,"" , \

IT.

z 49C

6..0 10

.11

0z~

0

.- I. ;

LU

-,-"

00

OD 400$ d

0i

U~

Page 51: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* oFigure 11-14 4L4 - a UO CI

ccz0

~1U-

z B

4-j w 0

0

CL z

UI-U*0

0I-

CLzoL <

U-

LL 00

0 0

cc- r

0 '

0

*-> z W

.......0

% 9A

Page 52: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

*i 0 Figure 11-15 4

< < <

0 LU0 LU -j

0- 00

0

zL z

No0 0 wx LL

0 LL

WL 0 ZUj LL <w

* ~0o

< w -cr zx I-

r 0O

x w0 z

0

Page 53: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

47

FNOX + OXETH +

00

,'."26 0° (FULLY CLOSED)

i ' " -" " SCF ENERGY (au)FOR DIFFERENT VALUES OF ANGLE BETWEEN TWO RINGS (,...

.'...-90 -134. 573887-45 -134.566354

;""'"0 -134. 556369"- -"45 -134. 566333

0 1'

.,-? TABLE34. 5-313

%'%

. ,.

.5.

SC:NRG au) O IFEETVLUSO NGEBTEE W INS(:

Page 54: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* 48

TABLE II - 14

A

FNOX + OXETH+0

.- = 0° (FULLY CLOSED)

ENERGIES (a.u.)

R(O1B-C4A)(bohrs) 2.1 2.5 2.9

SCF -134.131955 -134.511150 -134.71439

* CI -134.328233 -134.706202 -134.905989

EX -134.336047 -134.713390 -134.912682

DAV -134.339619 -134.716688 -134.915661

c .962 .963 .964

gs .904 .905 .905

R(OIB-C4A)

,(bohrs) 3.6 4.1 4.6

SCF -134.870168 -134.906321 -134.918159CI -135.055303 -135.088869 -135.099405

EX -135.061614 -135.094212 -135.104669

DAV -135.064059 -135.096435 -135.106795

c 2 .967 .968 .969

gs .905 .905 .905

* R(O1B-C4A)S(bohrs) 10.0lO..

SCF -134.917271CI -135.099207EX -135. 103049

-0 DAV -135.105145' 2c .969

" gs .903

Page 55: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

49

TABLE 1I - 15

B

FNOX + OXETH +

6 50

ENERGIES (a.u.)

R(01B-C4A)(bohrs) 2.1 2.9 3.6

SCF -134.371600 -134.817032 -134.899072CI -134.559469 -135.003579 -135.081621

6 EX -134.566346 -135.010938 -135.087747DAV -134.568878 -135.013692 -135.090412

S.. 2c .968 .965 .964gs .905 .905 .904

R(OIB-C4A)(bohrs) 4.1 10.0

SCF -134.912246 -134.904573CI -135.093753 -135.086645EX -135.098762 -135.090328DAV -135.101315 -135.092754

c .965 .965gs .902 .898

I

Page 56: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

4- 50

TABLE II - 16

C

FNOX + OXETH +

:'."::6 =100

ENERGIES (a.u.)

R(OIB-C4A)(bohrs) 2.1 2.5 2.9

SCF -134.523543 -134.785323 -134.879961-, CI -134.703562 -134.967402 -135.062094

EX -134.709561 -134.973213 -135.067821DAV -134.711637 -134.875357 -135.070119c .971 .970 .968

gs .908 .907 .905

R(OIB-C4A)(bohrs) 3.6 4.1 4.6

SCF -134.909633 -134.903107 -134.894288CI -135.087083 -135.077655 -135.067303EX -135.092434 -135.082991 -135.072249DAV -135.094867 -135.085375 -135.074560

c .965 .965 .964gs .905 .904 .901

R(OIB-C4A)(bohrs) 10.0

SCF -134.874769

CI -135.048181EX -135.051947

* DAV -135.054272, 2 .964

gs .901

S °

Page 57: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

-k 51

TABLE II - 17

FNOX + OXETH +

06 = 15

ENERGIES (a.u.)

R(O1B-C4A)(bohrs) 2.1 2.6 3.6

SCF -134.616620 -134.917116 -134.914524- CI -134.791828 -135.096343 -135.090622

EX -134.797443 -135.101219 -135.096394DAV -134.799299 -135.103258 -135.098661

c 2 .972 .970 .967gs .911 .906 .904

R(OIB-C4A)(bohrs) 4.1 10.0

SCF -134.89416562 -134.847906CI -135.066025 -135.015423EX -135.070201 -135.018739DAV -135.072315 -135.020467

c2 .967 .967gs .905 .903

A

"S.

,'

Page 58: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

• 52

TABLE II - 18

E

FNOX + OXETH+

6 190 (FULLY OPEN)

ENERGIES (a.u.)

R(OIB-C4A)(bohrs) 2.1 2.5 2.9

SCF -134.665293 -134.875744 -134.928616CI -134.838385 -135.052121 -135.107297EX -134.843237 -135.056507 -135.112204DAV -134.845089 -135.058348 -135.1141802c .973 .972 .970gs .913 .910 .907

R(O1B-C4A)(bohrs) 3.6 4.6 10.0

SCF -134.906366 -134.854626 -134.818210CI -135.083692 -135.023718 -134.984149

EX -135.087620 -135.027136 -134.986463DAV -135.089794 -135.028994 -134.987900c .967 .969 .973gs .903 .904 .904

,AL

Page 59: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

53* Figure 11-16

0 w

wI- 0

VC) z+

cr w0 z0C0z w0

$~ 0z I

4 0 xw 0

w <=w"S.. - cc

.5 ~z 0

w5 0

z 0

Z 00 0w

F- x0 0 ZUCL 0

x C.)

I +

t0 WL

x z I-'A' w

W 0xo0I z* x

0z z

LL 0zLL.

00

%* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -- ks -.- . *; *:. ~.,..~jg\'s

Page 60: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* 54Figure 11-17

w o:4 x%

0 0

C4 w p~

U >-

0 x 0-

V.- cc

0 >

x 0j

-U ccH0.

0 0 L.

0

0r <

w CL~>- < 0

z w w

z 04 J

0

0 < Ui

* -S

~- e~to

Page 61: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

\ 55

4'. 3-Fluoro-3-nitrooxetane (FNOX) andprotonated 3-fluoro-3-nitrooxetane

(FNOXH+)

a'. Determination of the pathway for".' ~ 3-fluoro-3-nitrooxetane (FNOXH +)

The addition of 3-fluoro-3-

nitrooxetane (FNOX) to protonated 3-fluoro-3-nitrooxetane (FNOXH +) also hasthe features of an SN2 reaction and the approach presented utilizes these to

the greatest extent.

The geometry of the reacting system.

* The reaction of FNOX with FNOXH+ is assumed to be SN2 type reaction with

molecule B attacking molecule A (Figure 11-18) along the OB-C4A-OIA line.

Because essential structural changes are expected to appear relative to theplane of FNOX ring the angle alpha between the two rings was determined forR(O1B-C4A) = 2.6 bohrs and was used for all other geometries.

The optimal a angle was determined to be 550 (Table 11-19), "FNOX +

FNOXH , SCF Energy for Various Values of a Angle".

b'. Method of calculation

The method of calculation is the

same as described for OXET + FNOXH + in section 2'.

c'. Results for FNOX + FNOXH'The ring opening again starts

when FNOX approaches FNOXH for R(OIB-C4A) = 4.6 bohrs. Again next both:OB-C4A and C4A-OIA change simultaneously until the stabilization point at

R(OIB-C4A) = 2.9 bohrs and 6 = 190 (fully open)

The stabilization energy for the complex is -.03156 a.u. = -19.80kcal/mol. Approximate activation energy .005 a.u. - 3.13 kcal/mol. Thepotential energy surfaces and reaction potential map are presented inFigures 11-19 to 11-22.

Figure 11-19: "MRD-CI Extrapolated Energy For FNOX Approaching ProtonatedFNOX For Fixed Angle 6 and Different Intermolecular Distances R(O1B-C4A)"

Figure 11-20: "MRD-CI Extrapolated Energy For FNOX-FNOX Protonated ComplexFor Fixed Intermolecular Distances R(O1B-C4A) and Different 6 Angle

Page 62: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

56

ValIues"Figure 11-211: "FNOX-FN0XH+, Extrapolated CI Energy Along the Reaction Coor-

dinate for FNOX Protonated FNOX Addition Reaction"Figure 1.1-22: "The Potential Energy Surface for FNOX Approaching Protonated

FNOX"

The detailed Tables of results follow:

Table 11-20: "FNOX + FNOXH~, 6 = 0' (fully closed) Energies (a.u.) as afunction of R(O1B-C4A)"

Table 11-21: "FNOX + FNOXH4, 6 50 Energies (a.u.) as afunction of R(OIB-C4A)"

Table 11-22: "FNOX + FNOXH+, 6 10' Energies (a.u.) as a*function of R(O1B-C4A)"

Table 11-23: "FNOX + FNOXH, 6 =150 Energies (a.u.) as afunction of R(O1B-C4A)"

Table 11-24: "FNOX + FNOXH, 6 =19' (fully open) Energies (a.u.) as afunction of R(O1B-C4A)"

7C4 n," h

-A A

Page 63: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

Figure 11-18 57

0u.I

LC

*00

Uo o

V xz

U..

cc4

0i ~L "t4 '! )-

'A-A

0LLI

, . w",t

ax

-:a F" :,,,1

LLI

od

-- - I, .

1..-,S t .-. ,,

0":*. V • ".,:.:: ' 1• ,

• .,-i-: I ,_..",

*.:. :o'0:/ r " I "" . N .,

1::.'7 -- .,,""/0'

0O :,-1 W-'V *. 'I

Page 64: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

Figure 11-19 58

w 0

0

z0 -

0wj 2

< wiz I0

00 ~

a. w

Vz Li..

0 <00 z

0.

0-- 9"

0U- LLo~

10

o 0-w. I.')

<- 0

0 < I

0.

< .0

-LJ

0<

qn.a< to

Page 65: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

59

* Figure 11-20

w

U-

SCO,

w-j-

w

* ~ -

'--

0zz <

* LiL

0 u

-'5-z -

z

00

a. <<

A, U-

.05--4

Page 66: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

*Figure 11-21 60

z wD -j

% 0.

0 0

I.- 0C.) z

U-w I

w 0

zzi0

z (~zLL 00wI Q

zzx 0-w 0r

m x 0x 0 0

00z LLz

+ - 0

-A 0a. .

Q 0D

%~ 0w Z

Page 67: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

V.- --a

*Figure 11-22 61

LU 0

l'- Ql)* w

0 crz 0cl. C.. -

4' 0

0 1

0

1~V zw 00

4..' C.)

0L < cc

00

m' 0 w00

w

z <

w

* 0U

-IV -w

Page 68: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* 62

TABLE II - 19

FNOX + FNOXH+

SCF ENERGY (a.u.) FOR VARIOUS VALUES OF a ANGLE

a (0) ENERGY

0 -198.18117745 -198.28103155 -198.281216 MINIMUM65 -198.27644790 -198.199361

135 -198.079309180 -198.182049225 -198.280452235 -198.280818245 -198.276348270 -198.199587

S

p.

Page 69: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

63W.

TABLE II - 20

A

FNOX + FNOXH+

6'" 00 (FULLY CLOSED)

.-., -ENERGIES (a.u.)

R(OIB-C4A)(bohrs) 2.3 2.9 3.6

SCF -197.910863 -198.281216 -198.435192CI -198.103109 -198.470845 -198.618954EX -198.111535 -198.477910 -198.625229DAV -198.114770 -198.480888 -198.627675

c .964 .964 .967. gs .906 .906 .906

R(O1B-C4A)(bohrs) 4.6 7.1 10.0

SCF -198.480690 -198.418577 -198.479303CI -198.634550 -198.661953 -198.656760EX -198.638251 -198.665930 -198.660445DAV -198.639642 -198.667978 -198.6623012c .974 .969 .971gs .915 .904 .906

, - - .. . ~ . . . .** * .*% . . - .. ,.--. ,,..:, ., , *.' W" . \i"~l , lll l tl~l ,m /. .

Page 70: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

64

TABLE I - 21

B

FNOX + FNOXH+

6 =50

ENERGIES (a.u.)

R(O1B-C4A)

(bohrs) 2.3 2.9 3.6,-,

" SCF -198.128612 -198.389364 -198.465030

- CI -198.313697 -198.575069 -198.647397

EX -198.320611 -198.582967 -198.653065DAV -198.323023 -198.585722 -198.655796

c .968 .965 .964

gs .907 .906 .904

R(OIB-C4A)

(bohrs) 4.6 10.0

SCF -198.474937 -198.464728CI -198.655547 -198.646778EX -198.660043 -198.650079DAV -198.662521 -198.652485

~2c 2.965 .965gs .901 .898

0.

.-.

'

0

1~~~~~~ JA.;:**i:: . ~ V4

Page 71: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

65

TABLE 11 - 22

cFNOX + FNOXH+

6 = 10o

ENERGIES (a.u.)

' R(OlB-C4A)(bohrs) 2.3 2.9 3.6

SCF -198.265018 -198.456342 -198.477340CI -198.443306 -198.638345 -198.656431EX -198.448377 -198.644268 -198.661916DAV -198.450357 -198.646572 -198.664543c.971 .968 .934

gs .909 .905 .903

R(OlB-C4A)- (bohrs) 4.6 10.0

SCF -198.454554 -198.432698ci -198.628227 -198.607392EX -198.633078 -198.611131DAV -198.635537 -198.6135492c .964 .963

gs .903 .899

Page 72: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* 66

TABLE II - 23

FNOX + FNOXH

6 =150

ENERGIES (a.u.)

R(OIB-C4A)(bohrs) 2.3 2.9 3.6

" SCF -198.346074 -198.495395 -198.483930

* CI -198.520243 -198.674606 -198.662553EX -198.525408 -198.679879 -198.667532DAV -198.527228 -198.681927

,- c .972 .970 .966

gs .912 .906 .902.1

R(C4A-OIB)(bohrs) 4.6 10.0

SCF -198.437954 -198.404983CI -198.608248 -198.569461EX -198.612647 -198.572663DAV -198.614829 -198.574290c .966 .970

gs .904 .905

0

'V,.-

r-" .V.--., "- ".."- ". . " - . ' . - '- - . . .- - -. . . . . . ..• . .-..- Q.Q ,.. "'3

Page 73: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* 67

TABLE 11 24

E

FNOX + FNOXH+

*16 =19 0 (FULLY OPEN)

ENERGIES (a.u.)

R(OlB-C4A)(bohrs) 2.3 2.9 3.6

SCF -198.384740 -198.507770 -198.477497CI -198.557601 -198.686766 -198.657925EX -198.562331 -198.692012 -198.661934DAV -198.564119 -198.694011 -198.664266

c .973 .970 .966gs .913 .906 .900

R(01 B-C4A)(bohrs) 4.6 10.0

SCF -198.417703 -198.377272CI -198.589036 -198.540339EX -198.592776 -198.543087DAV -198.594981 -198.544440

c .965 .973gs .902 .906

eNp

.,S

-0

0:i

Page 74: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

68

(b). Population Analyses

Gerry Manser had expressed considerableinterest in how the charges (corresponding to the gross atomic populations)on the 0 1A (oxygen of protonated oxetane ring), C4A (the a carbon of the

protonated oxetane ring) and 018 (oxygen of the oxetane ring) varied as a

function of substituent and reaction pathway.

In last year's ONR Annual Report 1986, Table III Page 24, showed thatthat as oxetane and protonated oxetane approached each other that the intra-ring TOP of the C4A-OIA in the protonated ring got smaller as the oxetane

ring approached, indicating a tendency for the protonated ring to open andthe inter-ring TOP OB-C4A got larger indicating bond formation.

On the following pages we have Tables 11-25 to 11-28 of the MRD-CIgross atomic populations and total overlap populations (C4A-O4A) and

(O1BC 4A) for the systems OXET + OXETH + , OXET + FNOXH , FNOX + OXETH+ and

FNOX + FNOXH + at representative intermediate inter-ring distance OIB-C4A

distance of 3.6 bohrs.

i) It is apparent from the TOP's in the tables that the two rings arerepulsive when the protonated oxetane (or substituted protonated oxetane)ring is closed.

ii) the protonated oxetane (or substituted protonated oxetane) will openupon approach of the oxetane (or substituted oxetane) along the appropriatereaction pathway.

iii) The OB-C4A interring bond becomes stronger as the protonated (A)

ring opens.

The behavior of these TOP's is indicative of the same conclusion asthat from the MRD-CI energy calculations.

.7

Page 75: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

69

40. - 110 40 IcT c-jj 0.i CL r %D LO coa I) . CD 0~ (n (11 C .I '. CD COi r

cc 0 o .i C C o - 0 ~ j CC=C CO C=L;C

C-..)~C fu) 0 .COc - -C

CD 40o 0D 0 C'.. .- -- 4 CD 1) (n LI) U-)o) + r0- 0D o~l. 0 r- C0 0D CL0 CD 0-0 CDO

0 1 )O C) C0 0 C0 + .- 0 1 Cl C-.) C: 0) C0 c< - <r 0 - .- 0 0 0

-It CD) I; C; a a ; ; C

<r U-0D C') co U- ON.- C

+ CO n C I ! LC O cc c\J 0D C- 40In c4 Cli Cli (N + '-4 fl) en re) cli c

S. LU 0 . 0 .

0 V >< 4-' 0- CD co - ON Cl) 4.)--'- C) 00 094- C0-<4- cz 40 Cl) r- CZ- 4J x 40 1 0 C') Ul1

ea t -0 ra Tr - -4 - -

C0 0 C. 00.LS-4 LO S- 0

<c r) In -4 1C Cl LC) C) co 00CCJ 00 0 ~ l cc co 0r Il Cl

1 -4 l -4 Cla_ C0 C 0 .

CD 40 ; 40 4; 404 4 0 0 4

c . q 4.0 (NJ C') 00 C- 0L ~ - In co (In ol. 40eou C.) -N (A (i N-) .14 4CI - l C) 4

C0 aCI - 0C) C I .4 0 .4 C' C-JC-4 =I CO . S-C 0C)- '4 0D 0) a)0 a) -- - 0 0D 0D CD

o cu > 4-) 0 I>4 0D I

-+ - *r= ;; 03 -- 1 40 0ID C + 1-4 m1 LO c0 C') m~

Co ~ 0 0. 0L C) N. 0~ C ro0 0L 0) CD -4 0 4 C

c <i- +j 0 04 0 Z-) '0 0 0i 0 0 0CL LU C!I-0 A

L:)' 0 0 0 4 O n )<4 I- -

c +'- Cl Cl Cl CD) C)J C- Cl CD CD CD CD.

%.- ZL (

0 L.)f 0+- C)C i O ><C

+-4 -4E z ECr f0 LUOC t. 0CO 10 ;D LLO k- 0" -.-0

S- 4-- j- 40 c. E~ C.4)- .oO - . 0 0. C r o mU 00.m

4- V, > - -L < 10 rnOi L 4- - -:C 0i C l'a C DO CC -- nl C'J KlC0 4-J Cl l0J LMO- ~ n O 0I

C'. V) ml4 C00 0 C 0

I4%

.) S

C'z co U' x 0 C T -

0\ a_ CDa a- D I- Cc lZ 4

%: CC,,0) cu cuf ~ -~ 4- n 0 L ~ >

0 CU-

CD

Page 76: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

.70

%70

(2). AMMO + OXETH +, OXET + AMMOH', AMMO + AMMOH+

The reactions AMMO + OXETH +, OXET + AMMOH4 and

AMMO + AMMOH + were treated as SN2 reactions as the previous cases described

in detail in the earlier section. The optimal a angles were determined tobe 900 for each of those systems involving AMMO (3-azidomethyl-3-

methyloxetane and/or protonated AMMO (AMMOH4 ). The subsequent MRD-CIcalculations were run at this a angle.

The same localized skeletal molecular orbitals (both occupied and* virtual) were included explicitly in the MRD-CI as for the previous cases.

This approach makes it meaningful to compare reaction energies betweenvarious systems.

For these cases involving AMMO and/or AMMOH +, the ring opening of the

protonated ring (OXETH+ or AMMOH +) starts for R(018-C4 ) - 4.6 bohrs. Next,

both: OB-C4A and C4A-OIA change simultaneously until the stabilization

point at R(OlB-C4A) = 2.9 bohrs and 6 - 19' (fully open).

(a). Energies

1'. 3-azidomethyl-3-methyloxetane (AMMO)

+ protonated oxetane (OXETH )

a'. Results

The stabilization point R(O1B-C4A) = 2.9 bohrs, 6 - 190 (fully open) with the stabilization energy-0.043262 a.u. - -27.37 kcal/mole.

Tne potential energy surfaces and reaction potential map are presentedin Figures 11-23 to 11-26.

Figure 11-23: "MRD-CI Extrapolated Energy for AMMO Approaching ProtonatedOxetane For Fixed Angle 6 and Different Intermolecular DistancesR(OIB-C4A)"

Figure 11-24: "MRD-CI Extrapolated Energy For AMMO-Protonated OxetaneComplex for Fixed Intermolecular Distances R(OIB-C4A) and Different 6

Angle Values"

Figure 11-25: "AMMO + OXETH +, Extrapolated CI Energy Along the ReactionCoordinate For AMMO Protonated Oxetane Addition Reaction."

Figure 11-26: "The Potential Energy Surface For AMMO Approaching Protonated

OXET, MRD-CI Extrapolated"

?-S -,''"' . . .'

S ' '/ '''' /-/% -" --

Page 77: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

=1

The detailed Tables of results follow in Tables 11-29 - 11-33:

Table 11-29: "AMMO + OXETH 6 = 00 (fully closed), Energies (a.u.) as afunction of R(OIB-C4A)"

Taoe 11-30: 'AMMO + OXETH 6 - 50, Energies (a.u.) as a function ofR(OIB-C4A) "

Table 11-31: "AMMO + OXETH 6 = 100, Energies (a.u.) as a function ofR(OIB-C4A)"

Table 11-32: "AMMO + OXETH+ 6 = 15°, Energies (a.u.) as a function ofR(OIB-C4A)"

Table 11-33: "AMMO + OXETH 6 -19 (fully open), Energies (a.u.) as afunction of R(OIB-C4A)"

,.1

i"-

S%

|°' "

o -' : 't':-2 . ' .,T .,,,i%::-, ' .- :''""' ". . -'-,"-,",-----".'-,

Page 78: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

Figure 11-23 72

wI 0 d

z Zcc -

Z Z

0

Z 0,

(l)

0C

m 0~ croL 0 -I

(L W- 0

z0 <

co

0-U.

*U 0

a LU

0a.

<S

cc -

Page 79: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

73

Figure 11-24

LL

LU

-.j >

LUo -<

xz

0 owSw

I- Li.

z0

2 0

0.

0

>-z

z (n 0 mIn

LUU

'S0 LU

<0

w

.

~. 0

Page 80: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

Figure 11-25 w-i

00

z wo 0

<- < 0w U

W z0

0

<w>I- 2

a~ <

- 0jJL x <

0A 0- 0

a 0<j 0

-. 0 0 00. m -

< C. I0 <

x. 0iww

2 LL

~- w

w <-

0 Z2+

-~0 x0 0 0

<. 0

LA2

Page 81: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

Figure 11-26 75

0

00

cr-.

0 UU

004..-

0

S.l

IL.J r

LU 0

-. 4LL 0~ a

04

0 1 0"-I >I~~10

Page 82: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

0 76

TABLE ::-'9

A

AMMO + OXETH

6 0 0 (FULLY CLOSED)

ENERGIES (a.u.)

R(O1B-C4A)(bohrs) 2.3 2.9 3.6

SCF -112.212402 -112.567419 -112.715933CI -112.407367 -112.758700 -112.901015EX -112.415741 -112.765499 -112.907699DAV -112.419053 -112.768486 -112.91019622 .964 .964 .967

GS .905 .906 .905

R(OIB-C4A)

(bohrs) 4.6 10.0

SCF -112.758393 -112.750039CI -112.939447 -112.931844EX -112.944701 -112.935694DAV -112.946828 -112.937779c2 .969 .969

gs .905 .903

Page 83: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

l 77

TABLE V-30

B

AMMO + OXETH+

6 - 50

ENERGIES (a.u.)

R(OIB-C4A)(bohrs) 2.3 2.9 3.6

SCF -112.422599 -112.675770 -112.748987,, Cl -112.610259 -112.862895 -112.931570

EX -112.617265 -112.871022 -112.937359* DAV -112.619748 -112.873804 -112.940058

c .968 .966 .965gs .906 .905 .905

R(OIB-C4A)(bohrs) 4.6 10.0

SCF -112.755698 -112.737486

CI -112.936221 -112.919347EX -112.941127 -112.923042DAV -112.943611 -112.925452

c 2c.965 .965gs .901 .898

a.N .

.

Page 84: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

78

TABLE :'-31

AMMO + OXETH+

- l 10°

ENERGIES (a.u.)

R(OIB-C4A) 2.3 2.9 3.6

. " (bohrs) _ .3_2.9__.6

SCF -112.553838 -112.742890 -112.764062

CI -112.734576 -112.925800 -112.943298

EX -112.740024 -112.931127 -112.949404

* DAV -112.742076 -112.933420 -112.951970;;-4;

965

-... 2 .971 .968

gs .908 .905 .904

R( OlB-C4A)(bohrs) 4.6 10.0

SCF -112.707936 -112.738741

CI -112.912073 -112.881148

EX -112.917085 -112.884915

* DAV -112.919438 -112.887215

c- .965 .965

gs .904 .901

.d

1.

Page 85: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

79

TABLE ::-32

* AMMO + OXETH +

6 = 15~

N ENERGIES (a.u.)

R(O1B-C4A)(bohr's) 2.3 -2.9 -3.6

SCF -112.632473 -112.782382 -112.772218CI -112.808287 -112.962256 -112.950352EX -112.813023 -112.967384 -112.955341DAV -112.814859 -112.969441 -112.957658

c .972 .970 .966

g s .911 .906 .903

R(O1B-C4A)(bohrs) 4.6 10.0

SCF -112.724061 -112.632473CI -112.894278 -112.808287EX -112.898511 -112.813023DAV -112.900595 -112.814859

c2.967 .973gs .904 .911

'4.

0

Page 86: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* 80

TABLE ::-33

N AMMO + OXETH+

S19(FULLY OPEN)

ENERGIES (a.u.)

R(OIB-C4A) 2.9 3.6(bohrs) 2.3 2.9 3._

.-

SCF -112.6704978 -112.795132 -112.7661185

CI -112.844764 -112.974426 -112.946071

EX -112.849093 -112.979312 -112.950276DAV -12.850878 -12.981302 -112.952574

c2 .973 .971 .967

-. gs .912 .907 .901

R(01B-C4A)(bohrs) 4.6 10.0

SCF -112.703459 -112.65156

CI -112.875073 -112.817392

EX -112.878483 -112.819742

DAV -112.880629 -112.821163

c .966 .973

gs .902 .905

.',.

..

N",. % jw',,_'>.. ,vL,.,,; A,,.,.".:r- . ,,.X , ,'L'Z'Q L'~',w ') ,- ' '- ,., " , \ . , . i , ' '

Page 87: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

81

2'. Oxetane (OXET) + protonated 3-azidomethyl-

3-methyloxetane (AMMOH+)

a'. Results

The stabilization point R(O1B-C4A) =

2.9 bohrs and 190 (fully open) with the stabilization energy -0.02386 a.u. :-14.97 kcal/mole.

The potential energy surfaces and the reaction potential map are

presented in Figures 11-27 to 11-29. The detailed tables of results followin Tables 11-34 to 11-38.

Figure 11-27: "MRD-CI Extrapolated Energy for OXET Approaching ProtonatedAMMO For Fixed Angle 6 and Different Intermolecular DistancesR(OIB-C4A)"

Figure 11-28: "MRD-CI Extrapolated Energy for OXET-Protonated AMMO ComplexFor Fixed Intermolecular Distances R(OIB-C4A) and Different 6 Values"

Figure 11-29: "The Potential Energy Surface For OXET ApproachingProtonated AMMO"

Table 11-34: "OXET + AMMOH + 6 = 0 (fully closed) Energies (a.u.) as afunction of R(OIB-C4A)"

Table 11-35: "OXET + AMMOH + 6 - 50 Energies (a.u.) as a function ofR(OIB-C4A)"

Table 11-36: "OXET + AMMOH+ 6 = 100 Energies (a.u.) as a function ofR(OIB-C4A)"

Table 11-37: "OXET + AMMOH+ 6 - 150 Energies (a.u.) as a function ofR(OIB-C4A)"

Table 11-38: "OXET + AMMOH 6 = 190 (fully open) Energies (a.u.) as afunction of R(OIB-C4A)"

0

.p.

% - - %

Page 88: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

82Figure 1-1

LaJ 0

z0

0

C 0 Uz

0 LA0

zz

0 b

0- M0

0 Qw 0

0r

0JAJz

w z0z

I-..

04*c

IW)

Page 89: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

83Figure 11-28

*d

w

C-)0

o z

4r

z

-J 0

z U)

0

P." Z (N

"P. 0 i cj

0.. 0 4

0"Pa.

Kr L..

wr 0 0

*r ze w

0

0.V.

Page 90: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* 84.~. -. *Figure 11-29

0

x co0 0

00

00

000

x -Cg 002LU <1U I _

'V IX

~0

IL

~Jz 4c< 0w

zo. 4c >-

0 zo

CL <LU

>

Page 91: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

0

85

'T.T TABLE 141-34

OXET + AMMOH+

6 - 00

(fully closed)

ENERGIES (a.u.)

R(01B-C4A) 2.9 3.6

(bohrs) 2.3 2.9 3.6

SCF -112.164132 -112.542090 -112.706134

CI -112.358522 -112.732924 -112.890654

EX -112.366976 -112.739502 -112.896460

DAV -112.370250 -112.742435 -112.900469

c2 .964 .9651 .9569

gs .905 .906

R(01 B-C4A)(bohrs) 4.6 10.0

SCF -112.757479 -112.751545

CI -112.938395 -112.933136

EX -112.943841 -112.936887

DAV -112.945962 -112.938947

c .9696 .9696

gs .9056 .904

0.::

0, ,

O... I~

Page 92: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* 86

TABLE '.'-35

B

OXET + AMM0H +

6 - 5 0

ENERGIES (a.u.)

R(OlB-C4A)

(bohrs) 2.3 2.9 3.6

SCF -112.380825 -112.654044 -112.740730CI -112.567865 -112.840616 -112.922895EX -112.574772 -112.848736 -112.928602

0DAV -112.577225 -112.851497 -112.932235

c2.9687 .965 .958gs.9067 .9057 .9048

4.,. R(O1B-C4A)(bohrs) 4.6 10.0

SCF -112.755627 -112.739371CI -112.936087 -112.921221EX -112.940998 -112.924839DAV -112.943458 -112.927221

c- .965 .9655gs .9015 .898

16 9 i

Page 93: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* 87

TABLE IT-36

OXET + AMMOH +

6 100

ENERGIES (a.u.)

R(01B-C4A)(bohrs) 2.3 2.9 3.6

SCF -112.517118 -112.72324 -112.75546

CI -112.697121 -112.905683 -112.927808

EX -112.702417 -112.911346 -112.930962

OAV -112.704430 -112.913639 -112.942933

c 2 .909 .9060 .9124gs .971 .9685 .9226

R(OlB-C4A)(bohrs) 4.6 10.0

SCF -112.73736 -112.70814CI -112.91068 -112.874988EX -112.915738 -112.876492DAV -112.91810 -112.891173

- .904 .909

GS .965 .9108

.'

NL-.8

ft,

po.;

0 >

f,, t.

Page 94: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

TABLE '1-37

OXET + AMMOH*

6 - 150

ENERGIES (a.u.)

R(O1B-C4A)(bohrs) 2.3 2.9 3.6

SCF -112.599563 -112.763765 -112.7622807CI -112.774975 -112.943217 -112.940000EX -112.779670 -112.948373 -112.944830DAV -112.781491 -112.950410 -112.947124

.'-, C.2

c .973 .970 .9668* GS .9118 .9071 .903

R(01B-C4A)(bohrs) 4.6 10.0

SCF -112.7198416 -112.677837CI -112.889931 -112.845810EX -112.894115 -112.849130DAV -112.896185 -112.850898

c .9672 .9694gs .905 .9037

w -

m.

A...

Page 95: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

S89

TABL :11-33

'I. E

OXET + AMMOH +

6 190

(fully open)

ENERGIES (a.u.)

R(OIB-C4A)(bohrs) 2.3 2.9 3.6

SCF -112.6397454 -112.77667165 -112.7547122

Ci -112.811422 -112.953525 -112.932275

EX -112.818284 -112.960747 -112.938784

DAV -112.820049 -112.962721 -112.941037

c2 0.97329334 0.97090597 0.96709588

gs 0.913082 0.90737 0.9018638

R(OIB-C4A)(bohrs) 4.6 10.0

SCF -112.6445043

CI -112.866056 -112.810255

EX -112.871591 -112.813953

DAV -112.873703 -112.815439

c 0.96659015 0.97269997

gs 0.90336874 0.90455537

V.

0O

Page 96: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* 90

3'. 3-Azidomethyl-3-methyloxetane (AMMO) +

protonated 3-azidomethyl-3-methyloxetane

a'. Results

To check that the optimum a angle for

AMMO + AMMOH was 900 we ran the SCF calculations as a function of a.

Table 11-39, "AMMO + AMMOH+, SCF Energies, a Angle Dependence" Thestabilization point R(C4A-OIB) = 2.9 bohrs and 6 - 190 (fully open) withstabilization energy = -0.02408 a.u. - -15.11 kcal/mol. The estimatedactivation energy is 6.27 kcal/mol.

The potential energy surfaces and the reaction potential map arepresented in Figures 11-30 to 11-33. The detailed tables of results followin Tables 11-40 - 11-43.

Figure 11-30: "Extrapolated Energy For AMMO Approaching Protonated AMMO ForFixed Angle 6 And Different Intermolecular Distances R(OIBC4A)"

Figure 11-31: "MRD-CI Extrapolated Energy For AMMO-AMMO Protonated ComplexFor Fixed Intermolecular Distances R(OIB-C4A) And Different 6 AngleValues"

Figure 11-32: "AMMO-AMMOH+ Extrapolated CI Energy Along the Reaction Coor-dinate For AMMO Protonated AMMO Addition Reaction"

Figure ::-33: "The Potential Energy Surface For AMMO Approaching ProtonatedAMMO"

Table 11-40: "AMMO + AMMOH +, 6 - 0* (fully closed) Energies (a.u.) as afunction of R(01B-C4A)"

Table 1'-41: "AMMO + AMMOH, 6 - 50 Energies (a.u.) as a function of

R(O1B-C4A)"

Tab'e ::-42: "AMMO + AMMOH , 6 - 100 Energies (a.u.) as a function of(OlB-C4A)

Table : -43: "AMMO + AMMOH , 6 - 150 Energies (a.u.) as a function ofR(O1B-C4A)"

Table 11-44: "AMMO + AMMOH4 , 6 - 190 (fully open) Energies (a.u.) as afunction of R(O1B-C4A)"

W1

0N

Page 97: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

*Figure 11-30 91

-J Q

D-

z

SZ

0 Ui 0

0

CDZz

0 0

0 <

o NUi <

0 0

0 < '

op

L.

144

Page 98: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

Figure 11-31 92

MRD-Cl EXTRAPOLATED ENERGY FOR AMMO-AMMO PROTONATED

COMPLEX FOR FIXED INTERMOLECULAR DISTANCES

AND DIFFERENT 6ANGLE VALUES R(013-C4A)

E

'/53.4

- i54.0

-/64.4 .,

00t

Page 99: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

CATIONIC POLYMERIZATI..CU) JOHNS HOPKINS UNIV BALTIMOREmD J J KAUFMAN t5 NOV 87 TR-8 N@8814-88-C-838

UNCLASS IFIED F/G 7/3 U

E R9 i OR MCE E I NE E EG~ ON- TE E E EAN iEM /EmhmhEEEEEmhhEEEEEEhEAEE

I llllllffffff.

Page 100: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

j7 3.5 "

140

Dll *I,,. . ,,,,,.

11111W

S.'S

S_. 1*2

w

Page 101: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

w- 3

Figure 11-32 93

0

0z +0 x

'I' 0

0

C,

<0

0, 0

z z00

* 0oU z1111 0o1 0 0

00

0x

ww

+ m=c

LL

zz<0 0

0

00

z

0

Page 102: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

94

0 Figure 11-33

0

5%SO .IE 0

0 w

W Xt~ OOOUSJ < w,

L W0 -r

D IC~ z~~I

Co- o I

LL i J

z 4 ) w

0 0

-sa-

z

4.r

> *W

-Ui -CYw-

Page 103: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

95

TABLE 1-39

AMMO + AMMOH

z ANGLE DEPENDENCE

a (0) SCF

0 -153.8804190 -153.97455180 -153.87978270 -153.97535305 -153.93036315 -153.93097

le

pVpV

/m~'I.

Page 104: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* 96

TABLE II-1,

AMMO + AMMOH+

6 - 0° 0(FULLY CLOSED)

ENERGIES (a.u.)

R(01B-C4A)(bohrs) 2.3 2.9 3.6

SCF -153.596296 -153.975355 -154.139594CI -153.790525 -154.165945 -154.324062EX -153.798841 -154.172725 -154.330693DAV -153.802098 -154.175653 -154.333130

c 0.964 0.965 0.967gs 0.906 0.906 0.906

R(OIB-C4A)(bohrs) 4.6 10.0

SCF -154.191083 -154.186025CI -154.371742 -154.367499EX -154.377200 -154.371299DAV -154.379303 -154.373342c2 0.970 0.970

gs 0.906 0.904

I.

Page 105: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* 97

TABLE 11-41

AMMO + AMMOH+

6 - 50

ENERGIES (a.u.)

R(O1B-C4A)(bohrs) 2.3 2.9 3.6

'I SCF -153.814107 -153.951247 -154.174310CI -154.000988 -154.274199 -154.356484

• EX -154.007818 -154.282183 -154.362352DAV -154.010260 -154.284928 -154.365015c 2 0.968 0.966 0.965

gs 0.907 0.906 0.905

R(OIB-C4A)(bohrs) 4.6 10.0

SCF -154.189225 -154.173834CI -154.369528 -154.355578EX -154.374182 -154.359227DAV -154.376621 -154.36160c 0.966 0.965

_ gs 0.902 0.899

V

...

p,

°°

A.,,,,

Page 106: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

98

TABLE [-:

AMMO + AMMOH+

6 = 100

ENERGIES (a.u.)

R(OlB-C4A)(bohrsj 2.3 2.9 3.6

SCF -153.951248 -154.157459 -154.189200Ci -154.130896 -154.339691 -154.367479EX -154.136065 -154.345329 -154.373005DAV -154.138029 -154.347606 -154.375491

2 0.972 0.969 0.965gs 0.809 0.906 0.904

R(O1B-C4A)(bohrs) 4.6 10.0

SCF -154.170941 -154.142564CI -154.344119 -154.316851EX -154.349152 -154.320735

DAV -154.351513 -154.323112

2 0.965 0.963gs 0.904 0.900

4

K,

Page 107: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

4 99

TABLE 11-43

AMMO + AMMOH +

6 - 150

ENERGIES (a.u.)

R(OIB-C4A)(bohrs) 2.3 2.9 3.6

SCF -154.034207 -154.198300 -154.196284CI -154.209377 -154.376871 -154.374171EX -154.214183 -154.381482 -154.379496DAV -154.215995 -154.384939 -154.381804

c 0.973 0.959 0.967gs 0.912 0.908 0.903

R(01B-C4A)(bohrs) 4.6 10.0

SCF -154.153651 -154.112237CI -154.323403 -154.280050

EX -154.327627 -154.283300OAV -154.329684 -154.285057c2 0.967 0.968

gs 0.905 0.903

I

b °

Page 108: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* 100

TABLE II-4a

I

AMMO + AMMOH+

5= 190(FULLY OPEN)

ENERGIES (a.u.)

R(OIB-C4A)(bohrs) 2.3 2.9 3.6

SCF -154.074638 -154.211389 -154.188879C1 -154.248331 -154.390422 -154.368442EX -154.253127 -154.395379 -154.373253DAV -154.254876 -154.337350 -154.375538c2 0.973 0.971 0.967

gs 0.913 0.907 0.901

R(01B-C4A)(bonrs) 4.6 10.0

SCF -154.130128 -154.078893CI -154.301398 -154.245371EX -154.305233 -154.248153DAV -154.307349 -154.249629

c2 0.966 0.973gs 0.903 0.904

6

Page 109: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

101

(b). Recap of Reaction Energies for Cationic Polymerizationof Energetic Oxetanes for Initiation and Reaction

Cationic polymerization has two major steps:initiation and propagation. Initiation is governed by the propensity forprotonation of the oxetane. The three dimensional electrostatic molecularpotential contour (EMPC) maps we calculated earlier are very indicative ofthe propensity of the energetic substituted oxetanes to initiate. TheseEMPC maps are also indicative of the propensity of the energetic substitutedoxetanes to polymerize. For a more quantitative comparison of propensity toinitiate we calculated the MRD-CI energies of protonation [AE(protonation)]for all the energetic substituted oxetanes we have studied.

The next step in cationic polymerization is reaction between theoxetane (or substituted oxetanes) and the protonated oxetane (or protonatedsubstituted oxetane). We have calculated the MRD-CI stabilization energyLAE(addition)] for several series of reactants as a function of the angle(a) between the rings, the interring distance R(OIB-C4A) and the angle (6)of opening the protonated ring. The stabilization point for all of thepairs of reactants we have studied to date is R(OIB-C4A) - 2.9 bohrs and 6190. (See sketch page 8 for definition of 6 angle)

In the Table (11-45) are tabulated the MRD-CI values for AE(protonation), AE (addition) and AE [AE (protonation) + AE (addition)] at

the stabilization point for OXET (oxetane) + OXETH+ (oxetane H+), FNOX +

OXETH +, OXET + FNOXH +, FNOX + FNOXH , AMMO + OXETH +, OXET + AMMOH4 , and AMMO

AMMOH

The calculated MRD-CI values for AE (protonation) indicate that FNOXgains less energy on protonation than OXET or AMMO. OXET and AMMO haveclose to the same protonation energy. However, our earlier EMPC maps whichindicated that OXET had a larger volume within its -20 kcal isopotentialcontour 4ould imply that oxetane would still have a somewhat greatertendency to protonate sooner (initiate sooner) than AMMO even though theyboth nave similar AE (protonation).

7>e calculated AE values indicate that all combinations involving FNOX

or rNOXH+ are less favorable than those involving OXET or OXETH+ and AMMO or

AMMOH

The most favorable reactions involve OXETH+ reacting with OXET or AMMO0

rather than AMMOH + reacting with OXET or AMMO.

Our initial MRO-CI result on protonation of BAMO indicates it has alower AE (protonation) than that of AMMO. Thus in a BAMO-AMMO mixture AMMO

will tend to initiate first to form AMMOH+. We are continuing MRD-CI

0-a

Page 110: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

102

calculations for the potential surfaces of reactions involving BAMO and

BAMOH with various partners.

The results of calculations such as these will enable one both tounderstand and then to predict copolymerization preferences.

S. .

,.~o -7

.1. .

0l

Page 111: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

103

TABLE II-45

CATIONIC POLYMERIZATION INITIATION AND PROPAGATION

PROTONATED OXETANES (OXETANEH ) + OXETANESAB-INITIO MOOPOT/VRDDO MRD-CI

V, ENERGIES (a.u.)

AE(protonation) AE(addition) H

OXETANE + -0.31601 -0.04378 -0.35979

OXETANEH

• FNOX + -0.31601 -0.01113 -0.32714

OXETANEH +

OXETANE + -0.27068 -0.06327 -0.33394

FNOXH +

FNOX + -0.27068 -0.03157 -0.30225

FNOXH

AMMO + -0.31601 -0.04362 -0.35963

OXETANEH +

AMMO + -0.31548 -0.02408 -0.33956

AMMOH +

OXETANE + -0.31548 -0.02386 -0.33934S+

AIMMOH

OXETANE + -0.30906

BAMOH

0-b -06S°

i:0>.

Page 112: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

(c). Population Analyses

Gerry Manser had expressed interest in the Dooulationanalyses for the gross atomic populations on the carbon atom being attacked(C4A) in the protonated ring and the total overlap populations between C4A-SOA (in the protonated ring) and 0B-C4A (the bond being formed between theunprotonated ring and the protonated ring).

.. Following are detailed tables of this and the total overlap populations

and gross atomic populations for the entire AMMO + OXETH +, OXET + AMMOH + ,

-. and AMMO + AMMOH series as a function of the inter-ring distance R(OIB-C4A)and the angle of opening the protonated ring (6). Tables 11-46 - Table 11-63

The general conclusions are:

1'. C2A and C4A (the a carbons in the original protonatedring) still carry about the same excess negative charge(-0.2 e) in spite of the fact that the protonatedspecies carries a formal positive charge. The closeness

of the charges on C2A and C4A in OXETH+ and AMMOH+ iscommensurate with their similarities in pertinent energyquantities. As the protonated ring opens and the OIB ofthe unprotonated ring begins to form a bond with C4A,

there is little change in the charge on C4A.

2'. 01A in the protonated ring (OXETH+ or AMMOH ) carries anexcess negative charge of -0.37. OIB in theunprotonated ring (OXET or AMMO) carries an excessnegative charge of -0.35. When the OIB-C4A bond forms,01B still carries an excess negative charge of -0.29 in

* AMMO + OXETH + and excess negative charge of 0.32 in AMMO

+ AMMOH + . When the C4A-OIA breaks, the OIA carries a

little more negative charge (0.44 in AMMO + OXETH+, 0.45

in AMMO + AMMOH +) in both protonated partners.

* 3'. Total overlap populations are a very sensitive criteriaof the incipient making and breaking of bonds. Thelargest TOP's occur when the energy is a minimum.As the protonated and unprotonated oxetane (energeticsubstituted oxetane)rings approach

0 a'. the interring TOP (C4A-OIA) begins to getsmaller even when the protonated ring is stillfully closed. This indicates that the C4A-OIAbond wants to lengthen.

-2,

-' ..a'.= - , . - ." . -" / . ' . . - . " . - - . " - . -" " ' " - - - ' / = " " Z -i - ' ' ' L . . ' ' ' ' - ' . ' ' ' . -

Page 113: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

b'. The TOP (OIB-C4A) begins to be noticeable at4.6 bohrs and gets larger as the ringsapproach closer provided that the protonatedring is open by at least 6 - 50. Thestrongest TOP(OIB-C4A) occurs (as anticipated)at the most stable point energetically R(OIB-C4A) -2.9 bohrs and 6 - 190.

'.

4-,.

w'p

0 ""

a.

0

0

VmV:

Page 114: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* 106

L - 00 -M, 0C)0- ~ 00 C) CD 0 0

r r- 00 - D 0l o - nLA 0 C0 - rn 0Dc- - - 0D

%I I I I I

co c 0 %0 0D 0 n 0 0 0 0

0Lc)

LL. - Ln CD 0n 0D -1 0

%~ 0 0D 0D C 0 0 0n 0o 0 0

4- c C\j C\,j CIJ 0D 0D 0CD0

+ -c0 0 0 0 0

0L 0 C)

4- ea CIO LA- 00 -CT- r --l 1.0 CD LC)\ 0~ts % N

C) 0 0-" 0 0A 0 0 - C\

% CD

%

LOU- C -

0- D 0 LO 0 0m 0 0 0N %0 0).I 4= Iz ( DC Dr

U.. 0% j C) CD CD 0~ en '0 -

110 -q (D, -yl 0 0 -LA- 0% 0~ 0~ 0l 0D 0 o 0o 0 0U * C -4 en I- I

%0 -j a% CD' 0 0en ON %0 0 *

10 C14 C ~ I, -W NJ C" ---

41 %3*.

%0

P.O2 0.L% X *%

Page 115: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

0 j0 7

10

'.0 ti -all - *tl ? C3 0 0D 0N CD 0z~ '.0 r* 'f.

( C) j - r-. r. ia - I i'a1 NJ CD NI r) CC) 1-. f-

10 :T rr - C)C- )C

r) ~~~N f-- r- 0o 01% toj en Cj C) j % - r*_LL. LOl C)~0 C' 0' -- -11 zn r . . - -Li C"! CJ r r. r-. o ' n:. N 0 N = P. f- r,-

00. 0= -n o N Cai qzr LO- - Jr f - f-I 1-. IA L) tLn '.0

C:) C+ LO . .0 0 ON C 0 0 f' - CO 0 0

+ -A 0 (.0 -:I to CD -n fn No 0n U" 0 o -+ _ Li.) to -Q CDI 0~ f- -l -- - J 0 I fi t A A '

C kO - CA a; Ca a; . . .

N 0-t ~ ~ 0 0 0D 0 C 00 ::0 Ir K2 LO0 0

LA- .0 '0c J -IKT C14 0~j C NJ ff to fl 03 n Ln -T -*I -T-i La-01 L-_ f-i r NJ rn C~ CD f--a - toP-f-

fl.. tD C~l m CD 0 0 0 0 CD C~ rn 00 0 0n 0~

*-0 P-a. M0 CD- p. D CD 0 D CD o 'a.l* "T '0 D CD CD CD

'.0 o co 0h 0 l 0 D 0 z 0 0 al n 00 0 o 0 n 0 0

U- toi -.11 U-) fl- en 'c0 0c qd P.. Ln IV "f-nrn i rn fniS- Ir N~j r 0o p.. P-. p-a r- t t-) ~j CD Nj p... r-. f-a. p--

(A

-cc -cc 0 r cc 4< 0m 0o co cc CIE is CIE ias

C D L a L. C- CD C- wa

-a,, M&,/Va.m &L

a

Page 116: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

7u M = e-

. rr'.~ -,.-'~

%

C)) C

0 .L I, r- -) 00 LO r 0 D~ 0

L. - C.O --: - o -.0 LC) 0 ~4Lj

20 cs 0) 0n -m-

*444 L~) .- o 1 - ! . .0 Lfl -'r 4= ~j ~ !- - '

LO1 CD c l4C ~ ) C.4. '0 rn rn CO n 0c 0q0 '.0 :1 L 0 0

0+ -0 c; c;~- -L '0 ~ .~ .

><0 0 CL 0 0 '0 ~ ~

-L) 01 0o 0c in in el m ON 0 en mr -T0

C~i -o -r Ci- ~ , - nrr., In Ci C ~

0.0 ff) en el) ON Ln- ~ C4 0 0 e n r*.co 0 -W C\J Rr enJ 0n c~ fn (

-ci% r- fl- r- _ r-. en0 cl C'4 0 C.J P- r-.

C. '. 0c (1- LO Lr 0'0 0. I - 0T - 'C l~ n

U-\ -r-. r-. V, CN- al Ul C'J 0C ~ C14 cl. F-- c-- F

00 Rr4 4 1 . T .n .~ .l r. r- I, . 4

'.o~C= c; c; c; 0c ; ~4!L.

&-. - ~ F - CJ 0 " e.- Q% ea.~ 0 n in '0 '0 ~ 0'

* ~ ~ ~ ~ ~ c CC ct cc -. r. -. F-. '0 C. -J 0 C.~ F- -. -. F4.4 . n . T C\ . " . t . T + 4 .f 0i (N

pp I _ -

Page 117: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

- r 0 . co -~ -~ 0% 0o 0o r- 0% -~ f~- P I-~ qT CD~ r-_ 1.1 o '.0 in 0- C'J C r- r- r- .

L.) qT cl -T r~ ir- '0 k.0 Ln rn N~ 0= N 1.

en U'. o n t) co 0%0 1 -W %00 Ln LC 0l 0 0C.4.. 7 C C

W .qT C ~ r* 0 0 %0 %0 0C '.0 cl D C1 0- 0 0l P0

0.

%0 0o R'. Nl -7 -4C0'' 0 4 -T - P- -4 0%

+ 4.- Rr -t -W 0% 0; C- C; 0 C; C; c

WD 0

0 004-r. ON -v -I -4 fl ') 0 0 cl- tl) %D ko alA&+ LJZ Nl qL Ln '.0 Fn -4) '.0 a$0 m C~ '.0 0%10

'.0 4= en ( 0 0C 00 0w 0~ ' LO n 0%0 0 0s

U..4 as, -nL ne Q c R - ~ 4

0%0 C= C; C=. 0% C; C; '0 4- L L 0 '0

co ON- CD CD en 0% wgn 0% N lN N

'.0 % . 0 q 0 O 0 * 0 y '.0 q C~ 0 0 0

co % m 0w qtr eo OA'0 0 '0~ N "r LA -1 '.0 1ON. u lw .~i Iv. P.. 4 . to0 evi P N 4- - i. P-%

% (4

v.4A

en 4.. le) -w +. -10 04 mA 4.-. 0% Nq -- D ci 4N . u -z r- - -. i.. '0 N N 0 N is '. 4.

% 4 . 4 4 * . 4 . 4 4 . 4 . 4 . 4 .

Page 118: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

_ __u~~ar.4 ... IR NE m Cflwo-

aIl

0- -, IL- CD c~ (7N C14 0 60 (1) O00'C= vr 0o C) -I J C~J -ti '.0 qT r- - r".~

- :i (NJ 0' - :- c"'! fl ( N 0 (J r.AR CD. C.C D ;o m q C, C ) C

LL Cl o C) C0 0 D 0 D 0 ) 0 o Lr r- r-. -.C.) C) -' 0 - F- r-_ F- ULn (NJ 0~ CNJ f- - .~ -

'. T n co o 0 ON 000 0 CD0 n qz 0 C 0 * 0 0

- l o r 10 (N- rn '.0 -0 LO (J 0 O CJ LO (- (- ;.n

I--. On el) 1,- 0.0 qz i1 '.- '.0 0n qr r. . ~ in iLL- CI (NO 1.0 0o en- CY- '.0 '.0 m -T. 0 , (Nj LO. Ln L~ (

C-) a Ca "* (= - a 1 9C C 1 11

'.0 qq (D C> 0D 0 0.0 MT T 0* (M 0 0D 0D C

rCD NJ -10 '.0 0 co 0') -4 i CDJ 0l -d LO (NJ coi.r. LO ,- 1.0 r.) IV R? -o CD '.0 0c (NJ Fn r' en

L< 0. 0L"1) 1CD 0CL cm

0D q*? a? n '.0 co 01 '.0 fl- n c - e~ 0D -? LC) iCn c+. '.' La.. 0) '.0 in -z aS a? en Oi Fq) C1. -n a?) (N r n4

U~~. a?* CNJ V, - (N. (N- f. . . ~ (J 0 (J ~ (. (- (..0 EO 0 (V)

0.0 0. 01 0t r.- (N. r CNJ c.i CDJ -l~ a- i ( 0- a?

C1 in' co inr 4Z in in r-' e'n r-.4 rn- ~ (J (J N N-L 00 (NJ Rr -r LC. I-O F-. (1-i W)0 %0J (N 0T (NJ C. *. r-.j r-

4% LL -- '.0 a ? in Ln r.- (NJ ko '. i a 'J (J (j J

'.0 co a? ar 0% 0 0 00 CD0 CD aa?00T

in o -0 Fn- '.O ko 1.0 01 -n -n P-0 co.~ '.CD C- -I '.0 %00 a? CD r ? - - P- - -

C~ F? n 0, aj a? +~ -nn 4 a?' en -t 0 ~ - W -T

% ,.. ~ '0 ( . . . ~ ~ A ta (~ ? ~ ~

/~ ~ % - N ?'~F N N- - '0~ .~ -. r

Page 119: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

- - - - - - -

-.0 %0 LO C) COi CD Ll un On co00 Ln 0 rn C14 'li fn r\J 00 t. r- r-_ e-n r-_

r- On r- r- aN CD rn 0t co 0l c(M ti CY ) >

Li. 1* t, -z CD CD CD 0" CD ko -1* .-M ., CD CD

-:: Ii! md C" ~ 0 t. IA t.o .. CD 0l C0 CJ I'-. aN 0.M r-

- --:J - mr C0 - D 0 D CD 110 -C -C qlC

La. CD -:r (7) cl' Lfl LC O C 0 7 r r.O 0 r ' C CD l Cl C

'P -) C\j .9* -4 r- r- r- r- '0 (% C'J 0D C'J I-.. I-_ 9- r-_.% j

+ L' PC C 8C ; C4.-.

CD': 01i r- LO CD) u cl c' -:r -z 0 CD+a 4- Li.. 0-. r". a ) -:rN L '.0 CD CD 0'r 'o C -4 - -n rn Jv

0. .0 m 01 0N 0D 0- '0 r - 1. 0 0o 0 0

cl 41 Cl) LO. '.0 CYN C C D CD - O " r e 0 .0 00 - -M

%a 4T0 -c CD CI 0D 0D 0.0 I-c -0 C 0 D 0 C0I

(In.' La. m'. P". Cl 9-. 1.0 %.0 mh rn Ll 4 m'- -~* C)- 0D 0CD-4 ~ ~ ~ ~ 0 C,. 1'1 rNJ 11 -7 9'.. C. '. ". '0 C 0 - ".9.9.

0~ ~~ -00 4, RT CD CD 0D 0D 0k0 qc -c 0D 0D 0) 0D

0 C..) Ln q* = n r_ 0 0 c. C,.O,0 C

00

cla 4. TT. .4ji *'d1" -T MT 54jrn - C

Page 120: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

00

ON CD Ul 0N N~ - 0 0LA -. 0, 0D 0~ 0m 0D

0l 0 0 ~ 0 00 0 0 0co~ C I enI

0

Lh~ . .~ ~ o (

C) f" C P-.- 0 ev -4 -o qw c

oD 006000 0z IW

20 q0

LA. N--- NM (m 0 cm ~ L

-&jo e 00 0n 0e0) 0 0 O0 0

0~ ~ ~ 0I % 0 0C4e o C -

F-4*000 L C%j LAM*~0w eq co 0 1 *

- N C! - el 0 0 -

-I .0 CD -1 -1 n e

-II

% 0 'O 0

*~4 0c 0 0 0 0 0

4'

Page 121: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

-W ......- -.....- - - - ~ -.-

* 113

m Ln CS LO 0 9 CN VI CO On T - D

co 10 fl rn 0l 0Y -n ON ' -It CI Cl CD 1T. -. 01 -o CD. rD CD Ic- f._ \ . 'J - - ~

rr CD 0D -. mr -z. W. CD CD Cj p

." Ln co '1 00 0 m 0 = 0- 0. -00 r., ' 0 10 %0 0.

en' l r-- l - LA rn O' 'J '.0 C'.J 0- '.0 r.,~ P_

I- ? 'D0 0 -j -n -0 C-O CO CD0 .O en0 .0+ U_ 1'.0 rn j 0 ~ 0 -0 0. 0l~ 1.0 un un "1 0 0 0

04 LL .0 - -0 0 - -n r- rl CC). ( a.0 '.0_LC CD0 r-.

to Ln - Z ON - e en J r 110 u N o 0 CD Ln CD '.-0 to V C~ (N 0 -f. p rn en*. Ln fl LC) Rr (NJ m. qr -el -.

0; C- CJ a; ;0C

0= -1 4 - 4- C.0 C; CN - -'0;

+ Cj U. . 00 M~ 1(_ -D (J LO. ONi P~ 0 r-_ ew '0 LAn 4= %A '4-C-) C~ - M 0 - r = s . LO rn (NJ 1* cNJ p... .- fl-. p..

0 C-- A m c -c -C C c cc

cc Io I 01 en -t a'. "r~ p.. + 0'. 0"i en0 0'. r- LA r 0-z CD C'.) 0 w CD. u.. p. - A ~ J ~ N .. I-. p.

V%'. 'A.0 '0 ~ ~ ~

Page 122: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

114

Cs Io n CT co ali - 0 C1 O' - .r-.. 0) 'o --T C'J 0 , 0 Ln -:'-* M r- f-.. f- F

- en C\J M u)-. F- ~. 0 I en. F-.J -0 Cj r-.. r~- r.

LA- '0 C~ c~l o 00 0 0 0n '0 r 'L'n0 0

.C.-

C\J r' j '.0 cl CD CD 0 0r ~ 0 ..

c. '. o m~ In l TrJ 00 rn 1 F-. LO as- F. F- r. ell%~ U - 0. -10 CD . F-- '0i m ' X .0 IRT 1F.0 F-O F--. F- F--

'./, U- ,.i -1 Cj r r

Cn CD I, - rn m- '.0 -D O~i '.0 O"4 F.. C) 0n OP 'I -4 I F-O F-i Fi 0n 0l- m. -.. 1 -I V,0 V0 V0 '0

V" F-i 0 CD- F-. . fl-. LO- In ) C~ V-i P_- -- - F-.

0. a- 0 0 0 0 0 0n

Cs' ko P-i en 1- n %C0 V, In- 0O %-. U-) F. a) 0 OLA. oo. r0l fl 0T F-i -sJ Lo -0 In~ V- LO . n . .

4- ~ ~ ~ ~ ~ V L)i L?0 - F- - . . n en c-i - -i - -- -- -

a 0L -~ F-i IO Fl-i F-) LO VIi -) 0'. r" Ul "I c- oS- < - Fi - -el r-.. F-.. V,- CD t' O F-i LO Fi F- C14 T-.

-. 4 z 4

rN.0

0- aN C14 .01 F-- -r V- ell '.0 'rF- n ".0 en C14 r' n -:.

(i. mr F-i 0 0 r.. F- F-. F-- In '.'0 F-i C1 -0-I -. fl- fl-. F..VI' I- EO C3 C./ c. 4 -W -: C=

J4 .1 >

%~ ~ ~ -W 4 o . 0 c ,- 0 n

%. II'Jr-

0.00 atI -c cc -c a -u Qn ccn I F. . Il - -1 FI Rr Ii V, -Fr 0 IQ fn Ir C14 Ci F-ir -C

CD f.. w.,

'. ~~~ 0 0 0 '0~ ~ 0 0-- 4e

Page 123: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* 115

00 C,, -n a- 0' Lo -

al C) c'J 0 l~ 0 o C- i r- r \ - ci TI, rn CD ~ r

C~0 r~ - *-I ON 0o 0- 00 0. 00 Lf Ln Ul 0 0 0

%L %~ T . C~j CD r o 0 en~ C', qq r- r- . r-L C- C'J C0 0= ll CO;OLl ~ C' ~~

LC) C) LO rn 0n 0~ 0 00 0n 0

-i Lr c'.j -. CD .C= r- a'o Ln - T col T Coj r) -LC

C. Ln c" co 0o ON 00 ON r* .r- r- 0n 0N 0 o

cm Lr j (NJ 0o 0n C\ ~ . '0 L ~ ~ J .Zr (Na r- i -. .

0 CCL L

r.f 0o en~ !-_ r-_ C.0 0' C74 0'0 !- r. ,00. Lj j n '.0 0 q4 Rz CD 0 00 - T qr -r r) f) ()

- r C'J 0D - r ~ - '.0 e\J (NJ Tr (J r. r- r- '.-

r- LO =o --- 44- 4 IT o o 00 0 N o 7LL 0D (1 Tr ( O'C n.0rn 10 14 Cit-) U.0 ol DP - 1 % ci w Q r_ 1- r

C; C; 0= C'

*m - - Il (J 0- 0- C'- C - '. .0\J qT C\ -J.

N0 (7 en tD 0 n 0 0 0 Il 0 q '.0 r- o c 0 0

A LI

C-, 4 ~ en 4 ~ 4 ~ c 4 q -1* 4 4N 4l qT 0 4i q i

'.D u W cm 0 '0 ~ ~

10'

% % %Jl-e . ~ r. - . . c ' '0 ~ 0

Page 124: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

- ~ al CNJ 0 r-= r-. '.0 '0j r.o rn C\JCC\ -. -. h-.

'.0 "1,' "*- M- 0, 0n 0 0- 0 . -0

Sn rj - 00 Ln) Lfl 00 rn CD C\J t-_ C\J r--. C\.Q 0: I-'0 T 1. RT co r- 1 n f n r- qr h- -t Ln) Ln

- n CD 0C 0% CS r-_ '0 '.0 '.0 C '4)

LL - l ko '0 l qT r -. '.0 C\J 0D Lfl Vr Ln L Ll flnL) ) cn CD 0 CD r.. , 0 '0 '0 ~ CJ ~ CJ r. I. -

'.4 t0 In 0n 0%-~) '0 Ol co ql* 1* co -0 %0 C\s a. cc00 0 0I r- LO In n - D 0 o ' D 0 T 4 -:T C~j rn C\j r

o~ -,o '.0j - Cj r-

CD 0Qa- 0 - '00L-In. - - ~ - '0 (J a

Lc) In j CDJ 0Q 0~ r.- r- 0 '0 ~ (J ~ (J- (N-

0.0 co tr (N. -~ '.0 a- -4 all c aN T- (N-r-c0 In In) U- nl '.0 ko (NJ (Nj - ON (N NJ J - - - (NJ

LD qr (NJ 0m - (N. - (N- r,- '.0 (J I'l- oj r-J r -, (- (-

'.0 C C; c; 0 0; 0 . -

*o (D 0~ 'l) en (NJ Lr' N n '.0 00 r 0 CD 00 -~ - I- %

LO .0 qn %Q %D 0 0 000 0 '.0 Ln C) CD 0 0

* l 0 1 rl '.0 r, 1 rN- C 0l ' ('.2 (N. pl '.- o I T '0 r -I CD '.0 '. D CD CD 10 - "T -r 0D 0 0D C

(N0 L Ci - n-.. r-. - CD. V.0 f C)J (M (J (- (. N. (N.

LL. m- mr qd" 'D '.0 n rn '.0 P-- a- LO a% 0) 0C 0

6

Page 125: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

% c C (

c00 l r) 0 r c

c",4 8

V ) 0 0'. e- n..4D. '0 T %- Cn r0 0o 0- 0 LO~

(0 n CJfci lc

en0 nenL 'L. l V- -cr co. F '.0 -o P-. N f T' -7 .j

(.J~~~~~C flj Cs - L ' . . n(J .. r..4.. .. ~ . . . .LAM

e'D '. 0'0 ~ '0 '0 - 0 '.0 -W' rn C1 C14. ct'. N

'.0 CD CD CD CD oo CD 0 . (M0

40 0L aN -T 0 '.0 ?- r. '. . i

0n 0 O .1 0 Lo r - -l 0o co 04 qT . '0 ~

CD 2.o ff %0 C4a 4

04 %0 %0'mLA Ln %0 0.0 %0f) ~ f

V'. "t 0o '.0 CD -T C14 ell~ %~ '

LU ~ ~ ~ % %0 '0 0 0 0rn

CC

u/ el Il -P

.- NW. '0 %f '0N,' - N C C-OF - P- 0 N N ~ N -. N P-'0 -009 &~ 0 0

-6K0'.uc- V, Wp N U)-Ze. 0 C ' - - 0.

Page 126: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

rn C= C) C) - 0

I I I

LA Lt) - l C0 0= CDLf 0I-.- - n CD. CD 0a)0 0

00 r') CD C- 0 0n 0 0 0 o

0. 0C00 D 0 0

I I I

N'l

- C)j -c CY - 0D 0 0 00 0 0

u-I

mO 0O CL -: 0 CD

= ~ C. m I L) o T r- 0D 0 0o 0 0 0o

2 0 .) . ~ .~ C .C ) C) C

-9 0, 00 0T 0n 0D 0O 0 ~ 0 0

C 0

0N U- 00 m~ 0D -. c c cci(- C C\J CD 0) 0D 0 0 0

CD. . n c o(9 D c

E00 Ln -> m-n0N L)) 0~ ~ DC~ I

+~~~~~~ (M cc C).~ L) c . 0~- r. C.

-Co C- C.. CC' OCj C ;0 0

00 L- 1)

0j 0n 0n 0N 00 0 %0 0

an

10 cc C u - c O \

o~~~~~~~~ N- ) CJ 0 ~ 0 I-

A! 0N cNJ 0- 02 01& '.j CJ

Page 127: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

119

0 00 0 C\j C\j ~ ~ -. ~-0 D C) C D C V T -r .1 C D C

-:. Z~ CD C CD 0 0 0T 0T 00 CD CD CD CD

.- 1- 00 Ln 0 0 0 0 T3" Ul rn a* 0 L 0 0 c

0 - - -T CD CD CD CD o Irr rr -tr CD' C C CD

o C~ co LO ~ 0, 0n 0r 0n CD Ln 000 00

Li. LO~ 00 (I Z - 0CD -4 iL 41 L.0 r-_ 10 1. o(-.) -:I - D 0l - I . r - U-) R C'J 0 (J - r-_ r- r -

110 I-z rr -t~ 0; 0= 0 0= 0 l0j 0 0

LA

0000C - rn - - (NJ (NJ r L Lfn 1.0 rn r- '.0 -'0-0 ~ ~ r C) ' J 0 - '. = r~ r. ULf f" C'IJ 0 Q (N rI- r-_

+D rn 0D I-0 lm 00 01 0I 00 0% '0 ko Ln 0 0 0

L& r f - f 0.0--. ml .=4 (NJ %0 %.D0

. E 00 -)

V,0 co c co cli CO eni fn r-_ -N (i 0'D 0CD '0 IC -r -0 0

(z rn CI 0 - - - r- r- in en ~ CD 0 (N r- r- r-. !

;D0 L CD c 0N 0n 0~ 0 0 .D CD r. -t 0 I0" 0c 0

'.0 in 0 4N 0'. C; (Nj C; 0 -; 0; C-

U.. '.0 0n n -0 cJ C) LO i) r o CD -* -T

*l = :J 0 I-. "': r-.. I'- in C (N (=i CJ r- r- r-Cd, -z .V DC D C o r 1c t D C )

[4 N0 CD~ a -4 InT 1.0 aO 0'. en (7 rl. -d - D 0 T T

C-.) 0I 0~ D ( r- r- i'- r'-. 'o en CNJ 0CD - r. r

LANJ0 " ea 00 0'(a . 0. C '. ~ .-

LA\I. in -t '.0j '.0 -T + C, CO .00 ( 4 ,r 3

(NJ 0 0 .- .- .. .N .n i4 (NJ 0 7.- ~ .

%. %' % O 0 0 0 .'a0

.0d - .P -L-. - 2 .1 2".L''"

Page 128: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

120

ON 10 Ln LAc co -~ OL O -n CY%(sJ~ Ln rnr~l C 0 o 0 1 - c'j 0D OY LO -z~ 1.0 t~ r. r r- .-en OQ CDJ - Ir- P - ~O LO en c\J 0 i r-_. r- r-. f-.

U- 10 LO C~ C0 0 0 0 0n 00 1. I- 0 0

en Cl - D 0 ri-r- . . LA n C14 0D C~ fl- - r- r-

co 0 n rr -c0 0 0 0n 0 m. D a r- 0 -0 n 0 0

LA- C i all -l CD '0 co LO 0 0 1*1 LO'J A LC-) -11 C) r- %D C 0 0 '.O r 04 CD - .o '0 '.

-n C C=j 0= -c C= C- C=; rC. L ~0~ ~

a. CD r" f 0n 0 o 0 D 0n 09 CD CD %0 00 0

-4~~ . r-, C-n C 0 ~ i 0 O r- f A LA

-0= - C= k, C. A 'J ; ~

CD co a% %0 r- ro r.- '.0 0l K\J LO CD 0 n 0 0 00 -~00u A - CDJ LA ONJ en en CD LA CD '*-C LA LA LA

0 - C" 0D CD r.- t.. r- LO Al %j 0D c\1 r-_ ~ .

CD 0 10 V.

LA. IA*0 a 0n '.0 CD- -4 V, as LO t. L n 0 al en0 f. r -

%- LJ9 L n LO t CD 0' o 10 A L - * 0 l (D- 0 - -tr 04 1-4A~ LAcm mr C'J 0C0D r, r '- t0 en C14 0D c".J P I.l '- rl P-

CC

0. a% LA %l 0 *-i 00 '~ ~ L Ln LA 0a A w r -P..LA m A en 0r D .0 %.0 V, 'r h- %0 -o mr c C'% 4 -

C- -c CD. 0 - r.. I I~l %0 en C% D 0, C'. P r=

%00 'r Kr 0~0 0 0o 04 C 0 '0 cl Ln 00 0 0D 0

0" 0" co '.0 LA tos 1.C0 L A LA r - CJ en cli C(. ~~ C\J 0 - -. r- r r- 'o cli -l 0D -C - r -. a.

.0 co c' -; 0 o 0 " 0 0 00 %D0 - C CD 0 D 0 W 0 0

LA- r I~ Lf) LA '.0 '.O LA -W 1-4 (V All Al C%0 u 0~l 0D C) r- a- a. e'.J C"i 0D C~j a. r- P-. a-.

2 );

IN N NA

Page 129: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

121

r*-0 r-i en .o '.0 mn O %.o -0 fl I--. r r r.-.

U- m10 -0 '.0 01 %D LO 0\J 00 LO 0

(i '.0 C

r- o D 10 n 1 L - 0 N CD m r- 00 CDf0 C~ r-_ r* en 0n 0 0 0 %.0 %- mr 1 .0 0o 10 %0

ko -T CD CD. In CD CD %.0 1* -. -1 CD CD- 0 CD

0- In1 0 .0 0 a) as r- -0 -41 C'.. co CD CD~.U. ~ C . 0n -d rn r. f-- IT '.0 ) NJ 1'.. f-O %D-

C CD '.0 .r en CN 0l 0 0 0: 0- '0T f- rn en 0 0

0 CL CD.0

CD CD 0.0 01 * O 0 e l l l D r

+ 0 r-. -4 Ln In V, mr r 1.. all. e1 j KNJ 'J 0' I. 0

0o qEO a; CA . . .84 4 4 a ;C

0) 0.~- '0 -4 Tr 0 0 ~ 0 0 4 0 ) '0 ey f fl 0 l 0 00 0o

*; * C

fl L. (/1-4r r L 4 ( % n o c

In In n (m In n qc (7 '.0 L' 'NJ N CY NJ 'J NO LO 'J 0 M IZ r- I'-. C r-. '0 -4. 'NJ 0 4 CNJ 1 I" -

CA.

-'S -

CN. 0n ql C~ 0~ -T Inr + N 0 4 m 'NJ 'NJ 'NJIt*~C u.. In) 'NJ 0D -- L.) P-I-. r- ' NJ 0 ') ~ r

'0 10 0

, AL I

Page 130: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

122

CD Ln -~ 0n e- 000%l '0 " - N

Ul ~ ~ ei OD')10 LO~ r LO ~ '.0 r-I r- r. r* -- T C'J 0D 0D r r-. '0 %0 '.0 en C"J 0 C"J N - - N

N.J 0o cl (') ell - Nqj '. 0 Ln C 10 fl- Lf- r r

Ln -D CD CD0 CD %.0 -tl C -; CD '.f* Nj '0DN

NJ 0 10 N. ON '0 TI, en en~ LO oJr- N .

' r r IC r 0 t 0 00 0* 0n 'O Ln V, LO 0 0 0 0)

Tr~ 0 . C)N - CD) CD) ) CD CD 0o N CD

0 - ' n NJi 0- -4 N-r .0" N- N- '. J 0 N -- n

-T CD CD CD0 CD CD % 0 0 0 Rr V D 0 Z 0 C0D

x~ 00 a--

U~ .-O C~ CD CD %0) en) 0l 0m r -

CC -

(All0.O mr '.0 f- U-4 N- ON 0-z LZ %~-'0 0D N~j

'0 Lfl CC) rn' en' '0_ ' N') 00 05 -n .0"N J

Ul '0 -t rn %0 0o 0t 0 00 -4 CD lq -4 0 0

0.. 0 O C ' 0 0 0 0 0N '0r r LO 0 0 0 n 0 0

5*))

cc -C CE. 0c -z - Q- N-,lot . '01)=00NJ N N - N

'0n 1 0r 0 01 0n 0t '0i C~ -d0 0

-VI

Page 131: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

123

(7 -n 0 rn C) 0 0 ON - - C~i LO~ rn

- . n co co rn~ r-n U.l Ln Ln -n c'.0 0q C\J r-.!- f.

'.0 OI co rn 0 0 0 o 0 ~ 0 .0 C,- Ln 0 0 0

r C: CD C) 1.0 -~ V, -c CD0 D cm 0CD

en ID CDJ 0 0 r-. 1- .0 '.0 CD0 co rJ 0~ CD F-. all. CD. C

-o '0 o ko It 0 0 0 0o 0 .0 -c Ic LO 0 0 0 al

(4 T -T0 V, CD 0 CD C CDJ 0D 1. q* C\D 0 CD~

U- CD l~ 10 0o R. -T '.0 %0 '.0 Cl C\J 0- -CT r- -.. F-. F-O

%. .1 lq -z 0 D 0 D 0 0 D 0 %0 4T -T 0D 0D CD C

C) C n C F-.. Ul c.0 C\J CD. C~ 04.' 11 -0 -r m C\j

U.. 0N -c '.0 '.n cl- rn r- . rn ~ f

+.. af >~J 0 ~. CL. 10. '.0 V.0 C C\J 0 C\J C;. F- c;. c; ..

CM 0 0o C) 0 14 LCn V, 00 0~l r. LO -c C~ rn 0% C'.jP" 000 - '.0 '.0 F-M. C~ r" -4I fl4 r-_4- ~

-0C - .- CNJ t0 -O co. F-.. F-. f - '. 0 alJ CJ 0 C~i F -.. c- all.

4J4 ON -W 0. '.0 0f 1 0 0 0l 0 %0 -.0 00 r 00 0~ 0 0%. --- 04 C 4 r- r ~ -

%0 RT C= '.0;C = l C =;C

Ul 0aO -N-r 0* 40 0en C) 0* r- .4 L)r LC 'J- C'.

L~j aN C\J 0 - l F-. F-. F-. M. '.0 LO F-J 0n (7s r.D. F-

LL- qr 0- 0. . ~~0 0 0 e 0 %0 c. ko T r 0 0D 0 04

-- -

in) It0 in 0 i '.0 mr +\ C~ 0r0 - C'.J - -- C'-J 0 C-) CD. ?-. F. -. '0 (J C-j 0 uN -. F- -

4~44'.0~ i ~ 0 0 0 0 0 '.0 ~ 0 0%

0.%

Page 132: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* 124"a

"

'-.>

B. Ab-Initio MRD-CI Calculations of the Protonation of Oxetane

Protonation of oxetane (or substituted oxetane) is the initiationstep in cationic polymerization.

.a,.

We had long since pointed out the initiation protonation step incationic polymerization is an ion-molecule reaction

A+ + B --> AB+ (Type II)

a' where the ionization potential of A (the hydrogen atom 13.6 eV) is higherthan that of B (oxetane or any substituted oxetane) For ion-moleculereactions of Type I

A4 + B --> AB4 (Type I)

where the ionization potential of A is lower than that of B the reaction hasthe possibility to proceed along a single lowest potential energy surface

which separates properly theoretically at the asymptotes of A+ and B (since

both A+ and B are closd shell ground state systems). However, for ion-a'b. molecule reactions where the ionization potential of the molecule is less

than 13.6 eV which is the case for all oxetanes and apparently all organic

molecules) there has to be at least one potential energy surface arising

from the asymptotes A + B which is lower in energy at the asympotote andalong at least part of the interaction potential energy surfaces.

A single determinant SCF calculation will definitely not separate

properly at the asymptotes and is not sufficient to describe a protonationreaction of oxetanes or other organic molecules. Ab-initio MRD-CIcalculations for the entire potential energy surface for ground and at least

@ -several excited states are necessary to describe protonation reactions. Wehad long stated this based on the fundamental physics involved. This pastyear we verified this convincingly, by accurate full valence electron ab-initio MRO-CI calculations for the ground and electronically excitd statesfor the proton attack on oxetane. We carried out the calculations for the

* linear attack of the proton to form an O-H bond both for the in-plane1%-: attack and the out-of-plane attack.

",'..4

Page 133: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* 125

PROTONATION OF OXETANE

E olonq the 01-H bond (hill on in pwne)[U] Ab-ndio MOoPOT AO-O Extrapolated CI Energies toul

- 355 SIGE STATE

-356.11

-35.7 O 0 M L. C

--Q Al

",,, -359

-36.0

- .0 2.0 3.0 40 so 60 70 aO 90 00 "

R(Ol-14') [a

Our MRO-CI results confirmed our earlier geometry optimization results

that the O-H bond is in the plane of the oxetane ring even though the lonepairs on the original oxetane are out of plane. The results indicated aneven greater complexity for the potential energy surfaces then we hadoriginally hypothesized. The lowest energy root from 1.5 bohrs to 4.5 bohrs(including the equilibrium internuclear O-Hf distance of protonated oxetane

1 1at 2.0 bohrs) is A,. At 4.5 bohrs the lowest root becomes BI to an

asymptote of oxetane+(ground state, 2BI) + H. At 4.5 bohrs the A I curve

continues as the second root of the CI matrix smoothly to oxetane+(first

excited singlet state 2A1 ) + H. The third root of the CI matrix, also a 1AIstate, has a minimum at 2.0 bohrs, a hump at 2.75 bohrs and then continues

down to the separated products oxetane(ground state) + H+. The behavior ofthe next two higher roots of the CI matrix is also complicated. This

implies that while the A, potential energy surface arising from or

dissociating to oxetane (or substituted oxetane) + H+ will always be one oftwo higher lying potential energy surfaces involving protonated oxetane (orprotonated substituted oxetane), the exact relative position of thatpotential energy surface will be critically dependent on the explicit values

-I.- """.,''," .' . 7'. '','...¢ , .' .' . W-. ',.'"wvw _", ' - : "' ; ,." " - - ; ., ,,"

Page 134: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* 126

.

of the ionization potentials for the substituted oxetane (ground or excitedstates) and will also depend on the type of molecular orbital from whichionization had occurred (i.e. lone pair, bonding or non-bonding orbital).Thus the behavior upon protonation can be somewhat different for eachindividual substituted oxetane.

These findings have a profound significance. Thus MRD-CI calculationsfor the ground and a number of excited states will be necessary to describeprotonation or deprotonation processes.

This behavior will hold true for all protonation reaction of organicmolecules since their ionization potentials are less than 13.6 eV.) as wellas protonation reactions involving molecules with ionization potentialslower than the ionization potential of the hydrogen atom, 13.6 eV. Thismultipotential surface behavior also holds true for deprotonation of theseprotonated species.

Thus the potential energy surfaces for protonation reactions are muchmore complicated than customarily assumed and moreover are cruciallydependent not only on the lowest ionzation potentials of the moleculesinvolved but also on the energies of their higher ionization potentials

relative to the ionization potential of the hydrogen atom.

.W

Page 135: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

127

III. Ab-Initio MRD-CI Calculations for Breaking a Chemical Bond in aMolecule in a Crystal or Other Solid Environment

Breaking a >C-NO 2 or >N-NO2 bond is the initial step in fractoemission

of explosives and also the initial step leading to detonation of explosives.To describe properly breaking of a chemical bond in a molecule it isnecessary to to carry out ab-initio MRD-CI (multireference double excitationconfiguration interaction) calculations of the isolated molecule. Todescribe properly breaking of a chemical bond in a molecule in a crystal orother solid environment it is necessary to carry out ab-initio MRD-CIcalculations on the molecule surrounded by other molecules as in the crystalor solid arrangement. Even this generation of supercomputers still does nothave the space to carry out such calculations on large nitroexplosivemolecules especially since many of them (such as RDX and HMX) have a largenumber of molecules in the unit cell.

NO We had earlier derived and implemented and used successfully a methodUNA for dissociation of large molecules based on localized/local orbitals. The*localized molecular orbitals. The localized molecular orbitals in the

region of the bond breaking are included explicitly in the MRD-CI. The, remainder of the occupied and virtual orbitals are folded into an

"effective" CI Hamiltonian.

A. Methodology

MRD-CI calculations are absolutely necessary to describebondbreaking processes correctly in the ground state and especially in theexcited states.

The electronic challenge arose to extend our MRD-CI (multireferencedouble excitation - configuration interaction) technique based onlocalized/local orbitals to the breaking of a chemical bond in a molecule incrystal (or other solid environment). This past year we have derived,implemented, and used successfully a procedure for doing this. We made thefirst presentation of results using this method spring 1987 at the ONRWorkshop on Dynamic Deformation, Fracture and Transient Combustion ofEnergetic Compounds.

Our technique involves solving a quantum chemical ab-initio SCFexplicitly for a system of a molecule surrounded by a number of othermolecules (the unit reference cell or larger assemblage) in the multipoleenvironment of yet more further out surrounding molecules. Multipoles inthe environmental region affect the one-electron term in the Hamiltonian.This Hamiltonian is solved for the SCF for all the molecules in the spacetreated explicitly quantum chemically. The resulting canonical molecularorbitals are localized. All of the occupied and virtual localized orbitalsin the region of interest are included explicitly in the MRD-CI and theremaining occupied localized orbitals are folded into an "effective" CIHamiltonian. The advantage is that the transformations from integrals overatomic orbitals to integrals over molecular orbitals (the computer time-,computer core- and external storage - consuming part of the CI calculations)only have to be carried out for the localized molecular orbitals includedexplicitly in the MRD-CI calculations.

Page 136: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

0* 128

'"..,

Space is broken up into three regions:

(C3B[A]B']C)

A Localized space treated explicitly in ab-initio MRD-CIcalculations. (This can be an entire molecule or the localizeddissociation region of a large molecule.)

B A + B' Space treated explicitly quantum chemically (ab-initio SCF) forsupermolecule B A B'

C + C' Space represented by multipoles of additional molecules taken, into account by inclusion of multipole interactions (up through

quadruooles) into one-electron part of SCF Hamiltonian.

This method is completely general. The space treated explicitly. quantum chemically and the surrounding space can have defects, deformations,

dislocations, impurities, dopants, edges and surfaces, boundaries, etc.

To be able to carry out such MRD-CI calculations for breaking achemical bond in a molecule or a crystal (or other solid environment)represents a significant breakthrough.

"The desirable optimal computational strategies we have developed over

the years for ab-initio calculations on large molecules and molecularsystems is what makes these computations tractable for us: MODPOT - ab-initio effective core model potentials which enable calculation of thevalence electrons only explicitly, yet accurately; VRDDO - a charge-conserving integral prescreening evaluation, especially effective forspatially extended systems; MERGE - to save and reuse integrals from commonfragments or molecules, which enables us to build up larger and largerclusters very efficiently and a special SCF technique which allows us to usethe SCF wave functions from smaller clusters as a start to get rapid

WA convergence for larger clusters.

Test results on 5 unit cells of H2 (for dissociating the H2 molecule in

the center cell treated by this method) verified the validity of this newtechnique.

B. Calculations Carried Out for Nitromethanes:

We have been carrying out extensive test calculations by this newtechnique for the dissociation of the H3C - NO2 bond in nitromethane for

various numbers of molecules treated explicitly on the SCF in the multipoleO field of varying numbers of additional CH3NO2 molecules as in the crystal

arrangement followed by localization and ab-initio MRD-CI calculations onbreaking the CH3 - NO2 bond in a specific nitromethane molecule. Since this

--. 'W .A --,"- -.... '".--.-. ' ' .- ?>?1-' ...--..- , , -, 7 > , , ,- . i

Page 137: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* U

technique is new we are carrying out extensive testing to ascertain how manymolecules must be treated in each region for reliable results.

One of the pertinent questions we posed initially for decomposition ofmolecules in crystals was did it take more or less energy to break the bondwhen the molecule was in a crystal compared to breaking the bond of anisolated molecule. The MRD-CI results for breaking the H3 C - NO2 bond of

nitromethane in the presence of multipoles of other nitromethane moleculescompared to the MRD-CI results for breaking the H3C - NO2 bond in an

isolated nitromethane molecule indicate that it takes more energy to breakthe H3 C - NO2 bond when nitromethane is in the field of the additional

nitromethane molecules.

We have also investigated such MRD-CI calculations treating differentnumbers of nitromethane molecules explicitly in the SCF calculation andvarying the numbers of the external nitromethane molecules contributing tothe multipole field.

"' Several different choices of the arrangement of nitromethane molecules* was also considered picking different pieces from the experimental crystal' structure of nitromethane.

. The ab-initio MRD-CI calculations have been carried out for RC-N" distances for the H3C-NO 2 molecule being dissociated of 2.4, 2.8, 3.0, 3.2,

3.6, 4.4 and 5.6 bohrs for each choice of nitromethane system description.

0

02,h

0°°'

........

- -o. -

Page 138: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

- ~~w vuwi WI- - -

C. Detailed Results of Calculations Carried Out for Nitromethane:Various Choices of Size and Description of System.

W All Figures and Tables appear at the end of this section starting onpage 136

1. The Model Case

To test the proposed approach the model cluster has beenselected from real nitromethane crystal. The model cluster includes:

a. reference molecule (A)

b. two closest neighbors (B) to reference molecule (these twomolecules are the most important for decomposition of C - N bond in thereference molecule)

c. two far-lying molecules (C) having big influence on the B'- region (Fig III-I, "The Cluster of 5 Nitromethanes Chosen For Model

* .Calculations)".

To test how good is the representation of a molecule by multipoles,calculations for two different geometries of the cluster have beenperformed. (See Figure III-I) First full SCF calculation for threenitromethane molecules with the reference nitromethane molecule at positionA and two more nitromethane molecules at positions B compared to SCFcalculation for the reference nitromethane molecule at position A and twonitromethane molecules represented by multipoles at position B. Second,full SCF calculation for three nitromethane molecules with the referencemolecule at position A and two nitromethane molecules at position C comparedto SCF calculation for the reference nitromethane molecule at position A and

% ' two nitromethane molecules represented by multipoles at position C. Theseresults are presented in Table III-1, "Energies For Equilibrium Geometry(RCN - 3.0 bohrs), Bond Dissociation Energy and Relative Error For Two

'' Geometries For the Cluster of 3 Nitromethane Molecules". The results showthat the multipole representation is extremely reliable compared to full ab-initio SCF results for the three nitromethane molecules. The relative erroron the MRD-CI calculated C-N dissociation energy when the two nitromethane

- ..~molecules in the C position are represented by their multipole effects is*only 0.027%. The relative error when the two closer nitromethane molecules

in the B positions are represented by their multipole effects is still only?.-:"1. 14%,

Table 111-2, "Total Energies, Reduced Energies, and Bond DissociationEnergies For Model Cluster of Nitromethane Molecules Within Different

* Approaches", has more extensive results for the ESCF, ECIEX and C-N bond

dissociation energy for:

............. -%...-..... ....-.....

Page 139: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

~-, .- IL I~ LI -q7' V. -Ur &M N MICO It p Uft pq XWIL r - - - - - - -- -. s v P.- rS

-..

.5-.

5 n tromethanes full SCF3 nitromethanes full SCF in field of 2 multipoles3 nitromethanes full SCFI nitromethane full SCF in field of 4 multipolesI nitromethane full SCF in field of 2 multipoles in B positionsI nitromethane single free molecule full SCF

Table III-2a, "Total Energies and Bond Dissociation Energies(Corresponding to RCN = 5.6 bohrs and Rcm = ) For Model Cluster of

Nitromethane Molecules Within Different Approaches", presents results forR = 5.6 bohrs and RON = for the same descriptions of the nitromethane

w cluster as in Table 111-2.

The bond dissociation energy of a molecule in a crystal, (or othersolid) in contrast to the bond dissociation energy in a free molecule,includes interactions with other molecules in the crystal or other solid.The energy of the cluster before the decomposition can be written

mI . E A + EB+ EAB+ EAC+ ECB+ EABC''.o

S-. (A,B,C correspond to spaces of cluster, Fig 111-1. where here B space = B +B'.C = C + C') and after decomposition

E 2' EA + EB + EBC +

where EA, EA energy of molecule A before and after decomposition

EB energy of molecules B

(EB EB + EB, + EBB, in our case)

E. two body interactions

E th ee body interactions

The bond dissociation energy

AE - EI- E 2 = I -EA EB

Assuming the decomposition of the bond to infinity, EA is a energy of

completely decomposed free molecule and EB is an energy of the cluster

0%

Page 140: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

.ithout A molecule.

The value

ER(r) = cl(r) -EB'

is called the reduced energy and represents the energy of reference moleculein the field of other spaces of the crystal. The ER(r) can be used to

compare energy surfaces (reaction surfaces) in different assumed models.These calculations have also been carried out as a function of R Table

111-3, "The Decomposition Pathway for C-N Bond in Nitromethane Crystal(Model Cluster) For Different Approaches"

2. Real Cluster - Extended Cluster and Alternative Extended Cluster

'he cluster of 13 molecules has been chosen to represent thereal crystal. Within this cluster the distance between atoms C1 and N2 of

reference molecule and C or N atom in neighbor molecules is smaller than 10bohrs. Since only 5 nitromethanes can be treated quantum mechanically atpresent due to computer disc limitations (which limits the size of thetransformation from atomic orbitals to molecular orbitals for the MRD-CIcalculation), the selection of 4 molecules around the reference molecule wasnecessary. Two choices have been tried. First: four molecules closest toreference molecule (Fig. 111-2, "The Cluster of 5 Nitromethanes FromExtended Cluster") and second four molecules having atoms which are theclosest to C-N bond (Fig. 111-3, "The Cluster of 5 Nitromethanes FromExtended Cluster (Alternative Choice"). Eight remaining molecules wererepresented by multipoles. Multipoles were generated in crystal orbitalcalculation), by the crystal orbital part (XTLORB) of our POLY-CRYSTprogram (for ab-initio calculations on polymers and crystals) takingadvantage of repeated symmetry units for one unit cell and then decomposedinto point charges.

a. Extended Cluster

Figure 111-2

. Table 111-4: "Total Energies, Reduced Energies, and BondDissociation Energies for Extended Cluster of

Nitromethane Molecules Within Different Approaches(energy in a.u., equilibrium distance R - 3.0 bohrs)"

Table III-4a: "Total Energies, Reduced Energies, and BondDissociation Energies (corresponding to RCN - 5.6

bohrs and R ) For Extended Cluster of, bhrs nd CN

Nitromethane Molecules Within Different Approaches"

0- •

Page 141: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

3 3

60

b. Extended Cluster (Alternative Choice)

Figure 111-3

Table 111-5 "Total Energies, Reduced Energies, and BondDissociation Energies for Extended Cluster ofNitromethane Molecules (Alternative Choice) WithinDifferent Approaches (energy in a.u., equilibriumdistance R - 3.0 bohrs)

--.- Table III-5a: "Total Energies, Reduced Energies, and BondDissociation Energies (corresponding to RCN = 5.6

bohrs and RCN = =) For Extended Cluster of

Nitromethane Molecules (Alternative Choice) Within* Different Approaches"

For both the extended cluster and the extended cluster (alternativechoice) these calculations have also been carried out as a function of RCN'

Table 111-6: "The Decomposition Pathway for C-N bond inNitromethane Crystal (Extended Cluster) for DifferentApproaches."

Table 111-7: "The Decomposition Pathway for C-N bond inNitromethane Crystal (Extended Cluster, Alternative

Choice) For Different Approaches"

0

SN .,

Page 142: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* 134

1%

3. Crystal Orbital Calculations For Model Nitromethane Cluster

To check the goodness of the model cluster approximation forcrystalline nitromethane we carried out ab-initio crystal orbitalcalculations (XTLORB) using our POLY-CRYST program. The POLY-CRYSTprogram calculates ab-initio crystal orbitals for the unit reference cell(or unit reference polymer segment) taking advantage of the translationalsymmetry in a crystal and the translational/rotational symmetry in apolymer. This POLY-CRYST program incorporates as options all the desirablecomputational strategies we had derived over the years for calculations onlarge molecules: Ab-initio MODPOT, VRDDO, and MERGE. (See description page 128III. Section A. Methodology Ab-Initio MODPOT/VRDOO/MERGE.) These XTLORBcalculations were carried out for three cells of 4 nitromethanemolecules/unit cell (from the model cluster). These XTLORB calculations

* were carried out integrating over 3 ; points and over 5 Z points. Results(Table 111-8, "Nitromethane - Crystal Orbital Calculations for ModelCluster") showed the XTLORB calculations for nitromethane integrating over

only 3 points were essentially already converged. This demonstrates that

for molecular crystals integration over far fewer t points is necessary forconvergence than for atomic, interatomic or ionic crystals. These XTLDRBcalculations were then carried out for 3 cells of three nitromethanemolecules/unit cell (taking one central molecule away from the cluster).The difference in the XTLORB total energies between the 4 nitromethanemolecules/unit cell and the 3 nitromethane molecules/unit cell(Table 111-8.)

E -E -48.06091 a.u..'.,': R 4 - 3

corresponds very closely to the reduced energy per nitromethane molecule,

ER - -48.06057 a.u.

calculated from explicit SCF calculations on the model nitromethane clusterin the multipole field of farther out nitromethane molecules for the modelcluster.

*" Thus, the multipole approximation for describing the effect of furtherout molecules on the SCF cluster energies is quite good.

Page 143: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

135

0. Conclu:ions

To be able to carry out such MRD-Cl calculations for breaking achemical bond in a molecule or a crystal (or other solid environment)represents a significant breakthrough.

Describing the processes and mechanisms of breaking chemical bonds inan energetic molecule when the molecule is in a crystal or other solidenvironment leads to an understanding of the initiation of energeticreactions and subsequent processes leading to detonation and also leads toan understanding of fractoemission processes.

The results confirm the preliminary results of our original MRD-CI testcalculations for breaking the H3 C - NO2 bond in a single nitromethane in the

multipole field of 6 other nitromethane molecules, namely that it takes moreenergy to break the H3C - NO2 bond when the nitromethane molecule is in a

crystal or solid environment in the presence of other nitromethanemolecules. However, to reach the convergent value it is necessary to takeinto account a number of nitromethane molecules explicitly in the SCF and anumber more nitromethane molecules in the surrounding multipole space. Weare continuing our investigations in this area.

Our development has led to crucial understanding of the initial stepsleading to detonation. We plan to explore the application of our techniquesto the subsequent events taking place after the initial bond breaking.

We plan to carry out such calculations for breaking the >C-N0 2 and >N-

NO2 bond breaking in larger energetic molecules such as ROX and other

energetic compounds. This method is very applicable for such calculations.Carrying out such calculations on larger molecules will be dependent on thecomputer core, disc storage and time available. However, computers aregetting faster and their memories and peripheral storage are getting larger.The next generation of computers which is already past the drawing boardstage are ideally suited for such calculations.

-"""

Page 144: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

136THE CLUSTER OF 5 NITROMETHANES CHOSEN FCR

MODEL CALCULATIONS.

Sc

AAA -

Fi.- " I

f..

C

• i~

Page 145: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

0 1 3 7

.9z

I.,i

zK

A 5 5

L&J

JU

0 z

hi'

~LLJ

.5 -Jo

IJ -

Figure 111-2

Ale ~ w

Page 146: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* 138

-;,:':,THE CLUSTER OF 5 NITROMETHANES FROM EXTENDED

/ CLUSTER (ALTERNATIVE CHOICE)

:.4.

.4

.:V /.,.:.

,o,\ ,,"N-9 N'

9 ".4.4

'.4,0

4~i C'. C '

".

. " .-.-

.-.. .

'. -* Figure III--

." " - " . " ,. .4-.' . ° . " . - ,)' % ''. % . '"% ' % . " ,,". " , - " n • . , "i

Page 147: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

139

TABLE Ill-I

Energies For Equilibrium Geometry (RcN - 3.0 bohrs), BondDissociation Energy and Relative Error For Two Geometries For The

Cluster of 3 Nitromethane Molecules (see Fig 111-1) (energy in[a.u.])

CLUSTER ESCF ECI,EX C-N bond diss- relative

dissociation energy, error ']AE

3 NITROMETHANES -144.136254 -144.388879A. 1)

C - A - C' ER -48.051505 -48.304130 .0077714

1 1 NITROMETHANE -48.052639 -48.304109 .077683 0.027%+ 2 MULTIPin position C

3 NITROMETHANES E -144.146063 -144.396239

2)B - A - B' ER -48.061789 -48.311965 .085549

I NITROMETHANE -48.062455 -48.312941 .086525 -1.14%+ 2 MULTIPin position B

1) ER = I- ESCF (C - C')

2) ER I - ESCF (B - B')

N N

Page 148: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

• 140

TABLE 111-2

Total Energies, Reduced Energies, and Bond Dissociation Energiesfor Model Cluster of Nitromethane Molecules Within DifferentApproaches (energy in [a.u.])

Approach ESCF ECIEX C-N bond

dissociation energy,- "-"AE

5 NITROMETHANES EI -240.238726 -240,4890221)

ER -48.060579 -48.310875 -0.084458

3 NITROMETHANES -144.154520 -144.404582

0 + 2 MULTIP 2)ER -48.060636 -48.310698 -0.084282

-. 3 NITROMETHANES -144.146063 -144.396239

3)ER -48.0617891 -48.311965 -0.085549

NITROMETHANE -48.061205 -48.311927 -0.085511+ 4 MULTIP

NITROMETHANE -48.062455 -48.312941 -0.086525+ 2 MULTIPin position B

NITROMETHANE -48.052639 -48.305044 -0.078628SINGLE FREE MOLECULE

1) ER E 1 - ESCF( 4 NITROMETHANES, CBB'C')

0 2) ER - ESCF( 2 NITROMETHANES, BB'

+ 2 MULTIP C,C')

3) ER " - ESCF( 2 NITROMETHANES, BB')

K 1%"

Z-" W,

Page 149: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

%7n - 7 - 4. V' a,' . %R 101 EL" oJ, Iar W-" w, m a,' %M Pr VPr VL, v P"T W-1 rc r L -J 7 vkO an N% P% Rr r N- '"i . %71. %n ? -W -

141

0 n 0 NccU ~ W'' N 0 0. ~ 0en - Lfn 0~ '0 = 6M0 Ln cri 0I) CD 0ON N en cc as en 0 en -

r-! . '": 0 '0 0% U, WC -0. '0 NW 00% '00 co coN c0% 00

LA0 '00 f ON 04 -'0 U, %0 'W e W 0-Cl qr co M0 ao Us U, - -

N N0 t - - %C co en "r .en Ln L i n n 0 e

0~ e0 CPS 0n fn (V Nr C'0% N N IfO '00 0

_ ~ ~~~ MD 00 Go W'N0U -Nn - -** ~~~~~~~q 61 co -z Ps 0 a0 % 0 P W , P ' s 0 '

cr *W' . M .l Cs .co 0 : 0 a0 W 'PsW s s s

Nc Ps N N 0 0 '00 .' 0 O N Len ? o '0n No ' 0 - W '0 0% - 0 '0- U00m N~ 0 W' ~ - 0 en CoI en 0 I D en 0 CD en

4W qW'qW qW

fl I~ Go CD en Ic0 .

0 00 Go. 0 ~ co eN 0y 4W c co 0 00 0% 0

3L s 00 C6 -W -W 0i .z 06 ': 06 PsO Pso

W W W' W

aU LM (A U U L

N0 Z

cc~ Z

INI

Page 150: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

VIC214

I-- C-

xL

4-,

F-C'.4 Lr) V, .

CD C)

C- -o 0u 0m 4 r ) e 0 0 -I0e0 0 'U I ~ al I-' r r z L

- (J -0n Cn Ci r o C

CL 0 t- C= -~ m -C 0 e)0 4-) LC) rn -I -j.0 fr.. + Lj

0= C C0 0 0 60 Q 0 OLJ C14 1 c\J I I f U.J LIU

LM LL< I

C 4-)

LLJU(A LU-

cli 00tn 0 0

.P 'a- - - -r D rl o u

(U . W V ~ cV)C r- A--i ~

0$ U)I U) LW

r_ 0\ a)~I 0 (A) U (A)LJC. NWL cd C\J u' C\ g) r. 0 U

dJ.CJ LL 0' -L 0 CNa- WO.0 C'J 0L CJ 0 0 0

U) I -jLIx-. = (A LU U

t- I- CX -

CLINON ~~I NI NIIN%WI .1 e .

Page 151: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

.rr.~4 - - i M ~ V~W ~W WJV1W~~ I' 1V W. ~jV WY~7 W-. ."O nd 7 %P. .F -u

143

wU LU Q c C14 ON coON - ON 00

Lu I I I I

a - c

U. ~ LU0- 0 UW- qT Le

*0 a-- 00 0 m r

- ~j CD 0 0o wL.iLU I I I I

4 00 0 -weU90 0 0T lw

U; LnCD 101 U. 0U01

M d0~ S- C; Q 0

-W LtI rn cw N - P.. Ul

c- ON N (%

CM~u 0 j s- 0 0%- o. 0 ; Q

CL- 0 r wt-.) 0~j C4

010o 1. .0qw . -CV

U.JN CD*JI

% C

% (- 0 30

ea C-) 0 6C

U.J CL Lw L

Cz 0LL)L 0di CD

ca CL-r m..4

16L Lf4J ~It

%L L A

Page 152: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

ce1

CC

L C

0'- co N 0

C x L0 0

0'4 LU

LAL CU

;mz

1.0~~ -n ~In -tr 0 q

ou 0% NU C) c co 00

C 'O C~ I I% L - LI-

~~~A LU0L J

cL/ W~

1. Q '.0 - - LC)-CLU CD ~ N N Z 0 N cm

I.j 0 (A 0 l0

IF I I

c~Lai

Z *C

LU L

~o~acc C. . 0LPLL

4= LL....z -~. .

dZ z z

%U 0 .- 0 . . 0. -. .. .-%

% % .~4LAC.A

Page 153: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

- - - w fl co- (N

Q. 0

C) LU CJ

LU0 A - %0 07.- = - w q% Ul- encON .0 0 0j c 0 0M

S- u J CO cc l P.

4 * C- -: F- .O %0C "0 - c L -w D

d,.k aj C 0 - - -. %0j

C - en 0 0 0

LA w

-* C6L 0.)0S- - - 0T 0%

c.) CL L; cPi 0l ~ I-

; . A 0CJC

co) 0* CD.0$ 0 0n 0w f

SC 0. I

*tC .J q*A 0.) Z- C%4 c 0

f*- 0c 0

-w q(1 C~ CD I w I i

0.) C%'0

LM L~l C.J I

CUC

0. LA C'L. C"..) IL L Ij

U.) U C 2c )0.) 0.

4..0 -~ W. L01o. C Z z L.- V)

%- =l Ul z- z

% .. . . .0

U. % -

Page 154: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

r L r) (= = en M N M ew)

;N ON cz 0s F. a, el 0 0 C~-r w 0 n O N C14 C7

0; C; 0 C 0= - 0

r I I I

Ln L -D (D Ln kn N LO qr C 00C1 r ~ f-, - F- 0= en

-o eC co e r cN N~ qT -

O N IN OQ as I

4- N I eli I i

-- , ON C7 , - w - c , LwC r-. N LSn 0 %0 -

C.- I Ci 1 04 q I I I

in' Nq -W Nn = N C - - co0~t0 T as o N I-, - V) 0D ~Lm 0 ' L&ILc Q 'C 0- en wv W (7% - ' -

ci I ~ ~ I

CIJcl f1l - -eC'C - -n

0-' ON~ en c0i 0 r en ON c~ Cv C

0 0 N I N~ I N~ I N-j I I I I

.C -

3.0 -C3

~d9L-cc A. LA. CL L.. CL

u.. C.) O..

aJo.

LUI Lu

kL 'A A "A- I = A- = N

Page 155: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* - -147

-. -

i-

0 N C D. e*- Us N 0 CD~Os ON c ~ co -W li. E-,c

ci N0 en en CO (D N 0 IT

%0 Nh

0r qr It

cli I I

LI.I

L - Nw % 0 = I-- f

.PI (2 C=; N 3 C= 0% 06 C.N1

* qT qw qw 0w 0 -. 0

ONO Ln a) CNO O

OIJ ~ ~ -4- % Ln 4A 4A ,,c

0 (D C~i " 0en q

I I * o

ir nLo LA N .1 - 00 -4. 0-Gia

Ln 0% = m% LA - N N Ln- * rZ ~ ~ e *%. 0% Fn0 A ~0 A

LL. 06 '. ~0 P. :6.L. qwU ' ~0 . W q Wa -. N1 1 N~ I Nl I Nj I

?a8. CU CZ I X IiZ

00C.4. CLL0

CL1 493

0o -

0..

- ------ k-

Page 156: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

, 148

TABLE 11-8

Nitrometnane - Crystal Orbital Calculations for Model Cluster

Crystal Orbital Calculations for 4 Molecules 3 Cell Calcilations in z AxisDirection (Fig. Ill-1)otal Energy for 4 molecules

a,.0 3 . points E4 - -192.195942921 a.u.

5 points E4 - -192.195942922 a.u.

Total Energy for 3 molecules

3 k points E4 - -144.13503504 a.u.

5 points E4 - -144.13503504 a.u.

ER - E4 - E3 - -48.0609079 a.u.

ER energy from cluster calculations

ER , -48.060579

-a,

-a,4

'a.°

Sw

" -a t ' W.r " . 'W '' t '' " ,

. _' ' - e ' ' T' . ' . , " . . - . .

Page 157: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* 1 9

IV. POLY-CRYST

POLY-CRYST is the program we previously derived and wrote for ab-initiocalculations on crystals and polymers using the translational symmetry in acrystal and the translational-rotational symmetry in a polymer. Commensuratewith the ONR priorities expressed to us by our ONR Contract Monitor, wedevoted only minimal but still scientifically significant effort to furtherdevelopment and testing of the POLY-CRYST program. As options we hadalready included POLY-CRYST our own ab-initio MODPOT (ab-initio effectivecore model potentials) and VRODO (a charge conserving integral prescreeningprocedure) options. It is these features particularly VRDDO which enablesPOLY-CRYST to handle molecular crystals of large molecules and with largenumbers of large molecules per unit cell. This year we derived andincorporated into POLY-CRYST including the multipole effects of farther outmolecules to take into account long range effects also. We then meshed thismultipole procedure back into the MRD-CI programs to enable us to includemultipole effects when breaking a chemical bond in a crystal. We also ransome tests on POLY-CRYST on integral thresholds and numbers of unit cellsnecessary for convergence. These preliminary tests identified necessarycriteria.

Toward this convergence criteria goal, we also derived and implementeda procedure for calculating the charge imbalance caused by various integralthresholds to give a precise measure of the effect on the crystal orbitalcalculation of dropping integrals of various sizes. The POLY-CRYST programhas promise for yielding important fundamental results on crystallineenergetic materials.

As mentioned in Section III we also used this XTLORB program to

calculate a 3 cell case of nitromethane to verify the validity and accuracyof the procedure we use for the effect of multipoles from farther outmolecules on SCF calculations for molecular clusters from crystals the SCFcalculation is carried out explicitly for all the molecules in a unitreference cell (or larger piece of the crystal). Our SCF results for thenitromethane molecular cluster from the nitromethane crystal field of yetfurther out molecules were very close to those full XTLORB results fornitromethane. The SCF orbitals are then localized and the MRD-CIcalculations are carried out for breaking a chemical bond in a molecule in acrystal including explicitly in the MRO-CI calculation the localizedorbitals in the region of interest.

So

Page 158: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

• 150

V. Lectures Presented and Publications on This ONR Research

Presentations given and/or scheduled and papers published and/or

submitted during the fiscal year.

A. Presentations Given Dr. Joyce J. Kaufman

1. Already Presented (* denotes invited lecture)

a. At National and International Meetings

S(1). "Ab-Initio MRD-CI Calculations for the

Propagation Step in the Cationic Polymerization of Oxetanes Based onLocalized Orbitals," an invited paper presented at the InternationalSymposium on Atomic, Molecular and Solid State Theory, Marineland, Florida,March 1987.

* (2). "Comparison of Ab-Initio MODPOT and Ab-Initio

Energy Partitioned Potential Functions for Nitromethane Dimer Against LargeBasis Set Calculation," an invited paper presented at the SanibelInternational Symposium on Atomic Molecular and Solid State Theory,

N Marineland, Florida, March 1987.

• (3). "Ab-Initio MRD-CI Calculations on Protonated

Cyclic Ethers. I. Protonation Pathways Involve Multipotential Surfaces(Protonation of Oxetane) II. Differences from SCF in Dominant ConfigurationsUpon Opening Non-Protonated Oxirane Rings (Epoxides)," an invited paperpresented at the Sanibel International Symposium on Atomic Molecular andSolid State Theory, Marineland, Florida, March 1987.

* (4). "Ab-Initio Calculations on Large Molecules andSolids Using Desirable Computational Strategies," VIlIth InternationalConference on Computers in Chemical Research and Education, Beijing, China,June 1987.

S (5). "Ab-Initio Quantum Chemical Calculations onLarge Molecular Systems and Crystals," American Conference on TheoreticalChemistry, Gull Lake, Minnesota, July 1987.

* (6). "Ab-Initio MRD-CI Calculations Based onLocalized Orbitals For Molecular Decomposition and Reactions of Large

0 Systems," 1987 World Congress of World Association of Theoretical Organic

Chemistry, Budapest, Hungary, August 1987.

(7). "Ab-Initio MRD-CI Calculations For CationicPolymerization of Oxetanes Based on Localized Orbitals," Division ofPhysical Chemistry, 194th National Meeting, American Chemical Society, New

0Orleans, Louisiana, August 1987.

V'! (8). "Comparison of Ab-Initio MOOPOT and Ab-InitioEnergy Partitioned Potential Functions for Nitromethane Dimer Against LargeBasis Set Calculation," Division of Physical Chemistry, 194th NationalMeeting, American Chemical Society, New Orleans, Louisiana, August 1987.

V. V'

Page 159: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

* 151

b. Other Research Institutions

* (i). "Ab-Initio Quantum Chemical Calculations on

Large Molecular Systems and Crystals," Maryland Section American ChemicalSociety, Baltimore, Maryland, February 1987.

*- c. At DOD Meetings and Workshops

* (1). "Quantum Chemical Characterization of Explosive

Sensitivity," Working Group Meeting on Sensitivity of Explosives, Socorro,New Mexico, March 1987. (Presented by Dr. Walter S. Koski)

* (2). "Ab-Initio Quantum Chemical Studies on

Energetic Nitrocompounds," Sixth Annual Working Group Meeting on Synthesisof High Energy Density Materials, Concord Hotel, Kiamesha Lake, New York,May 1987.

* (3). "Ab-Initio MRD-CI Calculations for Breaking a

. Chemical Bond in a Molecule in a Crystal," ONR Workshop on DynamicDeformation, Fracture and Transient Combustion of Energetic Compounds,Great Oak, Maryland, May 1987.

* (4). "Desired Properties of Energetic Compounds That

Can Be Calculated Reliably and Accurately From High Quality Ab-InitioQuantum Chemical Calculations," ONR Workshop on Crystalline and PolymericEnergetic Materials, Great Oak, Maryland August 1987.

2. To be presented

* a. "Ab-Initio MRD-CI Calculations for Breaking a Chemical

Bond in a Molecule in a Crystal or Other Solid Environment," SanibelInternational Symposium on Atomic, Molecular and Solid State Physics,Marineland, Florida, March 1988.

* b. "Ab-Initio MRD-CI Calculations for Breaking a Chemical

Bond in a Molecule in a Crystal or Other Solid Environment", Symposium on

the Physics and Chemistry of Brittle Fracture, American Physical SocietyNational Meeting, New Orleans, March 1988.

Bond c. "Ab-Initio MRD-CI Calculations for Breaking a ChemicalBond in a Molecule in a Crystal or Other Solid Environment," 3rd ChemicalCongress of North America (joint with American Chemical Society), Toronto,Canada, June 1988.

. * .*.

Page 160: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

- ----- -- --- -- -ur~rv~. r-ru wr W- r'.r 7.- - rsV-1rw-. - W r .--

%1

B. Publications

1. Already Published

a. "Ab-Initio MRD-CI Calculations on the >C - NO2

Decomposition Pathway of Nitrobenzene," Joyce J. Kaufman, P. C. Hariharan,S. Roszak and M. van Hemert. An invited plenary lecture presented at theSymposium on Computational and Mathematical Chemistry, Can. Inst. Chem.National Meeting, Saskatoon, Canada, June 1986. J. Comp. Chem. 8, 736-743(1987).

b. "Ab-Initio Electrostatic Molecular Potential ContourMaps for Initiation Step and Ab-Initio MRD-CI Calculations for PropagationStep of Cationic Polymerization of Oxetanes", Joyce J. Kaufman, P. C.Hariharan, S. Roszak and P. B. Keegstra. An invited lecture presented atthe IUPAC 5th International Symposium on Ring-Opening Polymerization, Blois,France, June 1986. Makromol. Chem., Macromol. Symposium. 6, 315-330 (1986)

c. "Symposium Note: More New Desirable ComputationalStrategies for Ab-Initio Calculations on Large Molecules, Clusters, Solids,and Crystals", Joyce J. Kaufman, Int. J. Quantum. Chem. 29, 179-184 (1987)

d. "Nonempirical Atom-Atom Potentials for Main Componentsof Intermolecular Interaction Energy," W. A. Sokalski, A. H. Lowrey, S.Roszak, V. Lewchenko, J. M. Blaisdell, P. C. Hariharan and Joyce J. Kaufman,J. Comp. Chem. 7, 693-700 (1986).

2. Accepted for Publication and in Press

a. "Ab-Initio Potential Functions For Crystals and Ab-Initio Crystal Orbitals," Joyce J. Kaufman. An invited lecture presented atthe International Symposium on Molecules in Physics, Chemistry and Biology.Dedicated to Professor R. Daudel, Paris, France, June 1986. In press,Symposium Proceedings.

b. "Ab-Initio MRD-CI Calculations for the Propagation Stepin the Cationic Polymerization of Oxetanes Based on Localized Orbitals,"Joyce J. Kaufman, P. C. Hariharan and P. B. Keegstra. An invited paperpresented at the International Sanibel Symposium on Atomic, Molecular andSolid State Theory, Marineland, Florida, March 1987. In press, Int. J.Quantum Chemistry, Symposium Issue.

c. "Comparison of Ab-Iitio MOOPOT and Ab-Initio EnergyPartitioned Potential Functions for Nitromethane Dimer Against Large BasisSet Calculations," An invited paper presented at the International SanibelSymposium on Atomic, Molecular and Solid State Theory, Marineland, Florida,March 1987. W. A. Sokalski, P. C. Hariharan and Joyce J. Kaufman. Inpress, Int. J. Quantum Chemistry, Symposium Issue.

0

d. "Ab-Initio MRD-CI Calculations on Protonated CyclicEthers. I. Protonation Pathways Involve Multipotential Surfaces(Protonation of Oxetane) II. Differences from SCF in DominantConfigurations Upon Opening Non-Protonated Oxirane Rings (epoxides)," An

0,'

*. . . . . .

Page 161: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

153

invited lecture presented at the International Sanibel Symposium on Atomic,Molecular and Solid State Theory, Marineland, Florida, March 1987. Joyce J.Kaufman, P. C. Hariharan, S. Roszak and P. B. Keegstra, In press, Int. J.Quantum Chemistry, Symposium Issue.

-V

V % V RA.-%

Page 162: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

1- -J-_ -

154S

VI Project Personnel

Joyce J. Kaufman, Ph.D.

Principal Investigator

P. C. Hariharan, Ph.D.

Research Scientist

Overall responsibility for implementing new program developments andconversion to Cray computers. Quantum chemical calculations on energeticpolymers, MRO-CI, GAMESS and POLY-CRYST calculations

Philip B. Keegstra, Ph.D.

Postdoctoral (October 1986 - August 1987)

MRD-CI calculations on cationic polymerization of oxetanes,implementation of inclusion of multipoles into POLY-CRYST, assistance onimplementing multipoles into MRD-CI and with breaking chemical bondcalculations, test calculations on POLY-CRYST

S. Roszak, Ph.D.

Visiting Scientist (February 1987 - November 1987)

Implementation of multipoles into MRD-CI and carrying out suchcalculations for breaking a chemical bond in a molecule in a crystal, MRD-CI

*" calculations on propagation step of cationic polymerization of oxetanes.

W. A. Sokalski, Ph.D.

Visiting Scientist (July - August 1987)

Inclusion of correlation in calculation of multipoles and use in[s intermolecular calculations.

S-"

Page 163: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

a~ r.1 - , 34

(SYh)-ISTRIBUT3 O UST

Dr. R.S. Miler Dr. J. PatinesOffice tf Naval Research Nval Sea sy0tll6 coRandC' Code 432P Code 0Arlington, VA 2ZZ17 Washington. DC 20362(10 copies)

Dr. A.L. Slafkosky Dr. Henry P. MarshallScientific Advisor Dept. 93-50, Bldg 204Commandant of the Marine Corps Lockheed Missile I Space Co.Code RD-1 3251 Hanover St.Washington DC 20380 Palo Alto, CA 94304

JIMU Applied Physics Laboratory0 ATTN: CPTIA (Mr. T.W. Christian) Dr. Ingo W. May

Johns Hopkins Rd. Army Ballistic Research Lab.Laurel, M 20707 .UADCOQ

Code DLXBR - 130Aberdeen Proving Ground, MD .

Dr. Kenneth D. HartmauHercules Aerospace Division Dr. R. McGuireHercules Incorporated Latrence Livermore Laborator:Alleghany Ballistic Lab University of California

P.O. Box 210 Code L-324Washington, DC 21502 Livermore, CA 94350

Mr. Otto K. Heiney P.A. MillerAFATL-DLJG 736 Leavenvorth Street, 46Elgin AF3, FL 32542 San Francisco, CA 94109

-. Dr. Merrill K. King Dr. W. MonisAtlantic Research Corp. Naval Research Lab.5390 Cherokee Avenue Code 6120Alexandria, VA 22312 Washington. DC 20375

Dr. R.L. Lou Dr. K.F. MuellerAerojet Strategic Propulsion Co. Naval Surface Weapons Centera3dg. 03025 - Dept 300 - .S 167 Code R11P.O. Box 15699C White OakSacramenta, CA 93813 Silver Spring, MD 20910

Dr. t. Olsen Prof. M. NicolAerojeC Strategic Propulsion Co. Dept. of Chemistry & Sioche=:

id$. 05025 - Dept 5100 - MS 167 University of California

P.O. Box 15699C Los Angeles, CA 90024

Sacramento, CA 95813

Page 164: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

S i,"..lk . w ww-r. i Ray sa -.-sa-- -.- - -

,-i., .. .Revsed :4.a,'

.SY)DISTRIBUT:ON LIST

Mr. L. RoslundOr. Randy Peters lNaval Surface ;eapcrs Cente:

Aerojec Stracegic Propulsion Co. Code RIOCBldg. 05025 - Depc 5400 - HS 167 Whie Oak, Silver Sr > _nP.O. Box 15699CSacramento, CA 95813 Dr. David C. Saylas

Ballistic Missile DefenseDr. D. Mann Advanced Technology CenerU.S. Army Research Office P.O. Box 1500Engineering DZivision Huncsville, AL 35807Box 12211Research Triangle Park, NC 27709-2211

Mr. R. Ceisler DirectorATTN: DY/MS-24 US Army Ballistic Research La:.

* AFR-L ATTN: DRXZk-ISDEdvards AR, CA 93523 Aberdeen ProvinS Ground, HI)

'-*5 Comnder" . Naval Air Systems Comand US Army Missile Command

ATTN: Mr. Bertram P. Sobers ATTN: DISMI-RELNAVAIR-320G Walter W. Wharton

efferson Flaza 1, RX 472 Redstone Arsenal, AL 35898Washington, DC 20361

T. yeeR.B. Steele Naval Weapons CenterAerojec Strategic Propulsion Co. Code 3265P.O. Box 15699C China Lakes CA 93555Sacramento, CA 95813

Dr. E. ZimecMr. .. Stosz Office oi Naval TechnologyNaval Surface Weapons Cancer Code 071Code R10B Arlington, VA Z2217

White OakSilver Spring, D 20910 Dr. Ronald L. Derr

Naval Weapons CenterMr. £.S. Sutton Code 389Thiokol Corporation China Lake, CA 93555

*. Elkton DivisionN., P.O. Box 241 T. loggs

Elkton, HD 21921 Naval Weapons CenterCode 389

Dr. Grant Thopson China Lake, CA 93555, Morton Thiokol, Inc.

Wasatch Division Lee C. Estabrook, P.E.MS Z40 P.O. tox 5Z Morton Thiokol, Inc.Brighaa City, UT 84302 P.O. Box 30058

Shreveport, LA 71130

.

Page 165: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

'" S e 1. , -. . ,,. 157515

SRevised ~anuary

.-

(STY)DISTRIBUT:ON LIST

Dr. R.F. WalkerChief, Energetic Hatepiala Division Dr. D.D. DillehayDRSMC-LCE (D), 3-3022 Morton Thiokol, Inc.USA APDC Longhorn DivisionDover, NJ 07801 Marshall, TX 75670

Dr. Janet all G.T. BovmanCode 012 Atlantic Research Corp.Director, Research Administration 7511 Wellington RoadNaval Postgraduate School Gainesville, VA 22065Monterey, CA 93943

R.E. Shenton Brian Wheatley

Atlantic Research Corp. Atlantic Research Corp.7511 Wallington Road 7511 Wellington RoadCaineaville, VA 22065 Gainesville, VA 22065

Mike Barnes Mr. G. EdvardsAtlantic Research Corp. Naval Sea Systems Command7511 Wellington Road Code 62ft32Gainesville, VA 22065 Washington, DC 20362

Dr. Lionel Dickinson C. DickinsonNaval Explosive Ordinance Naval Surface Weapons CenterDisposal Tech. Center White Oak, Code R-13Code D Silver Spring, MD 20910Indian Head, X 20340

Prof. J.T. Dickinson Prof. John DeutchWashington State University MITDept. of Physics 4 Department of Chemistry

Pullman, WA 99164-2814 Cambridge, MA 02139

M.R. Miles Dr. 1.8. deButtsDept. of Physics Hercules Aerospace Co.Washington State University P.O. Box 27408Pullman, WA 99164-2814 Salt Lake City, UT 84127

Dr. T.F. Davidson David A. Flanigan

Vice President, Technical Director, Advanced Tachnolcg-.

Morton Thiokol, Inc. Morton Thiokol, Inc.

Aerospace Group Aerospace Group

* 110 North Wacker Drive 110 North Wacker DriveL Chicago, IL 60606 Chicago, IL 60606...

Page 166: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

"3SYN)

rDSTR 3UTION L!ST

'Mr. J. Cotnsaga Dr. L.H. CavenyNaval Surface .eapons. Center Air Force Office of Sciencif:Code R-16 Research

:.. 1ndian Head. 0 20640 Directorate of Aerospace ScezezsBolling Air Force Base

Naval Sea Systems Comnd Washington, DC Z0332ATTN: Mr. Charles .4. Christensen

NAVSEA6ZRZ W.C. RogerCrystal Plaza, Bldg. 6, Rm 806 Code 5Z53'Washington, DC Z0362 Naval Ordance Station

Indian Head. , 20640

Mr. R. Beauregard Dr. Donald L. BellNaval Sea Systems Command Air Force Office of Scientf:-SEA 649 ResearchWashington, DC 20362 Directorate of Chemical

Atmospheric SciencesBolling Air Force BaseWashington. DC 20332

Dr. Anthony J. !MEauszko Dr. .G. AdolphAir Force Office of Scientific Research Naval Surface Weapons CenterDirectorate of Chemical & Atmospheric Code RI1

Sciences Wite OakBo~llng Air Force Base Silver Spring, MD 20910Washington, OC 20332

Dr. Michael Chaykovsky U.S. Army Research Office

Naval Surface Weapons Center Chemical & Biological SciencesCode R11 DivisionWhite Oak P.O. Box 12211

* Silver Spring, 'M Z0910 Research Triangle ?ark, NC

J.J. RocchioUSA Ballistic Research Lab. G. ButcherAberdeen Proving Ground, 10 21005-5066 Hercules, Inc.

* -. MS XZH* G.A. Ziierusn P.O. Box 98

Aerojet Tactical Systems Magna, Utah 84044P.O. Box 13400Sacramento, CA 95813 W. Waesche

Atlantic Research Corp.B. Svanson 7511 Wellington RoadINC-4 MS C-346 Gainesville, VA 22065Los Alamos National LaboratoryLos Alamos, NM 87545

S' . . . . . ... . .%

Page 167: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

4e r

! (ST41)

}'tDISTRIBUIO LIST

- ! Dr. James T. Bryant ,Dr. John S. '4ilkes, r

Naval Weapons Cent FJSKL/NCCode 32053 USAF Academy, CO 80840China Lake, CA 93 555

Dr. L. Rothstein Dr. H. RosenwasserAssistant Director Naval Air Systems Command

Naval weapons Station Washington, DC 2.0361Yorktovo, VA 23691

•Dr. H.J. Kazlac Dr. A. Nielson" 'Naval Surface Weapons Center Naval Weapons Center

SWhite Oak, Silver Spring, MD 20910 China Lake, CA 9355

Dr. HnyWebster, III Dr. JyeJ. Kaufmn

Manag~er, Chemical Sciences Branch The Johns Hopkins University. .ATT: Code 5063 Department of Chemistry,""Crane, IN 47522 Baltimor4, MD) 21218

:""-Dr. R.S. Valentit Dr. J.R. West

".4

'".United Technologies Chemical Systems Morton Thiokol, Inc.- 1P.O. Box 50015 P.O. Box 30058

"San Jose, CA 95130-0015 Shreveport, LA 71130

"- Administrative Contracting Director- Officer (sea contract for Naval Research Laboratory"-,address) Attn: Code 2627S(I copy) , .aehington, DC 20375

" " (6 copies)

"',"Defense Technical Infonaiaton CenterBldg. 5, Cacon Station Dr. Robert J. SchmittA lexandria, VA 22314 SRI International(12 copies) 333 Ravnsvood Avenue

Menlo Park, CA 94025

Arpad Junasz Dr. Michael D. CoburnCode DRDAX-13D Los Alamos National Lab

Ballistic Research Lab M-1, Explosives Tachno~oiyAberdeen, MD 21005 Mail Stop. C920

Los Alamos. NM 87545

Mr. C. CotzmerNaval Surface Weapons CenterCode R-11Whics OakSilver Spring, MD 20910

Ilk ..

.4%

Page 168: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

er - " . . 6

SY N)

U DIST :3u:0N L:S:

I<.

,Dr. C. Neece Or. Andrew C. Victcr.ffi:e cf Naval 7esearch Naval *;eapons Cen:erCode 413 Code 3208Arlington. VA China Lake, CA 93555

Mr. C.M. Havlik Dr. J.C. Hinshaw0/83-10, 3/157-3W Morton Thiokol Inc.Lockheed Missiles & Space C0., Inc. P.O. Box 524p.o. Box 504 Mail Stop 240Sunnvale, CA 94086 Brigham City, Utah 84302

Dr. Philip Howe Dr. V.J. KeenanP Ballistic Research Labatory Anal-Syn Lab. Inc.

Code DRXBR-TBD P.O. Box 547Aberdeen Proving Ground, MD 21005 Paoli, PA 19301

Prof. C. Sue Kim G.E ManserDepartmenc of Chemistry Aerojet Strategic Prpulsion Co.California State University, Sacramento Bldg. 05025, Dept. 2131Sacramento, California 95819 P.A 15699Cg Satnmnto, CA 95852 .

Mr. J. Moniz P. PolitzerNaval Ordnance Station Chemistry Department

. Code 5253L University of New OrleansIndian Head, n 20640 Now Orleans, Louisiana 70148

Dr. R. Reed Jr. Mr. David SiegelNaval Weapons Center Office of Naval ResearchCode 38904 Cede 253

China Lake, CA 93555 Arlington. VA 22217

* L.H. Sperling Dr. Rodney L. WillerMaterials Research Center 032 Morton rhiokol, Inc.Lehigh University P.O. Box 241

.echlehem, PA 18015 Elkton, MD 21921

Dr. Kurt Baum Dr. R. Atkins

Fluorochem. Inc. Naval Weapons Center

680 South Ayon Ave. Code 3852Azusa. CA 91702 China Lake, CA 93555

%%.

Page 169: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

*- 3er -,;:, -. 161Revisd Janary ;E5

S TR V ST

Prof. J.H. Bayer Dr. W.H. Graham

Chemistry Deoartient Morton Thiokol, Inc.University of Newi drleans Hunstville DivisionNew Orleans, Louisianna 70148 Hunstville, AL 35807-7501

Dr. C. CoonProf. J.C. Chien Lavrence Livermore Lab.University of Massachusetts University of California:epr':ent of Chemistry P.O. Box 808Amherst, MA 03003 Livermore, CA 94550

Dr. B. David Halpern Dr. i. CilardiPolysciences. Inc. Naval Research LaboratoryPaul Valley Industrial Park Code 6030Warrington, PA 18976 Washington. DC 20375

3. Fr nk a-. Alan Mirchand

o-R ,'e1. .rerna:icr.al Dept. oi ChemistryRoc a:d'ne Div'isiclr orth Texas State tniversitv6631 Carcps Avenue NTSV Station, Box 5068

* ":a " CA l '- Denton, Texas 76203

Dr. R... Earl :.3. Brill. Hcrcules, Inc. Depart.enc of Chemistry

.agira, Ucah 6".109 University of DelawareNewark, Delaware 19716

?r C edfardSat :..ernationsl Dr. A.A. Defusco333 Pavenswood Avenue Code 1858:ctio ,avk, CA 94025 avai Weapons .enter

.* d China Lake, CA 93555"-. :r. ?: err P. . ,yz,-. .S C346 Cr. Richard A. Hollins

* Los :a-.os 'aticr.al Laboratory Naval teapons CenterLos %Ar 's,New :ec xo 37545 Code 3853

China Lake. CA 93455

Dr. obert 0. Chacpren Dr. R. Armstrong

Ed ' :ds AF3, CA .525 Room 66-505Cambridge, '. A 02139

Dr. L. Ervin Professor Phili; E. Eaton.:rT Depar,ant of Chemistry'com 35-008 University of Chicago

C.:br :d;e, 0 Z1i9 5735 South EIlis AvenueChicago, L 60637

N. rarberSpace 3ciences. Inc.135 W. Y.aple Avenue'.::,rz .a, CA 9.'.i.

MAN- ..

Page 170: MEDi4RIS OF POLYMERIZATI..(U) mEEEEEAhEE mohmomhEEEoiI … · 2014-09-28 · -a195 12i quantum chemical investigations of the medi4ris of cationic polymerizati..(u) johns hopkins

S

U

I0

V

(~40J'J.

I.

6U'

S

0U