membranes for water electrolysis - sintef · membranes for water electrolysis - ... É :h2 ; ¾ l...

28
WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN Membranes for Water Electrolysis - Target-Oriented Choice and Design of Materials Lorenz Gubler :: Paul Scherrer Institut Durability and Degradation Issues in PEM Electrolysis Cells and its Components February 16, 2016 :: Fraunhofer ISE, Freiburg, Germany

Upload: lamnhi

Post on 10-May-2018

233 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Membranes for Water Electrolysis - SINTEF · Membranes for Water Electrolysis - ... É :H2 ; ¾ L → P(H 2) = 4.5 ... membrane Cell Performance with Grafted Membrane Grafted membrane

WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN

Membranes for Water Electrolysis -Target-Oriented Choice and Design of Materials

Lorenz Gubler  ::  Paul Scherrer Institut

Durability and Degradation Issues in PEM Electrolysis Cells and its ComponentsFebruary 16, 2016  ::  Fraunhofer ISE, Freiburg, Germany

Page 2: Membranes for Water Electrolysis - SINTEF · Membranes for Water Electrolysis - ... É :H2 ; ¾ L → P(H 2) = 4.5 ... membrane Cell Performance with Grafted Membrane Grafted membrane

Page 2

Acknowledgement

The research leading to these results has received funding from the European Union's Seventh Framework Programme(FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement n°303484.

NorwaySintef

United KingdomJohnson Matthey Fuel CellsTeer Coatings

FranceAreva H2GenCEA

GermanyFraunhofer ISE

SwitzerlandPSI

Page 3: Membranes for Water Electrolysis - SINTEF · Membranes for Water Electrolysis - ... É :H2 ; ¾ L → P(H 2) = 4.5 ... membrane Cell Performance with Grafted Membrane Grafted membrane

Page 3

Table of Contents

Durability Aspects

Introduction

A simple performance model Resistance - gas crossover tradeoff Membrane development within

NOVEL

Selection Criteria for Membranes

Radical-induced degradation Thermal stress test

Loss terms in PEM electrolysis

Conclusion

Page 4: Membranes for Water Electrolysis - SINTEF · Membranes for Water Electrolysis - ... É :H2 ; ¾ L → P(H 2) = 4.5 ... membrane Cell Performance with Grafted Membrane Grafted membrane

Page 4

Loss Terms in PEM Electrolysis

K. Ayers et al., ECS Trans. 33/1 (2010) 3

slope:0.23 ∙cm2

(~Nafion 117)

Ohmic (mainly membrane) lossesdominate at high current density

Page 5: Membranes for Water Electrolysis - SINTEF · Membranes for Water Electrolysis - ... É :H2 ; ¾ L → P(H 2) = 4.5 ... membrane Cell Performance with Grafted Membrane Grafted membrane

Page 5

Current Density / A·cm-2

0.0 0.5 1.0 1.5 2.0 2.5

Cel

l Vol

tage

/ V

1.4

1.6

1.8

2.0

Current Density / A·cm-2

0.0 0.5 1.0 1.5 2.0 2.5

Cel

l Vol

tage

/ V

1.4

1.6

1.8

2.0

m2

requ

ired

to m

ake

1 kg

(H2)

/h

0

2

4

6

8

10

Simple Electrolysis Model

Ucell

Ucell - iR

iR = 0.33 V @ 2 A·cm-2

Parameters:U0 = 1.23 Vb = 70 mV/decadei0 = 10-5 A/cm2

geomR = 167 ·cm2 (Nafion 117

in water @ 80C)

Ucell = U0 + b·log(i/i0) + iR :

Increasing current density canreduce size of electrolyzer

Page 6: Membranes for Water Electrolysis - SINTEF · Membranes for Water Electrolysis - ... É :H2 ; ¾ L → P(H 2) = 4.5 ... membrane Cell Performance with Grafted Membrane Grafted membrane

Page 6

Current Density / A·cm-2

0 1 2 3 4 5 6 7 8

Cel

l Vol

tage

/ V

1.4

1.6

1.8

2.0

2.2

2.4

PFSA 200 mPFSA 60 mPFSA 25 m

Reducing Membrane Thickness

Reducing membrane thickness allows much highercurrent density at given cell voltage (i.e., efficiency)

* = 74% (HHV)

R = R0 + Rm

*

non-membrane ohmic resistance:R0 30 m·cm2

Rm = / conductivity

membrane thickness

(m) R (mOhm·cm2)

200 16760 7125 47

Page 7: Membranes for Water Electrolysis - SINTEF · Membranes for Water Electrolysis - ... É :H2 ; ¾ L → P(H 2) = 4.5 ... membrane Cell Performance with Grafted Membrane Grafted membrane

Page 7

Membrane Thickness / m0 50 100 150 200Cur

rent

Den

sity

@ 2

.0 V

/

A·c

m-2

0

2

4

6

8

10

12

Reducing Membrane Thickness

R = R0 30 m·cm2Residual ohmic resistance R0 mayincrease over time due to passivation ofTi current collector and bipolar plate

Page 8: Membranes for Water Electrolysis - SINTEF · Membranes for Water Electrolysis - ... É :H2 ; ¾ L → P(H 2) = 4.5 ... membrane Cell Performance with Grafted Membrane Grafted membrane

Page 8

Performance reported by 3M

Lewinski et al., ECS Transactions 69 (2015) 17, 893

50 m PFSA membrane (825 EW)*, NSTF catalyst, 80C, 1 bara

* 0.25 S/cm @ 80C

50 W/cm2 !

Thermal management ?

Page 9: Membranes for Water Electrolysis - SINTEF · Membranes for Water Electrolysis - ... É :H2 ; ¾ L → P(H 2) = 4.5 ... membrane Cell Performance with Grafted Membrane Grafted membrane

Page 9

High Pressure Operation: Lab Test Data

A. Reiner, Siemens

Current density (A/cm2)

1 2 3 401.0

1.5

2.0

2.5

3.0C

ell v

olat

age

(V)

p smaller gas bubbles lower mass transport losses

There is little influence of the pressure on thepolarization behavior of the electrolysis cell

Page 10: Membranes for Water Electrolysis - SINTEF · Membranes for Water Electrolysis - ... É :H2 ; ¾ L → P(H 2) = 4.5 ... membrane Cell Performance with Grafted Membrane Grafted membrane

Page 10

Membrane Thickness / m 0 50 100 150 200

Are

a R

esis

tanc

e /

m

·cm

2

0

50

100

150

200

Area Resistance and Membrane Thickness

Area resistance R

(Nafion with EW 1'100):

R = R0 + RmRm = /

fitting parameters:R0 = 30 ·cm2

= 146 mS/cm

80C, 100% r.h.

Page 11: Membranes for Water Electrolysis - SINTEF · Membranes for Water Electrolysis - ... É :H2 ; ¾ L → P(H 2) = 4.5 ... membrane Cell Performance with Grafted Membrane Grafted membrane

Page 11

Area Resistance / m·cm2

0 50 100 150 200 250

H2 C

ross

over

/ m

A·c

m-2

0

1

2

3

4

5

Resistance - Gas Crossover Tradeoff

A. Albert, ACS Appl. Mater. Interf. 7 (2015) 22203

XL-100NR211

NR212

N1035

N1135

N105N115 N117

fit H2 crossover ix:

x 2H2

→ P(H2) = 4.5·10-13

fit area resistance R (EW 1'100):

R = R0 + / → R0 = 30 ·cm2, = 146 mS/cm

80C, 100% r.h., 2.5 bara

mol∙cmcm2∙s∙kPa

Page 12: Membranes for Water Electrolysis - SINTEF · Membranes for Water Electrolysis - ... É :H2 ; ¾ L → P(H 2) = 4.5 ... membrane Cell Performance with Grafted Membrane Grafted membrane

Page 12

Membrane Thickness / m0 50 100 150 200

i min fo

r 2%

H2 i

n O

2 /

A·c

m-2

0.1

1

10

1 bar10 bar100 bar

Gas Crossover - Minimum Current Density

P(H2)mol∙cmcm2∙s∙kPa

P(O2)mol∙cmcm2∙s∙kPa

Ref.

5.3210-13 2.5210-13 15.1010-13 2.7010-13 21.810-13 8.010-14 3

4.5010-13 n/a 4

Nafion gas permeabilities

H2inO2 ∙H

∙4

O2inH2 ∙O

∙2

1 M. Schalenbach et al., J. Phys. Chem. C 119 (2015) 251452 T. Sakai et al., J. Electrochem. Soc. 132 (1985) 13283 Z. Zhang et al., J. Membr. Sci. 472 (2014) 554 fit of H2 crossover data

P(H2) ≈ 2P(O2)

4 O2inH2

Membrane Thickness / m0 50 100 150 200

i min fo

r 2%

H2 i

n O

2 /

A·c

m-2

0.1

1

10

1 bar10 bar100 bar

i @ 2.0 V

Page 13: Membranes for Water Electrolysis - SINTEF · Membranes for Water Electrolysis - ... É :H2 ; ¾ L → P(H 2) = 4.5 ... membrane Cell Performance with Grafted Membrane Grafted membrane

Page 13

Operational Range (Turndown Ratio)

Cur

rent

Den

sity

/

A·c

m-2

0

1

2

3

4

5

6

7

8

Membrane Thickness / m200 60 25

p = 20 baraimax = i @ 2.0V

imin = limit of 2% H2 in O2*(proportional to p !)

0.87

2.35

7.55

2.90

6.95

Operational range with thinmembranes is limited due tocrossover issue→ Need to increase gas barrierproperties of membrane

5.20

* ~equivalent to 0.5% O2 in H2

Page 14: Membranes for Water Electrolysis - SINTEF · Membranes for Water Electrolysis - ... É :H2 ; ¾ L → P(H 2) = 4.5 ... membrane Cell Performance with Grafted Membrane Grafted membrane

Page 14

Area Resistance / m·cm2

0 50 100 150 200 250

H2 C

ross

over

/ m

A·c

m-2

0

1

2

3

4

5

Membrane Development Strategies

Nafionmembranes

80C, 100% r.h., 2.5 bara1. PFSA membranes

improve gas barrier properties

2. Alternative membraneschoose materials with intrinsicallybetter combination of resistanceand gas permeability

1.2.

Page 15: Membranes for Water Electrolysis - SINTEF · Membranes for Water Electrolysis - ... É :H2 ; ¾ L → P(H 2) = 4.5 ... membrane Cell Performance with Grafted Membrane Grafted membrane

Page 15

Reinforced PFSA Membranes withRecombination Catalyst

JM PFSA membrane:(adapted automotive membrane)• thickness ~60 m• reinforced• containing PGM-type H2-O2

recombination catalyst

Cel

l Vol

tage

/ V

1.4

1.6

1.8

2.0

2.2

Current Density / A·cm-2

0.0 0.5 1.0 1.5 2.0

H2

O

2 /

%

0.0

0.2

0.4

0.6

0.8

1.0

Nafion 117JM PFSAJM PFSA with recom cat

• Improved performance• lower gas crossover

60C, 1 bara

Page 16: Membranes for Water Electrolysis - SINTEF · Membranes for Water Electrolysis - ... É :H2 ; ¾ L → P(H 2) = 4.5 ... membrane Cell Performance with Grafted Membrane Grafted membrane

Page 16

Ion Conducting Graft Copolymer Membranes

basepolymer

• partially fluorinated film(ETFE, ECTFE)

• chemically stable• mechanically robust polyelectrolyte grafts

• ion exchange groups• additional functionalities

(e.g. crosslinker, barrier groups)

barrier comonomer

crosslinker

L. Gubler, Adv. Energy Mater. 4 (2014) 1300827

Page 17: Membranes for Water Electrolysis - SINTEF · Membranes for Water Electrolysis - ... É :H2 ; ¾ L → P(H 2) = 4.5 ... membrane Cell Performance with Grafted Membrane Grafted membrane

Page 17

Relative Humidity (%)0 50 100

O2

Perm

eatio

n

(10-1

5 ·mol

·s-1

·cm

-2·k

Pa-1

)

0

5

10

15

20

Nafion 212 (60 m)Grafted membrane (50 m)

Gas Permeation Properties

* Z. Zhang et al., J. Membr. Sci. 472 (2014) 55

Grafted membrane showsmuch lower gas crossover

80C

Gas permeation measuredby mass spectrometry method*

Page 18: Membranes for Water Electrolysis - SINTEF · Membranes for Water Electrolysis - ... É :H2 ; ¾ L → P(H 2) = 4.5 ... membrane Cell Performance with Grafted Membrane Grafted membrane

Page 18

Area Resistance / m·cm2

0 50 100 150 200 250

H2 C

ross

over

/ m

A·c

m-2

0

1

2

3

4

5 Grafted membranes

Property Map

A. Albert et al., ACS Appl. Mater. Interf. 7 (2015) 22203

80C, 100% r.h., 2.5 bara

Nafionmembranes

Strain / %0 50 100 150 200 250

Tens

ile S

tress

/ M

Pa

0

10

20

30

40

N115

N117

XL-100

grafted

graftedX-linked

wet state, machining direction

Page 19: Membranes for Water Electrolysis - SINTEF · Membranes for Water Electrolysis - ... É :H2 ; ¾ L → P(H 2) = 4.5 ... membrane Cell Performance with Grafted Membrane Grafted membrane

Page 19

Current Density / A·cm-2

0.0 0.5 1.0 1.5 2.0

H2

O2

/ %

0.00.10.20.30.40.50.6

Cel

l Vol

tage

/ V

1.4

1.6

1.8

2.0

2.2

Nafion 117Graftedmembrane

Cell Performance with Grafted Membrane

Grafted membrane vs. Nafion 117• similar performance• lower gas crossover

(factor ~2)

Further MEA (CCM) development required

60C, 1 bara (tested @ JMFC)

Page 20: Membranes for Water Electrolysis - SINTEF · Membranes for Water Electrolysis - ... É :H2 ; ¾ L → P(H 2) = 4.5 ... membrane Cell Performance with Grafted Membrane Grafted membrane

Page 20

Area Resistance / m·cm2

0 50 100 150 200 250

H2 C

ross

over

/ m

A·c

m-2

0

1

2

3

4

5

Area Resistance / m·cm2

0 50 100 150 200 250

H2 C

ross

over

/ m

A·c

m-2

0

1

2

3

4

5

Can We Do Better Than That ?

80C, 100% r.h., 2.5 bara

Nafionmembranes

ETFE-50 based

ECTFE-25 based

ETFE (50 m)

ECTFE (25 m)

Thin membrane basedon ECTFE-25 showspromising properties

R = 70 m·cm2 ~ Nafion 212ix = 0.9 mA·cm-2 < Nafion 117

Page 21: Membranes for Water Electrolysis - SINTEF · Membranes for Water Electrolysis - ... É :H2 ; ¾ L → P(H 2) = 4.5 ... membrane Cell Performance with Grafted Membrane Grafted membrane

Page 21

Cur

rent

Den

sity

/

A·c

m-2

0

1

2

3

4

5

6

7

8

Operational Range (Turndown Ratio)

200 60 25

p = 20 bara

0.87

2.35

7.55

2.90

6.95

Cell tests to be done

5.20

graftedECTFE-25

0.90

5.17

PFSA Membranes / m

• low Ohmic resistance• low crossover

• wider range of operatingcurrent density

• suitable for dynamicoperation

imin = limit of 2% H2 in O2

Page 22: Membranes for Water Electrolysis - SINTEF · Membranes for Water Electrolysis - ... É :H2 ; ¾ L → P(H 2) = 4.5 ... membrane Cell Performance with Grafted Membrane Grafted membrane

Durability

Page 23: Membranes for Water Electrolysis - SINTEF · Membranes for Water Electrolysis - ... É :H2 ; ¾ L → P(H 2) = 4.5 ... membrane Cell Performance with Grafted Membrane Grafted membrane

Page 23

Membrane Degradation Mechanisms

Metal ion contamination (reversible) Water supply issue Corrosion of bipolar plates Core shell / alloy catalysts

Loss of mechanical integrity: Mechanical stress, creep Overall membrane thinning Local thinning

Chemical degradation: H2, O2 crossover H2O2 and radical formation Fluoride release

Page 24: Membranes for Water Electrolysis - SINTEF · Membranes for Water Electrolysis - ... É :H2 ; ¾ L → P(H 2) = 4.5 ... membrane Cell Performance with Grafted Membrane Grafted membrane

Page 24

Membrane Degradation Mechanisms

K. Ayers et al., ECS Trans. 33/1 (2010) 3

Need accelerated stress tests

Page 25: Membranes for Water Electrolysis - SINTEF · Membranes for Water Electrolysis - ... É :H2 ; ¾ L → P(H 2) = 4.5 ... membrane Cell Performance with Grafted Membrane Grafted membrane

Page 25

Contributions within NOVEL

Investigation of chemical degradation by measuring fluorideemission rate (FER) coupled to a degradation model

FER in the fuel cell*:

FC under load: 0.01 - 0.1 g·cm-2·h-1

FC under OCV: 1 - 10 g·cm-2·h-1

Shape of curve with maximum at intermediate current density well-reproduced by model

M. Chandesris et al., Int. J. Hydrogen Energy 40 (2015) 1353* FER compilation in L. Gubler et al., J. Electrochem. Soc. 158 (2011) B755

Page 26: Membranes for Water Electrolysis - SINTEF · Membranes for Water Electrolysis - ... É :H2 ; ¾ L → P(H 2) = 4.5 ... membrane Cell Performance with Grafted Membrane Grafted membrane

Page 26

Contributions within NOVEL

Thermal Stress Test (TST): exposure of membrane to 90C for 5 days

A. Albert et al., in preparation

post-test analysis of

membrane solution

• FTIR• IEC• SEM/EDX

• UV-Vis• Ion chromato-

graphy

Membrane IEC loss(%)

grafted, initial design 44.2 0.8

down-selectedgrafted 4.2 0.5

Nafion 117 < 1

membrane

Page 27: Membranes for Water Electrolysis - SINTEF · Membranes for Water Electrolysis - ... É :H2 ; ¾ L → P(H 2) = 4.5 ... membrane Cell Performance with Grafted Membrane Grafted membrane

Page 27

Conclusions

Operation over large current density range desired

Resistance ‐ crossover tradeoff for a given ionomer type 

Strategies for improved membranes in NOVEL

Modified PFSA membranes (reinforced, with recombination catalyst)

Other ionomer classes with superior combinationof resistance and gas barrier properties

Durability aspects tackled within NOVEL

Radical induced degradation: model and experiment

Thermal stress test at 90C in water

Page 28: Membranes for Water Electrolysis - SINTEF · Membranes for Water Electrolysis - ... É :H2 ; ¾ L → P(H 2) = 4.5 ... membrane Cell Performance with Grafted Membrane Grafted membrane

Page

Thank You