memory and consolidation prof.dr. jaap murre university of amsterdam university of maastricht...

100
Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht [email protected] http://www.neuromod.org/courses/ cb2004

Upload: abigail-barber

Post on 27-Dec-2015

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Memory and Consolidation

Prof.dr. Jaap Murre

University of Amsterdam

University of Maastricht

[email protected]

http://www.neuromod.org/courses/cb2004

Page 2: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Overview

• Brief review of neuroanatomy of memory

• Outline of the TraceLink model

• Some simulation results of neural network model, focussing on retrograde amnesia

• Memory Chain Model– Forgetting– Amnesia

Page 3: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

The Amnesia Paradox

• Recent items are remembered best

• But they are the first to be lost with (retrograde) amnesia

Page 4: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

The Daily News Memory Test at memory.uva.nl

0

0.25

0.5

0.75

1

0 100 200 300

retention interval in days

pro

po

rtio

n c

orr

ec

t

4 AFC

Open

1810 Dutch respondents

Page 5: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Théodule Ribot (1886)

• Ribot’s Law: With memory loss, recent memories suffer more

Page 6: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

xretrograde amnesia

anterograde amnesia

lesionpresent past

0

20

40

60

80

100

Amnesia patient

Normal forgetting

Ribot Gradient

Page 7: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Example: Patient data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

75-'84 65-'74 55-'64 45-'54 35-'44

Controls (n=16)

Korsakoff's (n=6)

Alzheimer's (n=8)

Kopelman (1989)News events test

Page 8: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Neuroanatomy of amnesia

• Hippocampus

• Adjacent areas such as entorhinal cortex and parahippocampal cortex

• Basal forebrain nuclei

• Diencephalon

Page 9: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

The position of the hippocampus in the brain

Page 10: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Hippocampal connections

Page 11: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Hippocampus

Entorhinal cortex

7a

36 TF TH 46

7b

3aP-IP-BV1M 3b

Visualareas

Somato-sensoryand motorareas

To and from sensory organs,via subcortical pathways

Hippocampus

Entorhinal cortex

Unimodal and polymodalassociation areas(frontal, temporal, and parietal lobes)

Parahippocampalcortex

Perirhinalcortex

(b)(a)

Hippocampus has anexcellent overview of the entire cortex

Page 12: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

The TraceLink Model

A model of memory consolidation and amnesia

Page 13: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Trace-Link model: structure

Page 14: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

System 1: Trace system

• Function: Substrate for bulk storage of memories, ‘association machine’

• Corresponds roughly to neocortex

Page 15: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

System 2: Link system

• Function: Initial ‘scaffold’ for episodes

• Corresponds roughly to hippocampus and certain temporal and perhaps frontal areas

Page 16: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

System 3: Modulatory system

• Function: Control of plasticity• Involves at least parts of the hippocampus,

amygdala, fornix, and certain nuclei in the basal forebrain and in the brain stem

Page 17: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Stages in episodic learning

Page 18: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Dreaming and consolidation of memory

• Theory by Francis Crick and Graeme Mitchison (1983)

• Main problem: Overloading of memory

• Solution: Reverse learning leads to removal of ‘obsessions’

“We dream in order to forget”

Page 19: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Dreaming and memory consolidation

• When should this reverse learning take place?

• During REM sleep– Normal input is deactivated– Semi-random activations from the brain stem– REM sleep may have lively hallucinations

Page 20: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Consolidation may also strengthen memory

• This may occur during deep sleep (as opposed to REM sleep)

• Both hypothetical processes may work together to achieve an increase in the clarity of representations in the cortex

Page 21: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Experiment by Robert Stickgold

• Difficult visual discrimination problem

• Several hours of practice

• One group goes home• Other group stays in

the lab and skips a night of sleep

Page 22: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Improvement without further training due to sleep

0

5

10

15

20

25

0 2 4 6 8 10

Days after training

Imp

rove

me

nt (

ms)

Normal sleep

Skipped first night sleep

Page 23: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Relevant animal data by Matt Wilson and Bruce McNaughton (1994)

• 120 neurons in rat hippocampus

• PRE: Slow-wave sleep before being in the experimental environment (cage)

• RUN: During experimental environment

• POST: Slow-wave sleep after having been in the experimental environment

Page 24: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Wilson en McNaughton Data

• PRE: Slow-wave sleep before being in the experimental environment (cage)

• RUN: During experimental environment

• POST: Slow-wave sleep after having been in the experimental environment

Page 25: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Some important characteristics of amnesia

• Anterograde amnesia (AA)– Implicit memory preserved

• Retrograde amnesia (RA)– Ribot gradients

• Pattern of correlations between AA and RA– No perfect correlation between AA and RA

Page 26: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

0

0.5

1

0 10 20 30 40 50

Time (years)

Rec

all p

roba

bilit

y

xretrograde amnesia

anterograde amnesia

lesionpresent past

Amnesia patient

Normal forgetting

Page 27: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Example of patient data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

75-'84 65-'74 55-'64 45-'54 35-'44

Controls (n=16)

Korsakoff's (n=6)

Alzheimer's (n=8)

Kopelman (1989)News events test

Page 28: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Retrograde amnesia

• Primary cause: loss of links

• Ribot gradients

• Shrinkage

Page 29: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Anterograde amnesia

• Primary cause: loss of modulatory system• Secondary cause: loss of links• Preserved implicit

memory

Page 30: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Semantic dementia

• The term was adopted recently to describe a new form of dementia, notably by Julie Snowden et al. (1989, 1994) and by John Hodges et al. (1992, 1994)

• Semantic dementia is almost a mirror-image of amnesia

Page 31: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Neuropsychology of semantic dementia

• Progressive loss of semantic knowledge

• Word-finding problems

• Comprehension difficulties

• No problems with new learning

• Lesions mainly located in the infero-lateral temporal cortex but (early in the disease) with sparing of the hippocampus

Page 32: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Severe loss of traceconnections

Stage-2 learning proceedsas normal

Stage 3 learning stronglyimpaired

Non-rehearsed memorieswill be lost

No consolidation in semantic dementia

Page 33: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Semantic dementia in TraceLink

• Primary cause: loss of trace-trace connections

• Stage-3 (and 4) memories cannot be formed: no consolidation

• The preservation of new memories will be dependent on constant rehearsal

Page 34: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Connectionist implementationof the TraceLink model

With Martijn Meeter

Page 35: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Some details of the model

• 42 link nodes, 200 trace nodes

• for each pattern– 7 nodes are active in the link system– 10 nodes in the trace system

• Trace system has lower learning rate that the link system

Page 36: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

How the simulations work: One simulated ‘day’

• A new pattern is activated

• The pattern is learned

• Because of low learning rate, the pattern is not well encoded at first in the trace system

• A period of ‘simulated dreaming’ follows– Nodes are activated randomly by the model– This random activity causes recall of a pattern– A recalled pattern is than learned extra

Page 37: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

(Patient data)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

75-'84 65-'74 55-'64 45-'54 35-'44

Controls (n=16)

Korsakoff's (n=6)

Alzheimer's (n=8)

Kopelman (1989)News events test

Page 38: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

A simulation with TraceLink

R2 = 0.932

R2 = 0.922

0

0.25

0.5

0.75

1

0 5 10 15

Control

Lesion

Page 39: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Frequency of consolidation of patterns over time

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Page 40: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Strongly and weakly encoded patterns

• Mixture of weak, middle and strong patterns

• Strong patterns had a higher learning parameter (cf. longer learning time)

Page 41: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

0

0.5

1

0 5 10 15

No variance

strong variance

0

0.5

1

0 5 10 15

No variance

Strong variance

0

0.5

1

0 5 10 15

Weak patterns

Middle patterns

Strong patterns

0

0.5

1

0 5 10 15

Weak patterns

Middle patterns

Strong patterns

Page 42: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Transient Global Amnesia (TGA)

• (Witnessed onset) of severe anterograde and retrograde amnesia

• Resolves within 24 hours

• Retrograde amnesia may have Ribot gradients

• Hippocampal area is most probably implicated

Page 43: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

maximal TGA: all link nodes inactive

0

0,5

1

-5 0 5 10 15

1/4th of the link nodes functions again

0

0,5

1

-5 0 5 10 15

1/2 of the link nodes functions again

0

0,5

1

-5 0 5 10 15

after the TGA-attack has resolved

0

0,5

1

0 5 10 15 20

Transient Global Amnesia (TGA)

Page 44: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Other simulations

• Focal retrograde amnesia

• Implicit memory

• More subtle lesions (e.g., only within-link connections, cf. CA1 lesions)

• Semantic dementia

• Schizophrenia (memory effects in -) with an extended model (added parahippocampal layer)

Page 45: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Alternative Explanations

• ‘Memory Bump’ appears as reverse gradient

• Nadel and Moscovitz (1997): Trace Replication Theory (will be discussed next time by the students)

Page 46: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Sir Francis Galton (1879)

• Inspected a cue word, e.g., coffee until an event came to mind

• Later, he dated the events

Page 47: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Lifetime distributions

• The Galton-Crovitz method aims for a quasi-random sample of autobiographical memories

• Stratified through the use of keywords

• Technically speaking: The method measures a probability density function of memory age

Page 48: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Rubin, Wetzler & Nebes (1986)

• Found a reminiscence bump between 10 and 30 years, when older than 40 years.

Page 49: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Herinneringsbobbel (Rubin, et al., 1986)

Page 50: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Large-scale replication using the internet

• Website: http://memory.uva.nl

Steve Janssen Antonio Chessa

Page 51: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com
Page 52: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

11 - 20 years old

0

0.01

0.02

0.03

0.04

0 10 20 30 40 50 60 70

21 - 30 years old

0

0.01

0.02

0.03

0.04

0 10 20 30 40 50 60 70

11 - 20 years old

( N = 1189)

0

0.02

0.04

0.06

0 10 20 30 40 50 60 70

21 - 30 years old

( N = 3633)

0

0.02

0.04

0.06

0 10 20 30 40 50 60 70

Memory age pdf Encoding

Subject age Subject age

Page 53: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

31 - 40 years old

0

0.01

0.02

0.03

0.04

0 10 20 30 40 50 60 70

41 - 50 years old

0

0.01

0.02

0.03

0.04

0 10 20 30 40 50 60 70

31 - 40 years old

( N = 3983)

0

0.02

0.04

0.06

0 10 20 30 40 50 60 70

41 - 50 years old

( N = 3791)

0

0.02

0.04

0.06

0 10 20 30 40 50 60 70

Memory age pdf Encoding

Subject age Subject age

Page 54: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

51 - 60 years old

0

0.01

0.02

0.03

0.04

0 10 20 30 40 50 60 70

61 - 70 years old

0

0.01

0.02

0.03

0.04

0 10 20 30 40 50 60 70

51 - 60 years old

( N = 3190)

0

0.02

0.04

0.06

0 10 20 30 40 50 60 70

61 - 70 years old

( N = 1169)

0

0.02

0.04

0.06

0 10 20 30 40 50 60 70

Subject age Subject age

Memory age pdf Encoding

Page 55: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Memory age probabilities Encoding function

Figure 5

S u bjec t ag e S u bje ct ag e

1 1-20 ye ars ol d

0

0 .0 2

0 .0 4

0 .0 6

0 .0 8

0 .1

0 1 0 20 3 0 4 0 5 0 60 7 0

21 -3 0 yea rs ol d

0

0 .0 2

0 .0 4

0 .0 6

0 .0 8

0 .1

0 1 0 20 3 0 4 0 5 0 60 7 0

31 -4 0 yea rs ol d

0

0 .0 2

0 .0 4

0 .0 6

0 .0 8

0 .1

0 1 0 20 3 0 4 0 5 0 60 7 0

41 -5 0 yea rs ol d

0

0 .0 2

0 .0 4

0 .0 6

0 .0 8

0 .1

0 1 0 20 3 0 4 0 5 0 60 7 0

51 -6 0 yea rs ol d

0

0 .0 2

0 .0 4

0 .0 6

0 .0 8

0 .1

0 1 0 20 3 0 4 0 5 0 60 7 0

61 -7 0 yea rs ol d

0

0 .0 2

0 .0 4

0 .0 6

0 .0 8

0 .1

0 1 0 20 3 0 4 0 5 0 60 7 0

11-20 ye ars o ld

(N = 28 6)

0

0 .0 2

0 .0 4

0 .0 6

0 .0 8

0 .1

0 1 0 20 3 0 4 0 5 0 6 0 70

2 1-30 ye ars ol d

(N = 790 )

0

0 .0 2

0 .0 4

0 .0 6

0 .0 8

0 .1

0 1 0 20 3 0 4 0 5 0 6 0 70

3 1-40 ye ars ol d

(N = 2 200 )

0

0 .0 2

0 .0 4

0 .0 6

0 .0 8

0 .1

0 1 0 20 3 0 4 0 5 0 6 0 70

4 1-50 ye ars ol d

(N = 2 142 )

0

0 .0 2

0 .0 4

0 .0 6

0 .0 8

0 .1

0 1 0 20 3 0 4 0 5 0 6 0 70

5 1-60 ye ars ol d

(N = 1 618 )

0

0 .0 2

0 .0 4

0 .0 6

0 .0 8

0 .1

0 1 0 20 3 0 4 0 5 0 6 0 70

6 1-70 ye ars ol d

(N = 874 )

0

0 .0 2

0 .0 4

0 .0 6

0 .0 8

0 .1

0 1 0 20 3 0 4 0 5 0 6 0 70

Encoding functions retains a contain shapeover all age groupsas was expected

Page 56: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

0

0.02

0.04

0.06

0 10 20 30 40 50 60 70

Subject age

Initi

al e

ncod

ing

Encoding combined oversubject age classes

N = 16955

Page 57: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Memory Chain Model

Model of learning, forgetting, retrograde amnesia

Page 58: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Three stages of learning and memory

• Encoding: formation of the memory, after a certain amount of learning time

• Storage: transformation of the memory, under the influence of rehearsal and consolidation

• Retrieval: search for the memory, based on a retrieval cue

• We assume that the contribution of the three stages is independent and multiplicative

Page 59: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Chain of memory ‘stores’

External Information

SensoryStores

Working Memory

Link System

Trace System

Long-term Memory

Short-term Memory

Loss from sensory store

Loss from working memory

Decay and interference

Decay and interference

Page 60: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Chain of memory ‘stores’

External Information

Store s1 Store s2 Store sS-1 Store sS

Long-term Memory

Short-term Memory

Loss of intensity

Loss of intensity

Loss of intensity

Loss of intensity

Sensory Memory

Page 61: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

General principles of the multi-store model

• Part of the information is passed to the next store before it decays completely

• Subsequent stores hold information for longer time periods: slower decay rates in ‘higher’ stores

Page 62: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Item representation

• Items are represented as ‘copies’ or ‘critical features’, each of which suffices for recall

• Finding these ‘copies’ during recall is an inherently stochastic process

Page 63: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Neural network interpretation

Jo Brand

Page 64: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Learning and forgetting as a stochastic process: 1-store example• A recall cue (e.g., a face) may access

different aspects of a stored memory

• If a point is found in the neural cue area, the correct response (e.g., the name) can be given

LearningForgettingSuccessfulRecallUnsuccessfulRecall

Page 65: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Performance determined by a single parameter: intensity

• Intensity is the expected number of copies found within the searched region

• Cf. the expected number of trees in a wood within any 5x5 m region

• We use the mathematical framework of point processes

Page 66: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

General framework: encoding, storage, and retrieval

( )( ) 1 r tp t e

1

storage retrievalencoding

( ) ( )r t r t q

(q = 1 in the remainder of this talk)

Page 67: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

The contributions of individual stores can simply be added

1 2( ) ( ) ( ) ... ( )Sr t r t r t r t

( )( ) 1 r tp t e

Page 68: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Forgetting

Page 69: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

One-store case: forgetting

11 1( ) a tr t e

AssumptionIn all stores, we have an exponential decline of intensity with time t

is the intensity immediately after learning

a1 is the decline parameter

Page 70: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Formation and decline

• Longer learning times will lead to higher intensity

• Decline is caused by – interference from other items (not yet modeled)– displacement in some ‘buffer’– loss of effectiveness of the search cue– neural ‘noise’ and competition

Page 71: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

The shape of forgetting

11

1( ) 1a tep t e

Forgetting in the one-store case:

Page 72: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Some properties of the forgetting curve

• Probability of recall always stays between 0 and 1

• Forgetting is not necessarily greatest after learning:We predict a flex point when the initial recall is at least 63.01)0( 1 ep

Page 73: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Probe-digit experiment (Waugh & Norman 1965)

R2 = 0.7295

0

20

40

60

80

100

0 2 4 6 8 10 12

Time (s)

Ret

enti

on

(%

)Example: Single-store model fitted

to short-term forgetting data

R2 = 0,985

Page 74: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Amnesia

Retrograde amnesia

Page 75: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Assumption:Hippocampus (link system) = store 1Neocortex (trace system) = store 2

Page 76: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

0

0.5

1

0 10 20 30 40 50

Time (years)

Rec

all p

roba

bilit

y

xretrograde amnesia

anterograde amnesia

lesionpresent past

Amnesia patient

Normal forgetting

Page 77: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Amnesia in the two-store model

12 1 2

[1]2 2

1[ 2 ] 1

With normal recall we have:

( ) ( ) ( )

With a lesioned hippocampus we have:

( ) ( )

With a non-functional neocortex we have

( ) ( )

r t r t r t

r t r t

r t r t

Page 78: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Amnesia: animal data

Retrograde amnesia

Page 79: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Cho & Kesner (1996). (mice) R2=0.96

b.

0

0.25

0.5

0.75

1

0 10 20 30 40 50

Time (days)

Rec

all p

rob

abili

ty

Page 80: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Summary of animal data

a.

0

0.25

0.5

0.75

1

0 20 40 60

Time (days)

Rec

all p

roba

bilit

y

b.

0

0.25

0.5

0.75

1

0 10 20 30 40 50

Time (days)R

ecal

l pro

babi

lity

c.

0

0.25

0.5

0.75

1

0 20 40 60

Time (days)

Rec

all p

roba

bilit

y

d.

0

0.25

0.5

0.75

1

0 20 40 60

Time (days)

Rec

all p

roba

bilit

y

f.

0

0.25

0.5

0.75

1

0 50 100 150

Time (days)

Rec

all p

roba

bilit

y

e.

0

0.25

0.5

0.75

1

0 5 10

Time (days)

Re

call

pro

bab

ility

d.

0

0.25

0.5

0.75

1

0 20 40 60

Time (days)

Re

call

pro

bab

ility

Page 81: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Cortical amnesia

Frankland, O’Brien, Ohno, Kirkwood, & Silva, (Nature, 2001).

Data provided by Paul Frankland

Page 82: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Frankland et al. (2001) study

• -CaMKB-dependent plasticity (in neocortex) switched off in knock-out mice

• No LTP measurable in neocortex but LTP in hippocampus was largely normal

• Forgetting curves with different levels of initial learning were measured

• A learning curve was measured

• Assumption: use r1[2](t) for knock-out mice

Page 83: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Forgetting after 3 shocks, using three parameters

Freezing after 3 shocks

0

0.25

0.5

0.75

1

0 10 20 30 40 50

Retention delay (days)

Fre

ez

ing

(fr

ac

tio

n)

Page 84: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Using the same three parameters and a massed-learning correction.

Freezing after 8 shocks

0

0.25

0.5

0.75

1

0 5 10 15

Retention delay (days)

Fre

ezin

g (

frac

tio

n)

Page 85: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Controls receive 1 shock, experimental animals 3 shocks (no new free parameters).

Freezing after weak learning

0

0.25

0.5

0.75

1

0 5 10 15

Retention delay (days)

Fre

ezin

g (

frac

tio

n)

Page 86: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Repeated learning for experimental animals (no new free parameters)

Freezing after repeated learning

0

0.25

0.5

0.75

0 1 2 3

Training day

Fre

ez

ing

(fr

ac

tio

n)

Page 87: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Summary of ‘cortical amnesia’. Using only 4 parameters for all curves (R2 = 0.976).

Freezing after 3 shocks

0

0.25

0.5

0.75

1

0 10 20 30 40 50

Retention delay (days)

Fre

ezin

g (

frac

tio

n)

Freezing after 8 shocks

0

0.25

0.5

0.75

1

0 5 10 15

Retention delay (days)

Fre

ezin

g (

frac

tio

n)

Freezing after weak learning

0

0.25

0.5

0.75

1

0 5 10 15

Retention delay (days)

Fre

ezin

g (

frac

tio

n)

Freezing after repeated learning

0

0.25

0.5

0.75

0 1 2 3

Training day

Fre

ez

ing

(fr

ac

tio

n)

(a) (b)

(c) (d)

Page 88: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Amnesia: human data

Retrograde amnesia

Page 89: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Remarks on the human data

• Fitting procedure identical to animal data

• Data are very noisy

• Basic fits: a2 = 0, full lesion assumed. This leaves three parameters.

Page 90: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Kopelman (1989). News events test. Korsakoff (left), Alzheimer (right, fitted with lower 2). R2=0.951.

a.

0

0.5

1

0 10 20 30 40 50

Time (years)

Rec

all p

roba

bilit

y

a.

0

0.5

1

0 10 20 30 40 50

Time (years)

Rec

all p

roba

bilit

y

Page 91: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Wiig, Cooper & Bear (1996). (rats) R2=0.28

d.

0

0.25

0.5

0.75

1

0 20 40 60

Time (days)

Rec

all p

rob

abili

ty

Page 92: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Problem with nearly all human data

• Straight fits of forgetting curves and Ribot gradients are nonsense

• Tests items for remote periods are easier

• Typically: curves are flat around 80-85% for control subjects

• Reason: maximizes chances of detecting Ribot effects

• Disadvantage: shape of the curves is useless for quantitative analysis

Page 93: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Relative retrograde gradient: a relative measure of memory loss

[1]2[1]2

12

log(1 )( )( )

( ) log(1 )patient

control

pr trr t

r t p

Page 94: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Wiig, Cooper & Bear (1996). (rats) with rr-gradient: R2=0.84

d.

0

0.25

0.5

0.75

1

0 20 40 60

Time (days)

Rec

all p

rob

abili

ty

Page 95: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Albert et al. (1979). Naming of famous faces. Korsakoff patients. R2 = 0.977 and R2

rr=0.978.

a.

0

0.5

1

0 10 20 30 40 50

Time (years)

Rec

all p

roba

bilit

y

a.

0

0.5

1

0 10 20 30 40 50

Time (years)

Re

lativ

e in

tens

ity

Page 96: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

In progress with Memory Chain Model

• Fits to patient data: Huntington, Alzheimer, Korsakoff, TGA, focal lesions, ECT, etc.

• Data collection with four new tests of retrograde amnesia (in Dutch) developed in my group

• Memory Chain Model helps with item selection and interpretation of results (clinical application: diagnosis)

Page 97: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Summary of the human data

• This work is still in progress

• About 25 human data sets have been fitted

• rr-gradient allows initial quantitative analysis

• Human data and animal give the same overall picture

Page 98: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

Concluding remarks

• Consolidation is still a hotly debated issue

• Modeling can help to elucidate the various viewpoints

• Models at various levels of detail can be developed:– Connectionist models (e.g., TraceLink)– Mathematical models (e.g., Memory Chain

Model)

Page 99: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com

More information at

http://www.neuroMod.org/

courses/cb2004

E-mail:

[email protected]

Page 100: Memory and Consolidation Prof.dr. Jaap Murre University of Amsterdam University of Maastricht jaap@murre.com