mengdi zheng 09232014_apma

1
Adaptive ME-PCM for SPDEs driven by discrete RVs Mengdi Zheng, Applied Mathematics, Brown University 5 methods to generate orthogonal polynomials for discrete measures: 1. (Nowak’s method) S. Oladyshkin, W. Nowak, Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion, Reliability Engineering & System Safety, 106 (2012), pp. 179–190. 2. (Fischer’s method) H. J. Fischer, On generating orthogonal polynomials for discrete mea- sures, Z. Anal. Anwendungen, 17 (1998), pp. 183–205. 3. (Stieltjes method) W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Stat. Comp., 3 (1982), no.3, pp. 289– 317. 4. (Modified Chebyshev method) the same paper as above 5. (Lanczos method) D. Boley, G. H. Golub, A Comparing othogonality of 5 methods to construct polynomials: Comparing CPU time (cost) to construct the polynomials by 5 methods: Comparing the minimum polynomial orders that the Stieltjes method starts to fail (Binomial): 10 20 40 80 100 10 4 10 3 10 2 10 1 10 0 polynomial order i CPU time to evaluate orth(i) Nowak Stieltjes Fischer Modified Chebyshev Lanczos C*i 2 0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160 n (p=1/10) for measure defined in (28) polynomial order i =1E8 =1E10 =1E13 i = n 0 10 20 30 40 50 60 70 80 90 100 10 20 10 15 10 10 10 5 10 0 polynomial order i orth(i) Nowak Stieltjes Fischer Modified Chebyshev Lanczos Multi-element (ME) Gauss quadrature integration theorem (new): h-convergence of integration of GENZ1 function over Binomial distributions (Lanczos/ME-PCM) 10 0 10 1 10 6 10 5 10 4 10 3 10 2 N es absolute error c=0.1,w=1 GENZ1 d=2 m=3 bino(120,1/2) h-convergence of integration of GENZ4 function over Binomial distributions (Lanczos/ME-PCM) 10 0 10 1 10 13 10 12 10 11 10 10 10 9 N es absolute errors c=0.1,w=1 GENZ4 d=2 m=3 bino(120,1/2) Comparing sparse grid and tensor product grid in 8 dimensions by integration of GENZ1 function over Binomial distribution (Lanczos/ME-PCM) 17 153 969 4845 10 10 10 9 10 8 10 7 10 6 10 5 10 4 10 3 r(k) absolute error sparse grid tensor product grid Genz1 sparse 8d 1,...,8 Bino(5,1/2) c 1,...,8 =0.1 w 1,...,8 =1 ADAPTIVE integration mesh of ME-PCM (idea) Example: KdV equation/ homogeneous BC/ moment statistics Define errorr (for moment statistics) ADAPTIVE V.s. NON-ADAPTIVE mesh (moment statistics/KdV/Poisson RV/Nowak) Details of this work please see: M. Zheng, X. Wan, and G.E. Karniadakis, Adaptive-multi- element polynomial chaos with discrete measure: Algorithms and application to SPDEs, Submitted to Applied Numerical Mathematics, 2013. 2 3 4 5 6 10 5 10 4 10 3 10 2 Number of PCM points on each element errors 2 el, even grid 2 el, uneven grid 4 el, even grid 4 el, uneven grid 5 el, even grid 5 el, uneven grid 2 3 4 5 6 10 5 10 4 10 3 Number of PCM points on each element errors 2 el, even grid 2 el, uneven grid 4 el, even grid 2 el, uneven grid 5 el, even grid 5 el, uneven grid 4 FA 9550-09-1-0613

Upload: zheng-mengdi

Post on 26-Jul-2015

44 views

Category:

Presentations & Public Speaking


0 download

TRANSCRIPT

Page 1: Mengdi zheng 09232014_apma

Adaptive ME-PCM for SPDEs driven by discrete RVs !Mengdi Zheng, Applied Mathematics, Brown University!

5 methods to generate orthogonal polynomials for discrete measures:!1. (Nowak’s method) S. Oladyshkin, W.

Nowak, Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion, Reliability Engineering & System Safety, 106 (2012), pp. 179–190. !

2. (Fischer’s method) H. J. Fischer, On generating orthogonal polynomials for discrete mea- sures, Z. Anal. Anwendungen, 17 (1998), pp. 183–205. !

3. (Stieltjes method) W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Stat. Comp., 3 (1982), no.3, pp. 289–317. !

4. (Modified Chebyshev method) the same paper as above!

5. (Lanczos method) D. Boley, G. H. Golub, A

Comparing othogonality of 5 methods to construct polynomials:

Comparing CPU time (cost) to construct the polynomials by 5 methods:

Comparing the minimum polynomial orders that the Stieltjes method starts to fail (Binomial):

10 20 40 80 100

10−4

10−3

10−2

10−1

100

polynomial order i

CP

U ti

me

to e

valu

ate

orth

(i)

NowakStieltjesFischerModified ChebyshevLanczos

C*i2n=100,p=1/2

������������� ��������������������

0 20 40 60 80 100 120 140 1600

20

40

60

80

100

120

140

160

n (p=1/10) for measure defined in (28)

poly

nom

ial o

rder

i

�=1E−8

�=1E−10

�=1E−13

i = n

������������� ������������������� ��������������� �

���

����

0 10 20 30 40 50 60 70 80 90 100

10−20

10−15

10−10

10−5

100

polynomial order i

orth

(i)

NowakStieltjesFischerModified ChebyshevLanczos

n=100, p=1/2������������� ��������������������

Multi-element (ME) Gauss quadrature integration theorem (new):

h-convergence of integration of GENZ1 function over Binomial distributions (Lanczos/ME-PCM)

100 10110−6

10−5

10−4

10−3

10−2

Nes

abso

lute

erro

r

c=0.1,w=1

GENZ1d=2m=3bino(120,1/2) �������������

h-convergence of integration of GENZ4 function over Binomial distributions (Lanczos/ME-PCM)

100 10110−13

10−12

10−11

10−10

10−9

Nes

abso

lute

erro

rs

c=0.1,w=1

GENZ4d=2m=3bino(120,1/2)

����������

Comparing sparse grid and tensor product grid in 8 dimensions by integration of GENZ1 function over Binomial distribution (Lanczos/ME-PCM)

17 153 969 484510−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

r(k)

abso

lute

erro

r

sparse grid

tensor product grid

Genz1sparse 8d�1,...,8�Bino(5,1/2)c1,...,8=0.1w1,...,8=1

ADAPTIVE integration mesh of ME-PCM (idea)

������������������� �����������������������������������������������

��������������������������������������������������������

Example: KdV equation/ homogeneous BC/moment statistics!

Define errorr (for moment statistics)

ADAPTIVE V.s. NON-ADAPTIVE mesh (moment statistics/KdV/Poisson RV/Nowak)!

Details of this work please see: M. Zheng, X. Wan, and G.E. Karniadakis, Adaptive-multi-element polynomial chaos with discrete measure: Algorithms and application to SPDEs, Submitted to Applied Numerical Mathematics, 2013.!

2 3 4 5 6

10−5

10−4

10−3

10−2

Number of PCM points on each element

erro

rs

2 el, even grid2 el, uneven grid4 el, even grid4 el, uneven grid5 el, even grid5 el, uneven grid

���������������������� ��������������� ������

����������� ��� ���

2 3 4 5 6

10−5

10−4

10−3

Number of PCM points on each element

erro

rs

2 el, even grid2 el, uneven grid4 el, even grid2 el, uneven grid5 el, even grid5 el, uneven grid

���������������������� ����������������

4

FA 9550-09-1-0613